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We study a two-dimensional integrable generalization of the Kaup-Kupershmidt equation, which arises in various problems in
mathematical physics. Exact solutions are obtained using the Lie symmetry method in conjunction with the extended tanhmethod
and the extended Jacobi elliptic functionmethod. In addition to exact solutions we also present conservation laws which are derived
using the multiplier approach.

1. Introduction

The theory of nonlinear evolution equations (NLEEs) has
made a substantial progress in the last few decades. Aspects
of integrability of these equations have been studied in detail
as it is evident from many research papers published in
the literature. In many cases, exact solutions are required
as numerical methods are not appropriate. Exact solutions
of NLEEs arising in fluid dynamics, continuum mechanics,
and general relativity are of considerable importance for the
light they shed into extreme cases which are not susceptible
to numerical treatments. However, finding exact solutions of
NLEEs is a difficult task. In spite of this, many new methods
have been developed recently that are being used to integrate
the NLEEs. Among them are the inverse scattering transform
[1], the Hirota’s bilinear method [2], the homogeneous bal-
ance method [3], the auxiliary ordinary differential equation
method [4], the He’s variational iteration method [5], the
sine-cosine method [6], the extended tanh method [7], the
Lie symmetry method [8], and so forth.

In this paper we study a two-dimensional integrable
generalization of the Kaup-Kupershmidt equation [9, 10]
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which arises in various problems in many areas of theoretical
physics. The above equation arises as special reduction of
integrable nonlinear systems [11, 12]. It should be noted that
the Zakharov-Manakov delta dressing method was used to
obtain soliton and periodic solutions of (1) [11, 12]. The
purpose of this paper is twofold. Firstly, we will use Lie
symmetry method along with the extended tanhmethod and
the extended Jacobi elliptic function method to obtain new
exact solutions of (1). Secondly, conservation laws will be
derived for the two-dimensional integrable generalization of
the Kaup-Kupershmidt equation (1).

In the past few decades, the Lie symmetry method has
proved to be a versatile tool for solving nonlinear problems
described by the differential equations arising in mathemat-
ics, physics, and in many other scientific fields of study. For
the theory and application of the Lie symmetry method see,
for example, [8, 13, 14].

In the study of the solution process of differential equa-
tions (DEs), conservation laws play a central role. It is a
well known fact that finding the conservation laws of DEs
is often the first step towards finding the solution [14] of the
DEs. Extensive use of conservation laws has appeared in the
literature, for example, in studying the existence, uniqueness,
and stability of solutions to nonlinear partial differential
equations [15–17], the use of numerical methods [18, 19], and
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finding exact solutions of some nonlinear partial differential
equations [20–22].

To study the two-dimensional integrable generalization of
the Kaup-Kupershmidt equation (1) we first introduce a new
dependent variable 𝑣 and set 𝑣 = 𝜕
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us to remove the integral terms from the equation and replace
(1) by a system
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The outline of the paper is as follows. In Section 2, we
first find the Lie point symmetries of the system (2a) and
(2b) using the Lie algorithm. These Lie point symmetries
are then used to transform the system (2a) and (2b) to
a system of ordinary differential equations (ODEs). The
extended tanh method and extended Jacobi elliptic function
method are applied to the system of ordinary differential
equations and as a result we obtain the exact explicit solutions
of our two-dimensional integrable generalization of the
Kaup-Kupershmidt equation (1). In Section 3, we construct
conservation laws for (1) using the multiplier method [23].
Finally, concluding remarks are presented in Section 4.

2. Exact Solutions of (2a) and (2b)

The symmetry group of the system (2a) and (2b) will be
generated by the vector field of the form
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Applying the fifth prolongation, pr(5)𝑋, [8] to (2a) and
(2b) results in an overdetermined system of linear partial
differential equations. The general solution of the overdeter-
mined system of linear partial differential equations is given
by
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where 𝐹
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(𝑡) are arbitrary functions of 𝑡. We

confine the arbitrary functions to be of the form 𝐹
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independent operators:

Γ
1

=

𝜕

𝜕𝑡

,

Γ
2

=

𝜕

𝜕𝑥

,

Γ
3

=

𝜕

𝜕𝑦

,

Γ
4

= 5𝑡

𝜕

𝜕𝑥

+

𝜕

𝜕𝑣

,

Γ
5

= 𝑦

𝜕

𝜕𝑥

+ 15𝑡

𝜕

𝜕𝑦

+

𝜕

𝜕𝑢

− 𝑢

𝜕

𝜕𝑣

,

Γ
6

= 𝑥

𝜕

𝜕𝑥

+ 3𝑦

𝜕

𝜕𝑦

+ 5𝑡

𝜕

𝜕𝑡

− 2𝑢

𝜕

𝜕𝑢

− 4𝑣

𝜕

𝜕𝑣

.

(4)

2.1. Symmetry Reduction of (2a) and (2b). One of the main
reasons for calculating symmetries of a differential equation
is to use them for obtaining symmetry reductions and
finding exact solutions. This can be achieved with the use
of Lie point symmetries admitted by (2a) and (2b). It is
well known fact that the reduction of a partial differential
equation with respect to 𝑟-dimensional (solvable) subalgebra
of its Lie symmetry algebra leads to reducing the number of
independent variables by 𝑟.

Consider the first three translation symmetries and let Γ =

Γ
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3
. We use Γ to reduce (2a) and (2b) to a system

of partial differential equations (PDEs) in two independent
variables. The symmetry Γ yields the following invariants:
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which is a system of nonlinear PDEs in two independent
variables𝑓 and𝑔.We now further reduce this systemusing its
symmetries. This system has the two translation symmetries,
namely,
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By taking a linear combination 𝜌Υ
1

+ Υ
2
of the above

symmetries, we see that it yields the invariants

𝑧 = 𝑓 − 𝜌𝑔, 𝜙 = 𝐹, 𝜓 = 𝐺. (9)

Now treating𝐹 and𝐺 as new dependent variables and 𝑧 as the
new independent variable the above system transforms to the
following system of nonlinear coupled ODEs:
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2.2. Exact Solutions Using the Extended tanh Method. In this
sectionwe use the extended tanh functionmethodwhich was
introduced byWazwaz [7].The basic idea in this method is to
assume that the solution of (10a) and (10b) can be written in
the form
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where 𝐻(𝑧) satisfies an auxiliary equation, say for example
the Riccati equation
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The positive integer 𝑀 will be determined by the homoge-
neous balance method between the highest order derivative
and highest order nonlinear term appearing in (10a) and
(10b). 𝐴

𝑖
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In our case, the balancing procedure gives 𝑀 = 2 and so
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Substituting (13a) and (13b) into (10a) and (10b) and making
use of the Riccati equation (11) and then equating the
coefficients of the functions𝐻

𝑖 to zero, we obtain an algebraic
system of equations in terms of 𝐴

𝑖
and 𝐵

𝑖
(𝑖 = −2, −1, 0, 1, 2).
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Figure 1: Evolution of travelling wave solution (14) with parameters
𝑦 = 0, 𝜌 = 0.42.

Solving the resultant system of algebraic equations, with
the aid of Mathematica, one possible set of values of 𝐴

𝑖
and

𝐵
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(𝑖 = −2, −1, 0, 1, 2) is
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As a result, a solution of (1) is

𝑢 (𝑡, 𝑥, 𝑦) = 𝐴
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where 𝑧 = 𝑡 − 𝜌𝑥 + (𝜌 − 1)𝑦.
A profile of the solution (14) is given in Figure 1.

2.3. Exact Solutions Using Extended Jacobi Elliptic Function
Method. In this subsection we obtain exact solutions of (1)
in terms of the Jacobi elliptic functions. We note that the
cosine-amplitude function, cn(𝑧 | 𝜔), and the sine-amplitude
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function, sn(𝑧 | 𝜔) are solutions of the first-order differential
equations
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(i) When 𝜔 → 1, the Jacobi elliptic functions degen-
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We now treat the above ODEs as our auxillary equations
and apply the procedure of the previous subsection to system
(10a) and (10b). Leaving out the details, we obtain two solu-
tions, the cnoidal and snoidal wave solutions, corresponding
to the two equations (15) and (16) given by, respectively,
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Figure 2: Evolution of travelling wave solution (17) with parameters
𝑡 = 0, 𝜔 = 0.1, 𝜌 = −1.53.
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where 𝜌 is any root of (𝜔
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+ 9𝜌 − 5 and 𝑧 = 𝑡 − 𝜌𝑥 + (𝜌 − 1)𝑦.
A profile of solutions (17), (19) is given in Figures 2 and 3.

3. Conservation Laws

In this section we construct conservation laws for (2a) and
(2b). The multiplier method will be used [23]. We first recall
some basic results that will be used later in this section.
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Figure 3: Evolution of travelling wave solution (19) with parameters
𝑡 = 0, 𝜔 = 0.2, 𝜌 = −1.12.

Consider a 𝑘th-order system of PDEs of 𝑛 independent
variables 𝑥 = (𝑥
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(𝑥, 𝑢, 𝑢
(1)

, . . . , 𝑢
(𝑘)

) = 0, 𝛼 = 1, . . . , 𝑚, (21)

where 𝑢
(1)

, 𝑢
(2)

, . . . , 𝑢
(𝑘)

denote the collections of all first,
second,. . ., 𝑘th-order partial derivatives, that is, 𝑢

𝛼

𝑖
=

𝐷
𝑖
(𝑢
𝛼
), 𝑢
𝛼

𝑖𝑗
= 𝐷

𝑗
𝐷
𝑖
(𝑢
𝛼
), . . ., respectively, with the total

derivative operator with respect to 𝑥
𝑖 given by

𝐷
𝑖
=

𝜕

𝜕𝑥
𝑖

+ 𝑢
𝛼

𝑖

𝜕

𝜕𝑢
𝛼

+ 𝑢
𝛼

𝑖𝑗

𝜕

𝜕𝑢
𝛼

𝑗

+ ⋅ ⋅ ⋅ , 𝑖 = 1, . . . , 𝑛, (22)

where the summation convention is usedwhenever appropri-
ate [13]. We recall that the Euler-Lagrange operator, for each
𝛼, is given by

𝛿

𝛿𝑢
𝛼

=

𝜕

𝜕𝑢
𝛼

+ ∑

𝑠≥1

(−1)
𝑠
𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑠

𝜕

𝜕𝑢
𝛼

𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

, 𝛼 = 1, . . . , 𝑚.

(23)

The 𝑛-tuple vector 𝑇 = (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
), 𝑇
𝑗

∈ A, (space of
differential functions) 𝑗 = 1, . . . , 𝑛, is a conserved vector of
(21) if 𝑇

𝑖 satisfies

𝐷
𝑖
𝑇
𝑖
|
(3.1)

= 0. (24)

A multiplier Λ
𝛼
(𝑥, 𝑢, 𝑢

(1)
, . . .) has the property that

Λ
𝛼
𝐸
𝛼

= 𝐷
𝑖
𝑇
𝑖 (25)

hold identically. Here we will consider multipliers of the
zeroth order, that is, Λ

𝛼
= Λ
𝛼
(𝑡, 𝑥, 𝑦, 𝑢, 𝑣). The right hand

side of (25) is a divergence expression. The determining
equation for the multiplier Λ

𝛼
is given by

𝛿 (Λ
𝛼
𝐸
𝛼
)

𝛿𝑢
𝛼

= 0. (26)

After calculating themultipliers one can obtain the conserved
vectors via a homotopy formula [23].

3.1. Conservation Laws of (1). We now construct conserva-
tion laws for the two-dimensional integrable generalization
of the Kaup-Kupershmidt equation (1) using the multiplier
approach. For the coupled system (2a) and (2b), we obtain
multipliers of the form, Λ

1
= Λ
1
(𝑡, 𝑥, 𝑦, 𝑢, 𝑣) and Λ

2
=

Λ
2
(𝑡, 𝑥, 𝑦, 𝑢, 𝑣) that are given by

Λ
1

= 𝑦𝑓
2

(𝑡) + 𝑓
1

(𝑡) ,

Λ
2

= −5𝑥𝑓
2

(𝑡) + 𝑓
3

(𝑡) −

1

2

𝑦 (𝑦𝑓
󸀠

2
(𝑡) + 2𝑓

󸀠

1
(𝑡)) ,

(27)

where 𝑓
𝑖
, 𝑖 = 1, 2, 3 are arbitrary functions of 𝑡. Correspond-

ing to the above multipliers we obtain the following nonlocal
conserved vector of (1):

𝑇
𝑡

= 𝑓
1

(𝑡) 𝑢 + 𝑦𝑓
2

(𝑡) 𝑢,

𝑇
𝑥

=

1

12

{60𝑓
1

(𝑡) 𝑢
𝑥𝑥

𝑢 + 60𝑦𝑓
2

(𝑡) 𝑢
𝑥𝑥

𝑢

+ 60𝑓
1

(𝑡) 𝑢 ∫ 𝑢
𝑦
𝑑𝑥 + 60𝑦𝑓

2
(𝑡) 𝑢 ∫ 𝑢

𝑦
𝑑𝑥

+ 20𝑓
1

(𝑡) 𝑢
3

+ 20𝑦𝑓
2

(𝑡) 𝑢
3

+ 45𝑦𝑓
2

(𝑡) 𝑢
𝑥

2

+ 40𝑓
1

(𝑡) 𝑢
𝑥𝑦

+ 40𝑦𝑓
2

(𝑡) 𝑢
𝑥𝑦

+ 12𝑦𝑓
2

(𝑡) 𝑢
𝑥𝑥𝑥𝑥

+ 60𝑥𝑓
2

(𝑡) ∫ 𝑢
𝑦
𝑑𝑥

− 12𝑓
3

(𝑡) ∫ 𝑢
𝑦
𝑑𝑥 + 45𝑓

1
(𝑡) 𝑢
𝑥

2

− 20𝑓
2

(𝑡) 𝑢
𝑥

+ 12𝑓
1

(𝑡) 𝑢
𝑥𝑥𝑥𝑥

+6𝑦
2
𝑓
󸀠

2
(𝑡) ∫ 𝑢

𝑦
𝑑𝑥 + 12𝑦𝑓

󸀠

1
(𝑡) ∫ 𝑢

𝑦
𝑑𝑥} ,

𝑇
𝑦

=

1

6

{ − 3𝑦
2
𝑓
󸀠

2
(𝑡) 𝑢 − 6𝑦𝑓

󸀠

1
(𝑡) 𝑢

− 30𝑥𝑓
2

(𝑡) 𝑢 + 6𝑓
3

(𝑡) 𝑢

+ 10𝑦𝑓
2

(𝑡) 𝑢
𝑥𝑥

− 30𝑦𝑓
2

(𝑡) ∫ 𝑢
𝑦
𝑑𝑥

−30𝑓
1

(𝑡) ∫ 𝑢
𝑦
𝑑𝑥 + 10𝑓

1
(𝑡) 𝑢
𝑥𝑥

} .

(28)

Remark 1. Due to the presence of the arbitrary functions, 𝑓
𝑖
,

𝑖 = 1, 2, 3, in themultipliers, one can obtain an infinitelymany
nonlocal conservation laws.

4. Concluding Remarks

In this paper we studied the two-dimensional generalization
of the Kaup-Kupershmidt equation (1). Lie point symmetries
of this equation were obtained and the three translation
symmetrieswere used to transform the equation into a system
of ODEs. Then the extended tanh method and the extended
Jacobi elliptic function method were employed to solve this
ODEs system to obtain exact solutions of (1). Furthermore,
conservation laws of (1) were also computed using the
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multiplier approach. The conservation laws consisted of an
infinite number of nonlocal conserved vectors.
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