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Recently, Takahashi and Takahashi proposed an iterative algorithm for solving a problem for finding common solutions of
generalized equilibrium problems governed by inverse strongly monotone mappings and of fixed point problems for nonexpansive
mappings. In this paper, we provide a result that allows for the removal of one condition ensuring the strong convergence of the
algorithm.

1. Introduction

LetH be a realHilbert space and𝐶 a nonempty closed convex
subset. A generalized equilibrium problem is formulated as a
problem of finding a point 𝑥∗ ∈ 𝐶 with the property

𝐹 (𝑥
∗

, 𝑦) + ⟨𝐴𝑥
∗

, 𝑦 − 𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ 𝐶, (1)

where 𝐹 : 𝐶 × 𝐶 → R is a bifunction and 𝐴 : 𝐶 → H is
a nonlinear mapping. In particular, if 𝐴 is the zero mapping,
then problem (1) is reduced to an equilibrium problem; find
a point 𝑥∗ ∈ 𝐶 with the property

𝐹 (𝑥
∗

, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (2)

We will denote by EP(𝐹; 𝐴) and EP(𝐹) the solution set of
problem (1) and problem (2), respectively. A fixed point
problem (FPP) is to find a point 𝑥∗ with the property

𝑥
∗

∈ 𝐶, 𝑆𝑥
∗

= 𝑥
∗

, (3)

where 𝑆 : 𝐶 → 𝐶 is a nonlinear mapping. The set of fixed
points of 𝑆 is denoted as Fix(𝑆).

The problem under consideration in this paper is to find a
common solution of problem (1) and of FPP (3). Namely, we
seek a point 𝑥∗ such that

𝑥
∗

∈ Fix (𝑆) ∩ EP (𝐹; 𝐴) . (4)

We consider problem (4) in the case whenever 𝐴 is a ]-
inverse strongly monotone mapping and 𝑆 is a nonexpansive
mapping. To solve problem (4), Takahashi and Takahashi [1]
introduced an algorithm which generates a sequence (𝑥

𝑛
) by

the iterative procedure

𝐹 (𝑧
𝑛
, 𝑦) + ⟨𝐴𝑥

𝑛
, 𝑦 − 𝑧

𝑛
⟩ +
1

𝜆
𝑛

⟨𝑦 − 𝑧
𝑛
, 𝑧
𝑛
− 𝑥
𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝑥
𝑛+1
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑆 [𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑧
𝑛
] ,

(5)

where (𝛼
𝑛
) ⊆ [0, 1], (𝛽

𝑛
) ⊆ [0, 1], and (𝜆

𝑛
) ⊆ [0, 2]] are

chosen so that
0 < 𝑎 ≤ 𝜆

𝑛
≤ 𝑏 < 2], 0 < 𝑐 ≤ 𝛽

𝑛
≤ 𝑑 < 1,

lim
𝑛→∞

𝛼
𝑛
= 0,

∞

∑

𝑛=0

𝛼
𝑛
= ∞,

𝜆𝑛 − 𝜆𝑛+1
 → 0.

(6)

Under these conditions, they proved that the sequence (𝑥
𝑛
)

generated by (5) can be strongly convergent to a solution of
problem (4).

It is the aim of this paper to continue the study of
algorithm (5). We will show that problem (4) is in fact
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a special fixed point problem for a nonexpansive mapping
(a composition of a nonexpansive mapping and an averaged
mapping). Our approach mainly uses the properties of aver-
aged mappings, which is different from the existing methods
invented by Takahashi and Takahashi. Moreover, we shall
prove that condition |𝜆

𝑛
− 𝜆
𝑛+1
| → 0 sufficient to guarantee

the convergence of algorithm (5) is superfluous.

2. Preliminaries and Notations

Notation 1. → strong convergence,⇀weak convergence and
𝜔
𝑤
(𝑥
𝑛
) the set of the weak cluster points of (𝑥

𝑛
).

Denote by 𝑃
𝐶
the projection fromH onto 𝐶; namely, for

𝑥 ∈H, 𝑃
𝐶
𝑥 is the unique point in 𝐶 with the property

𝑥 − 𝑃𝐶𝑥
 = min
𝑦∈𝐶

𝑥 − 𝑦
 . (7)

It is well known that 𝑃
𝐶
𝑥 is characterized by the inequality

𝑃
𝐶
𝑥 ∈ 𝐶,

⟨𝑥 − 𝑃
𝐶
𝑥, 𝑧 − 𝑃

𝐶
𝑥⟩ ≤ 0, ∀𝑧 ∈ 𝐶.

(8)

We will use the following notions on nonlinear mappings
𝑇 : 𝐶 → H.

(i) 𝑇 is nonexpansive if
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐶. (9)

(ii) 𝑇 is firmly nonexpansive if

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥
𝑇𝑥 − 𝑇𝑦



2

, ∀𝑥, 𝑦 ∈ 𝐶. (10)

(iii) 𝑇 is 𝛼-averaged if there exist a constant 𝛼 ∈ (0, 1) and
a nonexpansivemapping 𝑆 such that𝑇 = (1−𝛼)𝐼+𝛼𝑆,
where 𝐼 is the identity mapping onH.

(iv) 𝑇 is ]-inverse strongly monotone if there is a constant
] > 0 such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ ]𝑇𝑥 − 𝑇𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐶. (11)

The next lemma is referred to as the demiclosedness
principle for nonexpansive mappings (see [2]).

Lemma 1. Let𝐶 be a nonempty closed convex subset ofH and
𝑇 : 𝐶 → H a nonexpansive mapping with Fix(𝑇) ̸= 0. If (𝑥

𝑛
)

is a sequence in 𝐶 such that 𝑥
𝑛
⇀ 𝑥 and (𝐼 − 𝑇)𝑥

𝑛
→ 0, then

(𝐼 − 𝑇)𝑥 = 0; that is, 𝑥 ∈ Fix(𝑇).

Averaged mappings will play important role in our con-
vergence analysis.We therefore collect someuseful properties
of averaged mappings (see, e.g., [3–5]).

Lemma 2. The following assertions hold.

(i) 𝑇 is firmly nonexpansive if and only if 𝑇 is 1/2-
averaged.

(ii) If 𝑇
𝑖
is ]
𝑖
-averaged, 𝑖 = 1, 2, then𝑇

1
𝑇
2
is (]
1
+]
2
−]
1
]
2
)-

averaged.

(iii) If 𝑇 : 𝐶 → H is ]-averaged, then for any 𝑧 ∈ Fix(𝑇)
and for all 𝑥 ∈ 𝐶,

‖𝑇𝑥 − 𝑧‖
2

≤ ‖𝑥 − 𝑧‖
2

−
1 − ]

]
‖𝑇𝑥 − 𝑥‖

2

. (12)

From now on, we assume that 𝐹 : 𝐶 × 𝐶 → R is a
bifunction so that

(A1) 𝐹(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝐶;
(A2) 𝐹 is monotone; that is, 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤

0, for all 𝑥, 𝑦 ∈ 𝐶;
(A3) lim

𝑡↓0
𝐹(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤ 𝐹(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝐶;

(A4) for each 𝑥 ∈ 𝐶, 𝑦 → 𝐹(𝑥, 𝑦) is convex and lower
semicontinuous.

Under these assumptions, the following results hold (see [6,
7]).

Lemma 3. Let 𝐹 : 𝐶×𝐶 → R satisfy (A1)–(A4).Then for any
𝜆 > 0 and 𝑥 ∈H, there exists 𝑧 ∈ 𝐶 so that

𝐹 (𝑧, 𝑦) +
1

𝜆
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (13)

Moreover if 𝑆
𝜆
𝑥 = {𝑧 ∈ 𝐶 : 𝐹(𝑧, 𝑦) + 1/𝜆⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0,

for all 𝑦 ∈ 𝐶}, then

(i) 𝑆
𝜆
is single valued and Fix(𝑆

𝜆
) = EP(𝐹);

(ii) 𝑆
𝜆
is firmly nonexpansive;

(iii) EP(𝐹) is closed and convex.

We end this section by a useful lemma (see Xu [8]).

Lemma 4. Let (𝑎
𝑛
) be a nonnegative real sequence satisfying

𝑎
𝑛+1
≤ (1 − 𝛼

𝑛
) 𝑎
𝑛
+ 𝛼
𝑛
𝑏
𝑛
, (14)

where (𝛼
𝑛
) ⊂ (0, 1) and (𝑏

𝑛
) are real sequences. Then 𝑎

𝑛
→ 0

provided that

(i) ∑
𝑛
𝛼
𝑛
= ∞, lim

𝑛
𝛼
𝑛
= 0;

(ii) lim sup
𝑛
𝑏
𝑛
≤ 0 or ∑𝛼

𝑛
|𝑏
𝑛
| < ∞.

3. Algorithm and Its Convergence

We begin with the following lemma.

Lemma 5. Assume that 𝐴 : 𝐶 → H is ]-inverse strongly
monotone mapping for some ] > 0. Given a real number 𝜆
such that 0 < 𝜆 < 2], set 𝑇

𝜆
= 𝑆
𝜆
(𝐼 − 𝜆𝐴) with 𝑆

𝜆
defined as

in Lemma 3. Then the following assertions hold:

(a) 𝑇
𝜆
is single valued and Fix(𝑇

𝜆
) = EP(𝐹; 𝐴);

(b) 𝑇
𝜆
is (2] + 𝜆)/4]-averaged;

(c) given 𝑧 ∈ EP(𝐹; 𝐴), it follows that

𝑇𝜆𝑥 − 𝑧


2

≤ ‖𝑥 − 𝑧‖
2

−
2] − 𝜆

2] + 𝜆
𝑇𝜆𝑥 − 𝑥



2

; (15)
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(d) if 0 < 𝜆 ≤ 𝜆 < 2], then for all 𝑥 ∈ 𝐶
𝑇𝜆𝑥 − 𝑥

 ≤ 2
𝑇𝜆𝑥 − 𝑥

 . (16)

Proof. (a) It is readily seen that 𝑇
𝜆
is single valued because 𝑆

𝜆

is single valued. The equality follows from the definition of
𝑆
𝜆
.
(b) It follows that

(𝐼 − 2]𝐴)𝑥 − (𝐼 − 2]𝐴)𝑦


2

=
(𝑥 − 𝑦) − 2](𝐴𝑥 − 𝐴𝑦)



2

=
𝑥 − 𝑦



2

+ 4]2𝐴𝑥 − 𝐴𝑦


2

− 4] ⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ .

(17)

Since𝐴 is ]-inverse strongly monotone, 𝐼−2]𝐴 is nonexpan-
sive. Observe that

𝐼 − 𝜆𝐴 = (1 −
𝜆

2]
) 𝐼 +

𝜆

2]
(𝐼 − 2]𝐴) , (18)

which implies that 𝐼−𝜆𝐴 is 𝜆/2]-averaged. Consequently (b)
follows from part (ii) of Lemma 2 and (c) follows from part
(iii) of Lemma 2.

(d) Let 𝑧
1
= 𝑇
𝜆
𝑥 and 𝑧

2
= 𝑇
𝜆
𝑥. By definition of 𝑆

𝜆
,

𝐹 (𝑧
1
, 𝑦) + ⟨𝐴𝑥, 𝑦 − 𝑧

1
⟩ +
1

𝜆
⟨𝑦 − 𝑧

1
, 𝑧
1
− 𝑥⟩ ≥ 0,

∀𝑦 ∈ 𝐶.

(19)

Letting 𝑦 = 𝑧
2
in (19) yields

𝐹 (𝑧
1
, 𝑧
2
) + ⟨𝐴𝑥, 𝑧

2
− 𝑧
1
⟩ +
1

𝜆
⟨𝑧
2
− 𝑧
1
, 𝑧
1
− 𝑥⟩ ≥ 0. (20)

Similarly,

𝐹 (𝑧
2
, 𝑧
1
) + ⟨𝐴𝑥, 𝑧

1
− 𝑧
2
⟩ +
1

𝜆
⟨𝑧
1
− 𝑧
2
, 𝑧
2
− 𝑥⟩ ≥ 0. (21)

Adding up these inequalities and using the monotonicity of
𝐹,

1

𝜆
⟨𝑧
2
− 𝑧
1
, 𝑧
1
− 𝑥⟩ +

1

𝜆
⟨𝑧
1
− 𝑧
2
, 𝑧
2
− 𝑥⟩ ≥ 0, (22)

or equivalently,

𝑧2 − 𝑧1


2

≤ (1 −
𝜆

𝜆
) ⟨𝑧
2
− 𝑧
1
, 𝑧
2
− 𝑥⟩ . (23)

Hence, ‖𝑧
2
− 𝑧
1
‖ ≤ ‖𝑧

2
− 𝑥‖. By the triangle inequality,

𝑧1 − 𝑥
 ≤
𝑧1 − 𝑧2

 +
𝑧2 − 𝑥

 ≤ 2
𝑧2 − 𝑥

 , (24)

which is the result as desired.

For every 𝑛 ≥ 0, if we define 𝑇
𝑛
= 𝑆
𝜆
𝑛

(𝐼−𝜆
𝑛
𝐴), where 𝑆

𝜆
𝑛

is defined as in Lemma 3, then we can rewrite algorithm (5)
as

𝑦
𝑛
= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇
𝑛
𝑥
𝑛
,

𝑥
𝑛+1
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑆𝑦
𝑛
.

(25)

Theorem 6. Let 𝐹 : 𝐶 × 𝐶 → R be a bifunction satisfying
(A1)–(A4), 𝐴 : 𝐶 → H a ]-inverse strongly monotone
mapping for some ] > 0, and 𝑆 : 𝐶 → 𝐶 a nonexpansive
mapping so that the solution set Ω := Fix(𝑆) ∩ EP(𝐹; 𝐴) is
nonempty. If the following conditions hold:

0 < 𝑎 ≤ 𝜆
𝑛
≤ 𝑏 < 2], 0 < 𝑐 ≤ 𝛽

𝑛
≤ 𝑑 < 1,

lim
𝑛→∞

𝛼
𝑛
= 0,

∞

∑

𝑛=0

𝛼
𝑛
= ∞,

(26)

then the sequence (𝑥
𝑛
) generated by (25) converges strongly to

𝑥
∗

= 𝑃
Ω
𝑢.

Before proving the theorem, we need some lemmas.

Lemma 7. Let the conditions inTheorem 6 be satisfied. If (𝑥
𝑛
)

and (𝑦
𝑛
) are the sequences generated by (25), then both (𝑥

𝑛
)

and (𝑦
𝑛
) are bounded.

Proof. Let 𝑧 ∈ Ω be fixed. We have
𝑥𝑛+1 − 𝑧

 ≤
(1 − 𝛽𝑛) (𝑦𝑛 − 𝑧) + 𝛽𝑛 (𝑥𝑛 − 𝑧)



≤ (1 − 𝛽
𝑛
)
𝑦𝑛 − 𝑧

 + 𝛽𝑛
𝑥𝑛 − 𝑧

 ;

(27)

on the other hand,
𝑦𝑛 − 𝑧

 =
𝛼𝑛 (𝑢 − 𝑧) + (1 − 𝛼𝑛) (𝑇𝑛𝑥𝑛 − 𝑧)



≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑧

 + 𝛼𝑛 ‖𝑢 − 𝑧‖ .

(28)

Altogether
𝑥𝑛+1 − 𝑧

 ≤ [1 − 𝛼𝑛 (1 − 𝛽𝑛)]
𝑥𝑛 − 𝑧



+ 𝛼
𝑛
(1 − 𝛽

𝑛
) ‖𝑢 − 𝑧‖ .

(29)

By induction, (𝑥
𝑛
) is bounded and so is (𝑦

𝑛
).

Lemma8. Let the conditions inTheorem 6 be satisfied. If ‖𝑥
𝑛
−

𝑇
𝑛
𝑥
𝑛
‖ → 0 and ‖𝑥

𝑛
− 𝑆𝑦
𝑛
‖ → 0, then ‖𝑥

𝑛
− 𝑦
𝑛
‖ → 0 and

𝜔
𝑤
(𝑥
𝑛
) ⊆ Ω.

Proof. Let 𝑇
𝑎
= 𝑆
𝑎
(𝐼 − 𝑎𝐴). By part (d) of Lemma 5,

𝑥𝑛 − 𝑇𝑎𝑥𝑛
 ≤ 2

𝑥𝑛 − 𝑇𝑛𝑥𝑛
 → 0. (30)

Since 𝑇
𝑎
is nonexpansive, applying the demiclosedness prin-

ciple yields

𝜔
𝑤
(𝑥
𝑛
) ⊆ Fix (𝑇

𝑎
) = EP (𝐹; 𝐴) . (31)

On the other hand, we see that
𝑥𝑛 − 𝑦𝑛

 =
𝛼𝑛 (𝑢 − 𝑥𝑛) + (1 − 𝛼𝑛) (𝑇𝑛𝑥𝑛 − 𝑥𝑛)



≤ 𝛼
𝑛

𝑢 − 𝑥𝑛
 +
𝑇𝑛𝑥𝑛 − 𝑥𝑛

 → 0,

(32)

which implies that
𝑥𝑛 − 𝑆𝑥𝑛

 ≤
𝑥𝑛 − 𝑆𝑦𝑛

 +
𝑆𝑦𝑛 − 𝑆𝑥𝑛



≤
𝑥𝑛 − 𝑆𝑦𝑛

 +
𝑦𝑛 − 𝑥𝑛

 → 0.

(33)

Using again the demiclosedness principle gets the desired
result.
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Proof of Theorem 6. Let 𝑥∗ = 𝑃
Ω
𝑢. Using Lemma 5(c), we

have

𝑇𝑛𝑥𝑛 − 𝑥
∗

2

≤
𝑥𝑛 − 𝑥

∗

2

−
2] − 𝜆

𝑛

2] + 𝜆
𝑛

𝑇𝑛𝑥𝑛 − 𝑥𝑛


2

. (34)

By the subdifferential inequality,

𝑦𝑛 − 𝑥
∗

2

=
𝛼𝑛 (𝑢 − 𝑥

∗

) + (1 − 𝛼
𝑛
) (𝑇
𝑛
𝑥
𝑛
− 𝑥
∗

)


2

≤ (1 − 𝛼
𝑛
)
𝑇𝑛𝑥𝑛 − 𝑥

∗

2

+ 2𝛼
𝑛
⟨𝑢 − 𝑥

∗

, 𝑦
𝑛
− 𝑥
∗

⟩

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑥

∗

2

+ 2𝛼
𝑛
⟨𝑢 − 𝑥

∗

, 𝑦
𝑛
− 𝑥
∗

⟩

−
(1 − 𝛼

𝑛
) (2] − 𝜆

𝑛
)

2] + 𝜆
𝑛

𝑇𝑛𝑥𝑛 − 𝑥𝑛


2

,

(35)

which implies that

𝑥𝑛+1 − 𝑥
∗

2

= 𝛽
𝑛

𝑥𝑛 − 𝑥
∗

2

+ (1 − 𝛽
𝑛
)
𝑆𝑦𝑛 − 𝑥

∗

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑆𝑦𝑛 − 𝑥𝑛



2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑥
∗

2

+ (1 − 𝛽
𝑛
)
𝑦𝑛 − 𝑥

∗

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑆𝑦𝑛 − 𝑥𝑛



2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑥
∗

2

+ (1 − 𝛽
𝑛
)

× (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑥

∗

2

−
(1 − 𝛼

𝑛
) (1 − 𝛽

𝑛
) (2] − 𝜆

𝑛
)

2] + 𝜆
𝑛

×
𝑇𝑛𝑥𝑛 − 𝑥𝑛



2

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
)

× ⟨𝑢 − 𝑥
∗

, 𝑦
𝑛
− 𝑥
∗

⟩ − 𝛽
𝑛
(1 − 𝛽

𝑛
)

×
𝑆𝑦𝑛 − 𝑥𝑛



2

.

(36)

By our assumption, there exists 𝜀 > 0 so that for all 𝑛 ≥ 0,

(1 − 𝛼
𝑛
) (1 − 𝛽

𝑛
) (2] − 𝜆

𝑛
)

2] + 𝜆
𝑛

≥ 𝜀, (37)

and 1 − 𝛽
𝑛
≥ 𝛽
𝑛
(1 − 𝛽

𝑛
) ≥ 𝜀. Consequently,

𝑥𝑛+1 − 𝑥
∗

2

≤ (1 − 𝜀𝛼
𝑛
)
𝑥𝑛 − 𝑥

∗

2

− 𝜀 (
𝑇𝑛𝑥𝑛 − 𝑥𝑛



2

+
𝑆𝑦𝑛 − 𝑥𝑛



2

)

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
) ⟨𝑢 − 𝑥

∗

, 𝑦
𝑛
− 𝑥
∗

⟩ .

(38)

Set 𝑠
𝑛
= ‖𝑥
𝑛+1
− 𝑥
∗

‖
2, and let (𝑠

𝑛
𝑘

) be a subsequence so that it
includes all elements in {𝑠

𝑛
} with the property; each of them

is less than or equal to the term after it. Following an idea

developed byMaingé [9], we next consider two possible cases
on (𝑠
𝑛
𝑘

).

Case 1. Assume that {𝑠
𝑛
𝑘

} is finite. Then there exists 𝑁 ∈ N

so that 𝑠
𝑛
> 𝑠
𝑛+1

for all 𝑛 ≥ 𝑁, and therefore {𝑠
𝑛
} must be

convergent. It follows from (38) that

𝜀 (
𝑇𝑛𝑥𝑛 − 𝑥𝑛



2

+
𝑆𝑦𝑛 − 𝑥𝑛



2

) ≤ 𝑀𝛼
𝑛
+ (𝑠
𝑛
− 𝑠
𝑛+1
) , (39)

where 𝑀 > 0 is a sufficiently large real number. Conse-
quently, both ‖𝑇

𝑛
𝑥
𝑛
− 𝑥
𝑛
‖ and ‖𝑆𝑦

𝑛
− 𝑥
𝑛
‖ converge to zero,

and by Lemma 8 we conclude that ‖𝑦
𝑛
− 𝑥
𝑛
‖ → 0 and

𝜔
𝑤
(𝑥
𝑛
) ⊆ Ω. Hence,

lim sup
𝑛→∞

⟨𝑢 − 𝑥
∗

, 𝑦
𝑛
− 𝑥
∗

⟩ = lim sup
𝑛→∞

⟨𝑢 − 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

= max
𝑤∈𝜔
𝑤(𝑥𝑛)

⟨𝑢 − 𝑥
∗

, 𝑤 − 𝑥
∗

⟩ ≤ 0,

(40)

where the inequality uses (8). It then follows from (38) that

𝑠
𝑛+1
≤ (1 − 𝜀𝛼

𝑛
) 𝑠
𝑛
+ 2𝛼
𝑛
(1 − 𝛽

𝑛
) ⟨𝑢 − 𝑥

∗

, 𝑦
𝑛
− 𝑥
∗

⟩ . (41)

We therefore apply Lemma 4 to conclude that 𝑠
𝑛
→ 0.

Case 2. Assume now that {𝑠
𝑛
𝑘

} is infinite. Let 𝑛 ∈ N be fixed.
Then there exists 𝑘 ∈ N so that 𝑛

𝑘
≤ 𝑛 ≤ 𝑛

𝑘+1
. By the

choice of {𝑠
𝑛
𝑘

}, we see that 𝑠
𝑛
𝑘
+1

is the largest one among
{𝑠
𝑛
𝑘

, 𝑠
𝑛
𝑘
+1
, . . . , 𝑠

𝑛
𝑘+1

}; in particular

𝑠
𝑛
𝑘

≤ 𝑠
𝑛
𝑘
+1
, 𝑠

𝑛
≤ 𝑠
𝑛
𝑘
+1
. (42)

Then we deduce from (38) that

𝜀 (

𝑇
𝑛
𝑘

𝑥
𝑛
𝑘

− 𝑥
𝑛
𝑘



2

+

𝑆𝑦
𝑛
𝑘

− 𝑥
𝑛
𝑘



2

) ≤ 𝑀𝛼
𝑛
𝑘

→ 0. (43)

Applying Lemma 8 yields ‖𝑦
𝑛
𝑘

−𝑥
𝑛
𝑘

‖ → 0 and 𝜔
𝑤
(𝑥
𝑛
𝑘

) ⊆ Ω.
Similarly

lim sup
𝑛→∞

⟨𝑢 − 𝑥
∗

, 𝑦
𝑛
𝑘

− 𝑥
∗

⟩ ≤ 0. (44)

It follows again from (38) and inequality (42) that

𝑠
𝑛
𝑘

≤ 2 (1 − 𝛽
𝑛
𝑘

) ⟨𝑢 − 𝑥
∗

, 𝑦
𝑛
𝑘

− 𝑥
∗

⟩ . (45)

Taking lim sup in (44) yields

lim sup
𝑘→∞

𝑠
𝑛
𝑘

≤ 0 ⇒ 𝑠
𝑛
𝑘

→ 0. (46)

Moreover, we deduce from algorithm (25) that

√𝑠𝑛
𝑘
+1
=

(𝑥
𝑛
𝑘

− 𝑥
∗

) − (𝑥
𝑛
𝑘

− 𝑥
𝑛
𝑘
+1
)


≤ √𝑠𝑛
𝑘

+

𝑥
𝑛
𝑘

− 𝑥
𝑛
𝑘
+1


≤ √𝑠𝑛

𝑘

+

𝑥
𝑛
𝑘

− 𝑆𝑦
𝑛
𝑘


,

(47)

which together with (43) implies that 𝑠
𝑛
𝑘
+1
→ 0. Conse-

quently 𝑠
𝑛
→ 0 immediately follows from (42).
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4. Applications

In this section we present several applications. First we con-
sider a problem for finding a common solution of equilibrium
problem (2) and fixed point problem (3); namely, find 𝑥∗ ∈ 𝐶
so that

𝑥
∗

∈ EP (𝐹) ∩ Fix (𝑆) . (48)

Taking 𝐴 = 0 in Theorem 6 and noting that zero mapping is
]-inverse strongly monotone for any positive number ], one
can easily get the following.

Corollary 9. Let 𝐹 : 𝐶 × 𝐶 → R be a bifunction satisfying
(A1)–(A4) and 𝑆 : 𝐶 → 𝐶 a nonexpansive mapping so that
the solution set of problem (48) is nonempty. Given 𝑢 ∈ 𝐶, let
(𝑥
𝑛
) generated by the iterative algorithm:

𝐹 (𝑧
𝑛
, 𝑦) +

1

𝜆
𝑛

⟨𝑦 − 𝑧
𝑛
, 𝑧
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑆 [(1 − 𝛼

𝑛
) 𝑢 + 𝛼

𝑛
𝑧
𝑛
] .

(49)

If the following conditions hold:

0 < 𝑎 ≤ 𝜆
𝑛
≤ 𝑏 < ∞, 0 < 𝑐 ≤ 𝛽

𝑛
≤ 𝑑 < 1,

lim
𝑛→∞

𝛼
𝑛
= 0,

∞

∑

𝑛=0

𝛼
𝑛
= ∞,

(50)

then the sequence (𝑥
𝑛
) converges strongly to a solution of

problem (48).

A variational inequality problem (VIP) is formulated as a
problem of finding a point 𝑥∗ with the property

𝑥
∗

∈ 𝐶, ⟨𝐴𝑥
∗

, 𝑧 − 𝑥
∗

⟩ ≥ 0, ∀𝑧 ∈ 𝐶. (51)

We will denote the solution set of VIP (51) by VI(𝐴; 𝐶). Next
we consider a problem for finding a common solution of
variational inequality problem (51) andof fixedpoint problem
(3), namely; find 𝑥∗ ∈ 𝐶 so that

𝑥
∗

∈ VI (𝐴; 𝐶) ∩ Fix (𝑆) . (52)

Taking 𝐹 = 0 in (1), we note that the generalized equilibrium
problem is reduced to the variational problem (51). Thus
applyingTheorem 6 gets the following.

Corollary 10. Let 𝐴 : 𝐶 → H be ]-inverse strongly
monotone mapping and 𝑆 : 𝐶 → 𝐶 a nonexpansive mapping
so that the solution set of problem (52) is nonempty. Given
𝑢 ∈ 𝐶, let (𝑥

𝑛
) generated by the iterative algorithm:

𝑧
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴𝑥
𝑛
) ,

𝑥
𝑛+1
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑆 [(1 − 𝛼

𝑛
) 𝑢 + 𝛼

𝑛
𝑧
𝑛
] .

(53)

If the following conditions hold:

0 < 𝑎 ≤ 𝜆
𝑛
≤ 𝑏 < 2], 0 < 𝑐 ≤ 𝛽

𝑛
≤ 𝑑 < 1,

lim
𝑛→∞

𝛼
𝑛
= 0,

∞

∑

𝑛=0

𝛼
𝑛
= ∞,

(54)

then the sequence (𝑥
𝑛
) converges strongly to a solution of

problem (52).

Consider the optimization problem of finding a point
𝑥
∗

∈ 𝐶 with the property

𝑓 (𝑥
∗

) = min
𝑥∈𝐶

𝑓 (𝑥) , (55)

where 𝑓 : H → R is a convex and differentiable function.
We say that the differential ∇𝑓 is 1/]-Lipschitz continuous, if

∇𝑓 (𝑥) − ∇𝑓 (𝑦)
 ≤
1

]
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈H. (56)

Denote by Argmin(𝐶; 𝑓) the solution set of problem (55).
Finally we consider a problem for finding a common solution
of optimization problem (55) and of fixed point problem (3),
namely; find 𝑥∗ ∈ 𝐶 so that

𝑥
∗

∈ Argmin (𝐶; 𝑓) ∩ Fix (𝑆) . (57)

By [10, Lemma 5.13], problem (55) is equivalent to the
variational inequality problem

⟨∇𝑓 (𝑥
∗

) , 𝑥
∗

− 𝑧⟩ ≥ 0, ∀𝑧 ∈ 𝐶. (58)

Taking 𝐴 = ∇𝑓 in Corollary 10, we have the following result.

Corollary 11. Let 𝑓 : H → R be a convex and differentiable
function so that∇𝑓 is 1/]-Lipschitz continuous. Let 𝑆 : 𝐶 → 𝐶
be a nonexpansive mapping so that the solution set of problem
(57) is nonempty. Given 𝑢 ∈ 𝐶, let (𝑥

𝑛
) generated by

𝑧
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓 (𝑥
𝑛
)) ,

𝑥
𝑛+1
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑆 [(1 − 𝛼

𝑛
) 𝑢 + 𝛼

𝑛
𝑧
𝑛
] .

(59)

If the following conditions hold:

0 < 𝑎 ≤ 𝜆
𝑛
≤ 𝑏 < 2], 0 < 𝑐 ≤ 𝛽

𝑛
≤ 𝑑 < 1,

lim
𝑛→∞

𝛼
𝑛
= 0,

∞

∑

𝑛=0

𝛼
𝑛
= ∞,

(60)

then the sequence (𝑥
𝑛
) converges strongly to a solution of

problem (57).

Proof. It suffices to note that if ∇𝑓 is 1/]-Lipschitz contin-
uous, then it is ]-inverse strongly monotone mapping (see
[11, Corollary 10]). Consequently Corollary 10 applies and the
result immediately follows.

Remark 12. We can further apply the previous method to
find a common solution for fixed point and split feasibility
problems, as well as for fixed point and convex constrained
linear inverse problems (see [12]).
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