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This paper investigates the adaptive stabilization problem for a class of stochastic nonholonomic systemswith strong drifts. By using
input-state-scaling technique, backstepping recursive approach, and a parameter separation technique, we design an adaptive state
feedback controller. Based on the switching strategy to eliminate the phenomenon of uncontrollability, the proposed controller can
guarantee that the states of closed-loop system are global bounded in probability.

1. Introduction

Thenonholonomic systems cannot be stabilized by stationary
continuous state feedback, although it is controllable, due
to Brockett’s theorem [1]. So the well-developed smooth
nonlinear control theory and the method cannot be directly
used in these systems. Many researchers have studied the
control and stabilization of nonholonomic systems in the
nonlinear control field and obtained some success [2–
6]. It should be mentioned that many literatures consider
the asymptotic stabilization of nonholonomic systems; the
exponential convergence is also an important topic theme,
which is demanded in many practical applications. How-
ever, the exponential regulation problem, particularly the
systems with parameterization, has received less attention.
Recently, [3] firstly introduced a class of nonholonomic
systems with strong nonlinear uncertainties and obtained
global exponential regulation. References [4, 5] studied a
class of nonholonomic systems with output feedback control.
Reference [6] combined the idea of combined input-state-
scaling and backstepping technology, achieving the asymp-
totic stabilization for nonholonomic systems with nonlinear
parameterization.

It is well known that when the backstepping designs were
firstly introduced, the stochastic nonlinear control had ob-
tained a breakthrough [7]. Based on quartic Lyapunov

functions, the asymptotical stabilization control in the large
of the open-loop system was discussed in [8]. Further
research was developed by the recent work [9–16]. [17–19]
studied a class of nonholonomic systems with stochastic
unknown covariance disturbance. Since stochastic signals
are very prevalent in practical engineering, the study of
nonholonomic systems with stochastic disturbances is very
significant. So, there exists a natural problem that is how
to design an adaptive exponential stabilization for a class
of nonholonomic systems with stochastic drift and diffusion
terms. Inspired by these papers, we will study the exponential
regulation problem with nonlinear parameterization for a
class of stochastic nonholonomic systems. We use the input-
state-scaling, the backstepping technique, and the switching
scheme to design a dynamic state-feedback controller with
∑
𝑇
∑ ̸= 𝐼; the closed-loop system is globally exponentially

regulated to zero in probability.
This paper is organized as follows. In Section 2, we give

the mathematical preliminaries. In Section 3, we construct
the new controller and offer the main result. In the last
section, we present the conclusions.

2. Problem Statement and Preliminaries

In this paper, we consider a class of stochastic nonholonomic
systems as follows:
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𝑑𝑥
0
= 𝑑
0 (𝑡) 𝑢0𝑑𝑡 + 𝑓0 (𝑡, 𝑥0) 𝑑𝑡

𝑑𝑥
𝑖
= 𝑑
𝑖 (𝑡) 𝑥𝑖+1𝑢0𝑑𝑡 + 𝑓𝑖 (𝑡, 𝑥0, 𝑥𝑖) 𝑑𝑡 + 𝜑𝑖 (𝑥𝑖)∑ (𝑡) 𝑑𝜔,

𝑖 = 1, . . . , 𝑛 − 1,

𝑑𝑥
𝑛
= 𝑑
𝑛 (𝑡) 𝑢1𝑑𝑡 + 𝑓𝑛 (𝑡, 𝑥0, 𝑥) 𝑑𝑡 + 𝜑𝑛 (𝑥)∑ (𝑡) 𝑑𝜔,

(1)

where 𝑥
0
∈ 𝑅 and 𝑥 = [𝑥

1
, . . . , 𝑥

𝑛
]𝑇 ∈ 𝑅𝑛 are the system states

and 𝑢
0
∈ 𝑅 and 𝑢

1
∈ 𝑅 are the control inputs, respectively.

𝑥
𝑖
= [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
]𝑇 ∈ 𝑅𝑖, (𝑖 = 1, 2, . . . , 𝑛), and 𝑥

𝑛
= 𝑥;

𝜔 ∈ 𝑅𝑟 is an 𝑟-dimensional standard Wiener process defined
on the complete probability space (Ω, 𝐹, 𝑃) with Ω being
a sample space, 𝐹 being a filtration, and 𝑃 being measure.
The drift and diffusion terms 𝑓

𝑖
(⋅), 𝜑
𝑖
(⋅) are assumed to be

smooth, vanishing at the origin (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
) = (0, 0, . . . , 0);

∑(𝑡) : 𝑅
+
→ 𝑅𝑟×𝑟 is the Borel boundedmeasurable functions

and is nonnegative definite for each 𝑡 ≥ 0. 𝑑
𝑖
(𝑡) are disturbed

virtual control coefficients, where 𝑖 = 0, 1 . . . 𝑛.
Next we introduce several technical lemmas which will

play an important role in our later control design.
Consider the following stochastic nonlinear system:

𝑑𝑥 = 𝑓 (𝑥, 𝑡) 𝑑𝑡 + 𝑔 (𝑥, 𝑡) 𝑑𝜔, 𝑥 (0) = 𝑥0 ∈ 𝑅
𝑛, (2)

where 𝑥 ∈ 𝑅𝑛 is the state of system (2), the Borel measurable
functions: 𝑓 : 𝑅𝑛+1 → 𝑅𝑛 and 𝑔 : 𝑅𝑛+1 → 𝑅𝑛×𝑟 are assumed
to be 𝐶1 in their arguments, and 𝜔 ∈ 𝑅𝑟 is an 𝑟-dimensional
standard Wiener process defined on the complete probablity
space (Ω, 𝐹, 𝑃).

Definition 1 (see [8]). Given any 𝑉(𝑥, 𝑡) ∈ 𝐶1,2, for stochastic
nonlinear system (2), the differential operator 𝐿 is defined as
follows:

𝐿𝑉 (𝑥, 𝑡) =
𝜕𝑉

𝜕𝑡
+
𝜕𝑉

𝜕𝑥
𝑓 +

1

2
tr(𝑔𝑇 𝜕

2𝑉

𝜕𝑥2
𝑔) , (3)

where 𝐶1,2(𝑅𝑛 × 𝑅
+
; 𝑅
+
) denotes all nonnegative functions

𝑉(𝑥, 𝑡) on 𝑅𝑛 × 𝑅
+
, which are 𝐶1 in 𝑡 and 𝐶2 in 𝑥, and for

simplicity, the smooth function 𝑓(⋅) is denoted by 𝑓.

Lemma2 (see [8]). Let 𝑥 and𝑦 be real variables.Then, for any
positive integers𝑚, 𝑛, and any real number 𝜀 > 0, the following
inequality holds:

𝛼 (⋅) 𝑥
𝑚𝑦𝑛 ≤ 𝜀|𝑥|

𝑚+𝑛 +
𝑛

𝑚 + 𝑛
(
𝑚 + 𝑛

𝑚
)
−𝑚/𝑛

× 𝛼(⋅)
(𝑚+𝑛)/𝑛𝜀−𝑚/𝑛

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑚+𝑛

.

(4)

Lemma 3 (see [7]). Considering the stochastic nonlinear
system (2), if there exist a 𝐶1,2 function 𝑉(𝑥, 𝑡), 𝐾

∞
class

functions 𝛼 and 𝛼, constant 𝑐, and a nonnegative functions
𝑊(𝑥, 𝑡) such that

𝛼 |(𝑥)| ≤ 𝑉 (𝑥) ≤ 𝛼 |(𝑥)| , 𝐿𝑉 (𝑥) ≤ −𝑊 (𝑥, 𝑡) + 𝑐, (5)

then for each 𝑥
0
∈ 𝑅𝑛. (1) For (2), there exists an almost surely

unique solution on [0,∞]. (2) When 𝑐 = 0, 𝑓(0, 𝑡) = 0,
𝑔(0, 𝑡) = 0, and𝑊(𝑥, 𝑡) = 𝑊(𝑥) is continuous, the equilibrium
𝑥 = 0 is globally stable in probability, and the solution 𝑥(𝑡)
satisfies 𝑃{lim

𝑡→∞
𝑊(𝑥(𝑡) = 0} = 1. (3) For any given 𝜀 > 0,

there exist a class𝐾𝐿 function 𝛽
𝑐
(⋅, ⋅) and𝐾 function 𝛾(⋅) such

that 𝑃{|(𝑥(𝑡))| < 𝛽
𝑐
(|𝑥
0
|, 𝑡) + 𝛾(𝑐)} ≥ 1 − 𝜀 for any 𝑡 ≥ 0,

𝑥
0
∈ 𝑅𝑛 \ {0}.

Lemma 4 (see [20]). For any real-valued continuous function
𝑓(𝑥, 𝑦), 𝑥 ∈ 𝑅𝑚, 𝑦 ∈ 𝑅𝑛, there exist smooth scalar-value
funcions 𝑎(𝑥) ≥ 0, 𝑏(𝑦) ≥ 0, 𝑐(𝑥) > 1, and 𝑑(𝑦) ≥ 1, such
that |𝑓(𝑥, 𝑦)| ≤ 𝑎(𝑥) + 𝑏(𝑦), and |𝑓(𝑥, 𝑦)| ≤ 𝑐(𝑥)𝑑(𝑦).

3. Controller Design and Analysis

The purpose of this paper is to construct a smooth state-
feedback control law such that the solution process of system
(1) is bounded in probability. For clarity, the case that
𝑥
0
(𝑡
0
) ̸= 0 is firstly considered.Then, the case where the initial

𝑥
0
(𝑡
0
) = 0 is dealt with later. The triangular structure of

system (1) suggests that we should design the control inputs
𝑢
0
and 𝑢

1
in two separate stages.

To design the controller for system (1), the following
assumptions are needed.

Assumption 5. For 0 ≤ 𝑖 ≤ 𝑛, there are some positive
constants 𝜆

𝑖1
and 𝜆

𝑖2
that satisfy the inequality 𝜆

𝑖1
≤ 𝑑
𝑖
(𝑡) ≤

𝜆
𝑖2
.

Assumption 6. For 𝑓
0
(𝑡, 𝑥
0
), there exists a nonnegative

smooth function 𝛾
0
(𝑡, 𝑥
0
), such that |𝑓

0
(𝑡, 𝑥
0
)| ≤ |𝑥

0
|𝛾
0
(𝑡, 𝑥
0
).

For each 𝑓
𝑖
(𝑡, 𝑥
0
, 𝑥
𝑖
), 𝜑
𝑖
(𝑥
𝑖
), there exist nonnegative

smooth functions 𝛾
𝑖
(𝑡, 𝑥
0
, 𝑥
𝑖
) and 𝜌

𝑖
(𝑥
𝑖
), such that

|𝑓
𝑖
(𝑡, 𝑥
0
, 𝑥
𝑖
)| ≤ (∑

𝑖

𝑘=1
|𝑥
𝑘
|)𝛾
𝑖
(𝑡, 𝑥
0
, 𝑥
𝑖
), |𝜑
𝑖
(𝑥
𝑖
)| ≤ (∑

𝑖

𝑘=1
|𝑥
𝑘
|)

𝜌
𝑖
(𝑥
𝑖
).

3.1. Designing 𝑢
0
for 𝑥
0
-Subsystem. For 𝑥

0
-subsystem, the

control 𝑢
0
can be chosen as

𝑢
0
= −𝜆
0
𝑥
0
, (6)

where𝜆
0
= (𝑘
0
+𝛾
0
)/𝜆
01
and 𝑘
0
is a positive design parameter.

Consider the Lyapunov function candidate 𝑉
0
= 𝑥2
0
/2.

From (6) and Assumptions 5 and 6, we have

𝐿𝑉
0
= 𝑥
0
(𝑑
0
𝑢
0
+ 𝑓
0
(𝑡, 𝑥
0
))

≤ 𝑑
0
𝑢
0
𝑥
0
+ 𝑥2
0
𝛾
0
≤ −𝑘
0
𝑥2
0
= −2𝑘

0
𝑉
0
.

(7)

So, we obtain the first result of this paper.

Theorem 7. The 𝑥
0
-subsystem, under the control law (6)

with an appropriate choice of the parameters 𝑘
0
, 𝜆
01
, 𝜆
02
, is

globally exponentially stable.

Proof. Clearly, from (7), 𝐿𝑉
0
≤ 0, which implies that |𝑥

0
(𝑡)| ≤

|𝑥
0
(𝑡
0
)|𝑒−𝑘0(𝑡−𝑡0). Therefore, 𝑥

0
is globally exponentially con-

vergent. Consequently, 𝑥
0
can be zero only at 𝑡 = 𝑡

0
, when
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𝑥(𝑡
0
) = 0 or 𝑡 = ∞. It is concluded that 𝑥

0
does not cross zero

for all 𝑡 ∈ (𝑡
0
,∞) provided that 𝑥(𝑡

0
) ̸= 0.

Remark 8. If 𝑥(𝑡
0
) ̸= 0, 𝑢

0
exists and does not cross zero for

all 𝑡 ∈ (𝑡
0
,∞) independent of the 𝑥-subsystem from (6).

3.2. Backstepping Design for 𝑢
1
. From the above analysis, the

𝑥
0
-state in (1) can be globally exponentially regulated to zero

as 𝑡 → ∞, obviously. In this subsection, we consider the
control law 𝑢

1
for the 𝑥-subsystem by using backstepping

technique. To design a state-feedback controller, one first
introduces the following discontinuous input-state-scaling
transformation:

𝜂
𝑖
=
𝑒𝛼𝑡𝑥
𝑖

𝑢𝑛−𝑖
0

, 𝑖 = 1 . . . , 𝑛, 𝑢 = 𝑒𝛼𝑡𝑢
1
. (8)

Under the new 𝑥-coordinates, 𝑥-subsystems is transformed
into

𝑑𝜂
𝑖
= 𝑑
𝑖
𝜂
𝑖+1
𝑑𝑡 + 𝑓

𝑖
𝑑𝑡 + 𝜙𝑇

𝑖

𝑇

∑(𝑡) 𝑑𝜔, 𝑖 = 1, . . . , 𝑛 − 1,

𝑑𝜂
𝑛
= 𝑑
𝑛
𝑢𝑑𝑡 + 𝑓

𝑛
𝑑𝑡 + 𝜙𝑇

𝑛

𝑇

∑(𝑡) 𝑑𝜔,

(9)

where

𝑓
𝑖
= 𝛼𝜂
𝑖
+
𝑒𝛼𝑡𝑓
𝑖

𝑢𝑛−𝑖
0

−
(𝑛 − 𝑖) 𝜂𝑖
𝑢
0

𝜕𝑢
0

𝜕𝑥
0

(𝑑
0
𝑢
0
+ 𝑓
0
) ,

𝜙
𝑖
=
𝑒𝛼𝑡𝜑
𝑖

𝑢𝑛−𝑖
0

.

(10)

In order to obtain the estimations for the nonlinear
functions 𝑓

𝑖
and 𝜙

𝑖
, the following Lemma can be derived by

Assumption 6.

Lemma 9. For 𝑖 = 1, 2 . . . 𝑛, there exist nonnegative smooth
functions 𝛾

𝑖
(⋅), 𝜌
𝑖
(⋅), such that

󵄨󵄨󵄨󵄨󵄨𝑓𝑖
󵄨󵄨󵄨󵄨󵄨 ≤ (

𝑖

∑
𝑘=1

󵄨󵄨󵄨󵄨𝜂𝑘
󵄨󵄨󵄨󵄨) 𝛾𝑖 (𝑥0, 𝑥𝑖) , (11)

󵄨󵄨󵄨󵄨𝜙𝑖
󵄨󵄨󵄨󵄨 ≤ (

𝑖

∑
𝑘=1

󵄨󵄨󵄨󵄨𝜂𝑘
󵄨󵄨󵄨󵄨) 𝜌𝑖 (𝑥𝑖) . (12)

Proof. We only prove (11). The proof of (12) is similar to that
of (11). In view of (6), (8), (10) and Assumption 6, one obtains

󵄨󵄨󵄨󵄨󵄨𝑓𝑖
󵄨󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛼𝜂
𝑖
+
𝑒𝛼𝑡𝑓
𝑖

𝑢𝑛−𝑖
0

−
(𝑛 − 𝑖) 𝜂𝑖
𝑢
0

𝜕𝑢
0

𝜕𝑥
0

(𝑑
0
𝑥
0
+ 𝑓
0
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝛼𝜂𝑖

󵄨󵄨󵄨󵄨 + (
𝑖

∑
𝑘=1

𝑒𝛼𝑡
󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨

𝑢𝑛−𝑘
0

󵄨󵄨󵄨󵄨󵄨𝑢
𝑖−𝑘

0

󵄨󵄨󵄨󵄨󵄨) 𝛾𝑖

+ (𝑛 − 𝑖) (𝜆0𝜆02 + 𝛾0)
󵄨󵄨󵄨󵄨𝜂𝑖
󵄨󵄨󵄨󵄨

≤ |𝛼|
󵄨󵄨󵄨󵄨𝜂𝑖
󵄨󵄨󵄨󵄨 + (

𝑖

∑
𝑘=1

󵄨󵄨󵄨󵄨𝜂𝑘
󵄨󵄨󵄨󵄨 𝜆
𝑖−𝑘

0

󵄨󵄨󵄨󵄨󵄨𝑥
𝑖−𝑘

0

󵄨󵄨󵄨󵄨󵄨) 𝛾𝑖

+ (𝑛 − 𝑖) (𝜆0𝜆02 + 𝛾0)
󵄨󵄨󵄨󵄨𝜂𝑖
󵄨󵄨󵄨󵄨

≤ (
𝑖

∑
𝑘=1

󵄨󵄨󵄨󵄨𝜂𝑘
󵄨󵄨󵄨󵄨) (|𝛼| +

󵄨󵄨󵄨󵄨󵄨𝜆
𝑖−𝑘

0

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑥
𝑖−𝑘

0

󵄨󵄨󵄨󵄨󵄨 𝛾𝑖 + (𝑛 − 𝑖) (𝜆0𝜆02 + 𝛾0))

≤ (
𝑖

∑
𝑘=1

󵄨󵄨󵄨󵄨𝜂𝑘
󵄨󵄨󵄨󵄨) 𝛾𝑖 (𝑥0, 𝑥𝑖),

(13)

where 𝛾
𝑖
(𝑥
0
, 𝑥
𝑖
) ≥ |𝛼| + |𝜆𝑖−𝑘

0
|𝑥𝑖−𝑘
0
|𝛾
𝑖
+ (𝑛 − 𝑖)(𝜆

0
𝜆
02
+ 𝛾
0
).

To design a state-feedback controller, one introduces the
coordinate transformation

𝑧
1
= 𝜂
1
,

𝑧
𝑖
= 𝜂
𝑖
− 𝛼
𝑖
(𝑧
𝑖−1
) , 𝑖 = 1, 2 . . . , 𝑛,

(14)

where 𝛼
2
, . . . , 𝛼

𝑛
are smooth virtual control laws and will be

designed later and 𝛼
1
= 0. 𝜃 denotes the estimate of 𝜃, where

𝜃 = sup
𝑡≥0

{
{
{

max
{
{
{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∑ (𝑡)

𝑇

∑(𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∑ (𝑡)

𝑇

∑(𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4/3

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∑ (𝑡)

𝑇

∑(𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

}
}
}

}
}
}

.

(15)

Then using (9), (10), (14) and It 𝑜 differentiation rule, one has

𝑑𝑧
𝑖
= 𝑑 (𝜂

𝑖
− 𝛼
𝑖
)

= (𝑑
𝑖
𝜂
𝑖+1
+ 𝐹
𝑖
(𝑧
𝑖
, 𝑥
0
) −

𝜕𝛼
𝑖

𝜕𝜃

̇̂
𝜃) 𝑑𝑡 + 𝐺𝑇

𝑖
(𝑧
𝑖
)
𝑇

∑(𝑡) 𝑑𝜔

−
1

2

𝑖−1

∑
𝑘,𝑚=1

𝜕2𝛼
𝑖

𝜕𝑧
𝑘
𝜕𝑧
𝑚

𝜙𝑇
𝑘
(𝑧
𝑘
)
𝑇

∑(𝑡)∑ (𝑡) 𝜙𝑚 (𝑧𝑚) 𝑑𝑡,

𝑖 = 1, 2 . . . 𝑛,

(16)

where 𝜂
𝑛+1

= 𝑢, 𝐹
𝑖
(𝑧
𝑖
, 𝑥
0
) = 𝑓
𝑖
+∑
𝑖−1

𝑘=1
(𝜕𝛼
𝑖
/𝜕𝑧
𝑘
)(𝑑
𝑘
𝜂
𝑘+1
+𝑓
𝑘
),

and 𝐺
𝑖
(𝑧
𝑖
, 𝑥
0
) = 𝜙

𝑖
+ ∑
𝑖−1

𝑘=1
(𝜕𝛼
𝑖
/𝜕𝑧
𝑘
)𝜙
𝑘
, where 𝑖 = 1, 2 . . . 𝑛.

Using Lemmas 2, 4, and 9 and (14), we easily obtain the
following lemma.

Lemma 10. For 1 ≤ 𝑖 ≤ 𝑛, there exist nonnegative smooth
functions 𝛾

𝑖1
(𝑧
𝑖
, 𝑥
0
), 𝑝
𝑖1
(𝑧
𝑖
), and 𝑝

𝑖
(𝑧
𝑖
), such that

󵄨󵄨󵄨󵄨𝐹𝑖
󵄨󵄨󵄨󵄨 ≤ (

𝑖

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑧𝑘
󵄨󵄨󵄨󵄨) 𝛾𝑖1 (𝑧𝑖, 𝑥0) ,

󵄨󵄨󵄨󵄨𝐺𝑖
󵄨󵄨󵄨󵄨 ≤ (

𝑖

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑧𝑘
󵄨󵄨󵄨󵄨) 𝑝𝑖1 (𝑧𝑖) ,

󵄨󵄨󵄨󵄨Φ𝑖
󵄨󵄨󵄨󵄨 ≤ (

𝑖

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑧𝑘
󵄨󵄨󵄨󵄨) 𝑝𝑖 (𝑧𝑖) .

(17)
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The proof of Lemma 10 is similar to that of Lemma 9, so
we omitted it.

We now give the design process of the controller.

Step 1. Consider the first Lyapunov function 𝑉
1
(𝑧
1
, 𝜃) =

(1/4)𝑧4
1
+ (1/2)(𝜃 − 𝜃)2. By (14), (15), and (16), we have

𝐿𝑉
1
= 𝑧3
1
(𝑑
1
𝜂
2
+ 𝐹
1
) +

3

2
𝑧2
1
Tr(𝐺𝑇

1

𝑇

∑(𝑡)∑ (𝑡) 𝐺1)

+ (𝜃 − 𝜃)
̇̂
𝜃 .

(18)

Using Lemma 10 and Lemma 4, we have

󵄨󵄨󵄨󵄨󵄨𝑧
3

1
𝐹
1

󵄨󵄨󵄨󵄨󵄨 ≤ 𝑧
4

1
𝛾
11
(𝑧
1
, 𝑥
0
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

3

2
𝑧2
1
Tr(𝐺𝑇

1

𝑇

∑(𝑡)∑ (𝑡) 𝐺1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑧4
1
𝑝2
11
(𝑧
1
, 𝑥
0
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇

∑(𝑡)∑ (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑧4
1
𝑝2
11
(𝑧
1
, 𝑥
0
) 𝜃.

(19)

Substituting (19) into (18) and using (14), we have

𝐿𝑉
1
≤ 𝑑
1
𝑧3
1
(𝜂
2
− 𝛼
2
) + 𝑑
1
𝑧3
1
𝛼
2
+ 𝑧4
1
𝑝2
11
(𝑧
1
, 𝑥
0
) 𝜃

+ 𝑧4
1
𝛾
11
(𝑧
1
, 𝑥
0
) + (𝜃 − 𝜃)

̇̂
𝜃

≤ 𝑑
1
𝑧3
1
𝑧
2
+ 𝑑
1
𝑧3
1
𝛼
2
+ 𝑧4
1
𝑝2
11
(𝑧
1
, 𝑥
0
) 𝜃

+ 𝑧4
1
𝛾
11
(𝑧
1
, 𝑥
0
) + (𝜃 − 𝜃)

̇̂
𝜃,

(20)

where 𝛼
2
= −𝑧
1
𝛽
1
= −𝑧
1
((𝑐
1
+ 𝛾
11
+ 𝑝2
11
𝜃)/𝜆
11
). Substituting

𝛼
2
into (20), we have

𝐿𝑉
1
≤ 𝑑
1
𝑧3
1
𝑧
2
− 𝑐
1
𝑧4
1
+ (𝜃 − 𝜃) (

̇̂
𝜃 − 𝜏
1
) , (21)

where 𝜏
1
= 𝑧4
1
𝑝2
11
.

Step i. (2 ≤ 𝑖 ≤ 𝑛). Assume that at step 𝑖 − 1,
there exists a smooth state-feedback virtual control 𝛼

𝑖
=

−𝑧
𝑖−1
𝛽
𝑖−1
(𝑧
𝑖−1
, 𝜃) = −𝑧

𝑖−1
((𝑐
𝑖−1
+𝜃√1 + (𝜓

𝑖−12
+ 𝜓
𝑖−13

)2+𝑏
𝑖−1
+

𝜓
𝑖−11

+ 𝜓
𝑖−14

)/𝜆
𝑖−11

), such that

𝐿𝑉
𝑖−1
≤ −
𝑖−2

∑
𝑗=1

(𝑐
𝑗
− 𝜀
𝑗
− 𝑒
𝑗
) 𝑧4
𝑗
− 𝑐
𝑖−1
𝑧4
𝑖−1
+ 𝑑
𝑖−1
𝑧3
𝑖−1
𝑧
𝑖

+(𝜃 − 𝜃 −
𝑖−1

∑
𝑘=2

𝑧3
𝑘

𝜕𝛼
𝑘

𝜕𝜃
) (

̇̂
𝜃 − 𝜏
𝑖−1
) ,

(22)

where 𝑉
𝑖−1

= ∑
𝑖−1

𝑗=1
(1/4)𝑧4

𝑗
+ (1/2)(𝜃 − 𝜃)2, 𝜏

𝑖−1
= 𝜏
1
+

∑
𝑖−1

𝑘=2
𝑧4
𝑘
(𝜓
𝑖−12

+ 𝜓
𝑖−13

), and 𝜀
𝑗
= ∑
𝑗

𝑘=1
(𝜀
𝑘1
+ 𝜀
𝑘2
+ 𝜀
𝑘3
+ 𝜀
𝑘4
),

where 𝑗 = 1, . . . , 𝑛.

Then, define the 𝑖th Lyapunov candidate function
𝑉
𝑖
(𝑧
𝑖
, 𝜃) = 𝑉

𝑖−1
+ (1/4)𝑧4

𝑖
. From (16) and (22), it follows that

𝐿𝑉
𝑖
≤ −
𝑖−2

∑
𝑗=1

(𝑐
𝑗
− 𝜀
𝑗
− 𝑒
𝑗
) 𝑧4
𝑗
− 𝑐
𝑖−1
𝑧4
𝑖−1
+ 𝑑
𝑖−1
𝑧3
𝑖−1
𝑧
𝑖

+ 𝑧3
𝑖
(𝑑
𝑖
𝜂
𝑖+1
+ 𝐹
𝑖
(𝑧
𝑖
, 𝑥
0
) −

𝜕𝛼
𝑖

𝜕𝜃

̇̂
𝜃

−
1

2

𝑖−1

∑
𝑘,𝑚=1

𝜕2𝛼
𝑖

𝜕𝑧
𝑘
𝜕𝑧
𝑚

𝜙𝑇
𝑘
(𝑧
𝑘
)
𝑇

∑(𝑡)∑ (𝑡) 𝜙𝑚 (𝑧𝑚))

+
3

2
𝑧2
𝑖
Tr(𝐺𝑇

𝑖
(𝑧
𝑖
)
𝑇

∑(𝑡)∑ (𝑡) 𝐺𝑖 (𝑧𝑖))

+ (𝜃 − 𝜃 −
𝑖−1

∑
𝑘=2

𝑧3
𝑘

𝜕𝛼
𝑘

𝜕𝜃
)(

̇̂
𝜃 − 𝜏
𝑖−1
) .

(23)

Using Lemmas 9 and 4, there are always known nonnegative
smooth functions 𝜓

𝑖1
(𝑧
𝑖
), 𝜓
𝑖2
(𝑧
𝑖
), 𝜓
𝑖3
(𝑧
𝑖
), 𝜓
𝑖4
(𝑧
𝑖
) and con-

stant 𝜀
𝑖
> 0, 𝜀

𝑖𝑗
> 0, where 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, 2, 3, 4.

Consider

𝑧3
𝑖
𝐹
𝑖
≤
󵄨󵄨󵄨󵄨󵄨𝑧
3

𝑖

󵄨󵄨󵄨󵄨󵄨 (
𝑖−1

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑧𝑘
󵄨󵄨󵄨󵄨) 𝛾𝑖1 (𝑧𝑖, 𝑥0)

≤ 𝛾
𝑖1
𝑧4
𝑖
+
𝑖−1

∑
𝑘=1

(𝜀
𝑘1
𝑧4
𝑘
+
3

4
(4𝜀
𝑘1
)
−1/3

𝛾4/3
𝑖1
𝑧4
𝑖
)

≤
𝑖−1

∑
𝑘=1

𝜀
𝑘1
𝑧4
𝑘
+ 𝜓
𝑖1
𝑧4
𝑖
,

(24)

where 𝜓
𝑖1
≥ 𝛾
𝑖1
+ ∑
𝑖−1

𝑘=1
(3/4)(4𝜀

𝑘1
)−1/3𝛾4/3

𝑖1
.

−
1

2
𝑧3
𝑖

𝑖−1

∑
𝑘,𝑚=1

𝜕2𝛼
𝑖

𝜕𝑧
𝑘
𝜕𝑧
𝑚

𝜙𝑇
𝑘

𝑇

∑(𝑡)∑ (𝑡) 𝜙𝑚

≤
1

2
𝑧3
𝑖

𝑖−1

∑
𝑘,𝑚=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕2𝛼
𝑖

𝜕𝑧
𝑘
𝜕𝑧
𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝑘

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑧𝑗
󵄨󵄨󵄨󵄨󵄨)𝑝𝑘 (𝑧𝑘)

× (
𝑚

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑧𝑗
󵄨󵄨󵄨󵄨󵄨)𝑝𝑚 (𝑧𝑚)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇

∑(𝑡)∑ (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑧3
𝑖
(
𝑖−1

∑
𝑘=1

𝑧2
𝑘
)𝑝
𝑖
(𝑧
𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇

∑(𝑡)∑ (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑧4
𝑖
𝜓
𝑖2
(𝑧
𝑖
) 𝜃 +
𝑖−1

∑
𝑘=1

𝜀
𝑘2
𝑧4
𝑘
,

(25)

where 𝜓
𝑖2
≥ ∑
𝑖−1

𝑘=1
(3/4)(4𝜀

𝑘2
)−1/3(𝑝

𝑖
(𝑧
𝑖
))3/4.

3

2
𝑧2
𝑖
Tr(𝐺𝑇

𝑖

𝑇

∑(𝑡)∑ (𝑡) 𝐺𝑖)

≤
3

2
𝑧2
𝑖
𝑝2
𝑖2
(𝑧
𝑖
)(
𝑖

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑧𝑘
󵄨󵄨󵄨󵄨)

2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇

∑(𝑡)∑ (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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≤
3

2
𝑧2
𝑖
𝑖𝑝2
𝑖2
(𝑧
𝑖
)(
𝑖

∑
𝑘=1

𝑧2
𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇

∑(𝑡)∑ (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
3

2
𝑧4
𝑖
𝑖𝑝2
𝑖2
(𝑧
𝑖
) 𝜃 +
𝑖−1

∑
𝑘=1

𝜀
𝑘3
𝑧4
𝑘
+
𝑖−1

∑
𝑘=1

1

4𝜀
𝑘3

(
3

2
𝑖𝑝2
𝑖2
)
2

𝑧4
𝑖
𝜃

≤
𝑖−1

∑
𝑘=1

𝜀
𝑘3
𝑧4
𝑘
+ 𝜓
𝑖3
𝑧4
𝑖
𝜃,

(26)

where 𝜓
𝑖3
≥ (3/2)𝑖𝑝2

𝑖2
+ ∑
𝑖−1

𝑘=1
(1/4𝜀
𝑘3
)((3/2)𝑖𝑝2

𝑖2
)2.

𝑑
𝑖−1
𝑧3
𝑖−1
𝑧
𝑖
≤ 𝜆
𝑖−12

󵄨󵄨󵄨󵄨󵄨𝑧
3

𝑖−1
𝑧
𝑖

󵄨󵄨󵄨󵄨󵄨

≤ 𝑒
𝑖−1
𝑧4
𝑖−1
+
1

4
(
4

3
𝑒
𝑖−1
)
−3

𝑧4
𝑖
𝜆4
𝑖2

≤ 𝑒
𝑖−1
𝑧4
𝑖−1
+ 𝑏
𝑖
𝑧4
𝑖
,

(27)

where 𝑏
𝑖
≥ (1/4)((4/3)𝑒

𝑖−1
)−3𝜆4
𝑖2
, 𝜏
𝑖−1
= 𝑧4
1
𝑝2
11
+∑
𝑖−1

𝑘=2
𝑧4
𝑘
(𝜓
𝑘2
+

𝜓
𝑘3
), and 𝜏

𝑖
= 𝜏
𝑖−1
+ (𝜓
𝑖2
+ 𝜓
𝑖3
)𝑧4
𝑖
.

− 𝑧3
𝑖

𝜕𝛼
𝑖

𝜕𝜃
𝜏
𝑖

≤ 𝑧3
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝛼
𝑖

𝜕𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝜏
𝑖−1
+ 𝑧4
𝑖
(𝜓
𝑖2
+ 𝜓
𝑖3
))

≤ 𝑧4
𝑖
√1 + (𝑧3

𝑖

𝜕𝛼
𝑖

𝜕𝜃
)
2

(𝜓
𝑖2
+ 𝜓
𝑖3
)

+ 𝑧3
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝛼
𝑖

𝜕𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑧4
1
𝑝2
11
+
𝑖−1

∑
𝑘=2

𝑧4
𝑘
(𝜓
𝑘2
+ 𝜓
𝑘3
))

+
3

4
(4)
−1/3(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝛼
2

𝜕𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑧3
1
𝑝2
11
)
4/3

𝜀
𝑖4

−1/3𝑧4
𝑖

≤ 𝜀
𝑖4
𝑧4
1
+
3

4
(4)
−1/3√1 + (

𝜕𝛼
𝑖

𝜕𝜃
𝑧3
1
𝑃2
11
)
2
4/3

𝜀−1/3
𝑖4

𝑧4
𝑖

+
𝑖−1

∑
𝑘=2

𝜀
𝑘4
𝑧4
𝑘

+
𝑖−1

∑
𝑘=2

3

4
(4)
−1/3√1 + (

𝜕𝛼
𝑖

𝜕𝜃
𝑧3
𝑘
(𝜓
𝑘2
+ 𝜓
𝑘3
))
2
4/3

𝜀−1/3
𝑘4

𝑧4
𝑖

≤
𝑖−1

∑
𝑘=1

𝜀
𝑘4
𝑧4
𝑘
+ 𝜓
𝑖4
𝑧4
𝑖
,

(28)

where 𝜓
𝑖4

≥ (3/4)(4𝜀
𝑖4
)−1/3√1 + ((𝜕𝛼

𝑖
/𝜕𝜃 )𝑧3

1
𝑃2
11
)2
4/3

+

∑
𝑖−1

𝑘=2
(3/4)(4𝜀

𝑘4
)−1/3√1 + ((𝜕𝛼

𝑖
/𝜕𝜃 )𝑧3

𝑘
(𝜓
𝑘2
+ 𝜓
𝑘3
))2
4/3

.

𝛼
𝑖+1
(𝑧
𝑖
, 𝜃) = −𝑧

𝑖
𝛽
𝑖
(𝑧
𝑖
, 𝜃) ,

𝛽
𝑖
(𝑧
𝑖
, 𝜃) =

𝑐
𝑖
+ 𝜓
𝑖1
+ 𝜓
𝑖4
+ 𝑏
𝑖
+ √1 + (𝜓

𝑖2
+ 𝜓
𝑖3
)
2
𝜃

𝜆
𝑖1

,

(29)

where 𝑐
𝑖
> 0 is a design parameter to be chosen.

With the aid of (24)–(29) and (14), (23) can be simplified as

𝐿𝑉
𝑖
≤ −
𝑖−1

∑
𝑗=1

(𝑐
𝑗
− 𝜀
𝑗
− 𝑒
𝑗
) 𝑧4
𝑗
− 𝑐
𝑖
𝑧4
𝑖

+ 𝑑
𝑖
𝑧3
𝑖
𝑧
𝑖+1
+ (𝜃 − 𝜃 −

𝑖

∑
𝑘=2

𝜕𝛼
𝑘

𝜕𝜃
𝑧3
𝑘
)(

̇̂
𝜃 − 𝜏
𝑖
).

(30)

Finally, when 𝑖 = 𝑛, 𝑧
𝑛+1

= 𝑢 is the actual control. By
choosing the actual control law and the adaptive law,

𝑢 (𝑧
𝑛
, 𝜃) = −𝑧

𝑛
𝛽
𝑛
(𝑧
𝑛
, 𝜃) ,

̇̂
𝜃 = 𝜏
𝑛
= 𝑧4
1
𝑝2
11
+
𝑛

∑
𝑘=2

𝑧4
𝑘
(𝜓
𝑘2
+ 𝜓
𝑘3
),

𝛽
𝑛
(𝑧
𝑛
, 𝜃) =

𝑐
𝑛
+ 𝑏
𝑛
+ 𝜓
𝑛1
+ 𝜓
𝑛4
+ √1 + (𝜓

𝑛2
+ 𝜓
𝑛3
)
2
𝜃

𝜆
𝑛1

,

𝑢
1
= 𝑒−𝛼𝑡𝑢,

(31)

where 𝑐
𝑛
> 0 is a design parameter to be chosen and 𝜓

𝑛𝑖
, 𝑖 =

1, . . . 4 are smooth functions; we get

𝐿𝑉
𝑛
≤ −
𝑛

∑
𝑗=1

(𝑐
𝑗
− 𝜀
𝑗
− 𝑒
𝑗
) 𝑧4
𝑗
, (32)

where 𝑉
𝑛
(𝑧, 𝜃) = ∑

𝑛

𝑘=1
(1/4)𝑧4

𝑘
+ (1/2)(𝜃 − 𝜃)2, 𝑧 =

(𝑧
1
, . . . 𝑧
𝑛
). We have finished the controller design procedure

for 𝑥
0
(𝑡
0
) ̸= 0 and the parameter identification. Without loss

of generality, we can assume that 𝑡
0
̸= 0.

3.3. Switching Control and Main Result. In the preceding
subsection, we have given controller design for 𝑥

0
̸= 0. Now,

we discuss how to choose the control laws 𝑢
0
and 𝑢

1
when

𝑥
0
= 0.We choose𝑢

0
as𝑢
0
= −𝜆
0
𝑥
0
+𝑢∗
0
, 𝑢∗
0
> 0. And choose

the Lyapunov function 𝑉
0
= (1/2)𝑥2

0
. Its time derivative is

given by 𝐿𝑉
0
= −𝜆

0
𝑥2
0
+ 𝑢∗
0
, which leads to the bounds of

𝑥
0
. During the time period [0, 𝑡

𝑠
), using 𝑢

0
= −𝜆

0
𝑥
0
+ 𝑢∗
0
,

new control law 𝑢 can be obtained by the control procedure
described above to the original 𝑥-subsystem in (1). Then, we
can conclude that the𝑥-state of (1) cannot be blownupduring
the time period [0, 𝑡

𝑠
). Since at 𝑥(𝑡

𝑠
) ̸= 0, we can switch the

control inputs 𝑢
0
and 𝑢 to (6) and (31), respectively.

Now, we state the main results as follows.

Theorem 11. Under Assumption 5, if the proposed adaptive
controller (31) together with the above switching control strat-
egy is used in (1), then for any initial contidion (𝑥

0
, 𝑥, 𝜃) ∈ 𝑅𝑛,
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the closed-loop system has an almost surely unique solution
on [0,∞), the solution process is bounded in probability, and
𝑃{lim

𝑡→∞
𝜃(𝑡) exists and is finite} = 1.

Proof. According to the above analysis, it suffices to prove in
the case 𝑥

0
(0) ̸= 0. Since we have already proven that 𝑥

0
can

be globally exponentially convergent to zero in probability
in Section 3.1, we only need prove that 𝑥(𝑡) is convergent to
zero in probability also. In this case, we choose the Lyapunov
function 𝑉 = 𝑉

𝑛
, and 𝑐

𝑖
> 𝜀
𝑖
+ 𝑒
𝑖
; from (32) and Lemma 3, we

know that the closed-loop systemhas an almost surely unique
solution on [0,∞), and the solution process is bounded in
probability.

4. Conclusions

This paper investigates the globally exponential stabilization
problem for a class of stochastic nonholonomic systems in
chained form. To deal with the nonlinear parametrization
problem, a parameter separation technique is introduced.
With the help of backstepping technique, a smooth adaptive
controller is constructed which ensures that the closed-loop
system is globally asymptotically stable in probability. A
further work is how to design the output-feedback tracking
control for more high-order stochastic nonholonomic sys-
tems.
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