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We presented a new hybrid method that combines cellular harmony search algorithms with the Smallest-Small-World theory.
A harmony search (HS) algorithm is based on musical performance processes that occur when a musician searches for a better
state of harmony. Harmony search has successfully been applied to a wide variety of practical optimization problems. Most of
the previous researches have sought to improve the performance of the HS algorithm by changing the pitch adjusting rate and
harmony memory considering rate. However, there has been a lack of studies to improve the performance of the algorithm by the
formation of population structures. Therefore, we proposed an improved HS algorithm that uses the cellular automata formation
and the topological structure of Smallest-Small-World network. The improved HS algorithm has a high clustering coefficient and
a short characteristic path length, having good exploration and exploitation efficiencies. Nine benchmark functions were applied
to evaluate the performance of the proposed algorithm. Unlike the existing improved HS algorithm, the proposed algorithm is
expected to have improved algorithmic efficiency from the formation of the population structure.

1. Introduction

Studies on network maps provide in-depth understanding
of the basic features and requirements of various systems.
Many network connection topologies, assumed to be either
completely regular or completely random, have been studied
[1, 2]. Networks, which can be formally described by the
tools of graph theory, are critical for describing many sci-
entific, social, and technological phenomena (Newman [1]).
Typical examples include the Internet, World Wide Web,
social acquaintances, electric power networks, and neural
networks. In recent years, new theoretical and applied results
have motivated substantial researches in network science.
The pioneering studies of Watts and Strogatz [2] have been
performed, and they have been followed by many others in
the subsequent years. They constructed a simple computer
model of a regular network or lattice, in which each node
of the network was connected by a line or edge to each
of its four nearest neighbors. This network structure or
topology is highly clustered or cliquish by design; however,

movement from one node to another node on the opposite
side of the lattice requires traversing a large number of
short-range connections. In other words, although the path
length (or number of mediating edges) between neighboring
nodes is short, the path length between distant nodes is
long. Therefore, the minimum path length averaged over
all possible pairs of nodes in the network which is quite
long. Watts and Strogatz [2] investigated the change in
network topology (measured in terms of local clustering and
minimum path length) that resulted from randomly rewiring
some of the lattice edges to create long-range connections
between distant nodes. If many lattice edges were randomly
rewired, the network would naturally acquire the topological
characteristics of a random graph (short path length and
low clustering). It is worth mentioning that they found
that even a few long-range connections greatly reduced the
minimum path length of the network without affecting its
local clustering. Thus, they defined algorithmically for the
first time a class of networks having topological properties
similar to social networks and demonstrated both the high
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Figure 1: Neighboring cells.

clustering of a lattice and the short path length of a random
graph.These networkswere called Small-World networks.On
the other hand, Nishikawa et al. [3] suggested a Smallest-
Small-World network (SSWN) and confirmed their theory
with examples. They showed that the average path length
of a Small-World network with fixed shortcuts became the
minimum when there was a “center” node, from which all
shortcuts are connected to uniformly distributed nodes in the
network [4]. Research on efficient network structures can be
applied to fields of optimization, Genetic Algorithms (GAs),
Artificial Neural Networks (ANNs), and Particle Swarm
Optimization (PSO). In GAs, cellular Genetic Algorithms
(cGAs) have been widely studied using cellular automata
(CA). Kang [5] particularly proposed Smallest-Small-World
cellular Genetic Algorithms (SSWcGAs) to apply the SSWN
to the cGAs and evaluated the performance of the algorithm.

The harmony search (HS) algorithm [6, 7] is based on
musical performance processes that occur when a musician
searches for a better state of harmony.TheHS has successfully
been applied to many mathematical functions and a wide
variety of practical optimization problems like pipe-network
design, structural optimization, vehicle routing, combined
heat and power economic dispatching, multiple-dam-system
scheduling, and so forth. In addition, hybrid HS algorithms
that combine with other optimization techniques such as the
PSO and ANNs have been proposed.

So far, researches have been carried out to improve the
performance of theHS algorithmby changing the parameters
such as pitch adjusting rate (PAR) and harmony memory
considering rate (HMCR). However, there has been a lack of
studies on the performance improvement of the HS through
the formation of population structures to transform it into
a cGA. In this study, therefore, we proposed the improved
HS algorithm, which is used the CA and has the topological
structure of the SSWN. The improved HS algorithm has a
high clustering coefficient and a short characteristic path

length possessing good exploration and exploitation efficien-
cies.

2. Related Theory

2.1. Cellular Automata. A cellular automaton is a discrete
model studied in computation theory, mathematics, physics,
complexity science, theoretical biology, and microstructure
modeling [8]. Von Neumann [9] has used the concept of
cellular automaton space regularly arranged in a grid cell.
Individual cells updated simultaneously in a discrete time
step. Each cell is a finite state machine. Each cell entered the
state of its own and neighboring and, then, printout the state
in the next time step. A collection of these cellular automatons
is calledCA space. Other terms for theCA are “cellular space,”
“tessellation automata,” “homogeneous structures,” “cellular
structures,” “tessellation structures,” “iterative arrays,” and so
on [8].

The cell’s dimension in the CA can be defined as one-,
two-, and three-dimensional cells. Typically, a 2D cell is the
most widely used because it can deal with spatial phenomena.
Talking about the shape of the cell, a square cell is usually
used because of its highest computer-processing efficiency,
compared to the other types of cells. Neighbors in the
CA can be defined depending on the form of the adjacent
surrounding cells. In the formof a 2D square cell CA, it can be
defined as a Von Neumann neighborhood with neighbors in
four directions or as aMoore neighborhoodhaving neighbors
in eight directions as shown in Figure 1.

The concept of the CA, as described in this subsection,
has been applied to a variety of optimization techniques
such as GAs [10, 11], ANNs [12], and PSO [13, 14]. For
instance, cGA is a subclass of GA in which each individual
is placed in a given topological distribution. It is a lattice
graph, as one individual can only interact with its nearest
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Figure 2: Classification of networks according to connectivity.

Table 1: Efficiency of average path length (𝐿) and clustering
coefficient (𝐶).

Property Description
Average path length
(𝐿)

Exploitation (local search)
Low L⇒ good exploitation efficiency

Clustering coefficient
(𝐶)

Exploration (Global Search)
High C ⇒ good exploration efficiency

neighbors. Therefore, these relations can be applied on a set
of each individual and the surrounding neighbors, promoting
neighborhood exploitation and exploration of the search
space.

2.2. Smallest-Small-World Theory. The Small-World network
models have receivedmuch attention since their introduction
by Watts and Strogatz [2] as models of real networks having
characteristics which lie between random and regular as
shown in Figure 2. They are characterized by two factors:
the average path length (𝐿) which measures efficiency of
communication or passage time between nodes and the
clustering coefficient (𝐶) which represents the degree of
local order. The average path length (𝐿) is defined as the
average number of links in the shortest path between a pair
of nodes in the network. Accordingly, clustering coefficient
(𝐶) is defined as the probability that two nodes connected
to a common node are also connected to each other. In
general, cGA’s population space is a regular network that
has relatively high 𝐿 and 𝐶 from the point of view of the
network theory. High 𝐿 makes the interactions of remote
nodes difficult. Otherwise, a Small-World network represents
low 𝐿 between any two arbitrary nodes and contains high 𝐶.
It can be characterized by lots of local connectivity between
nodes as well as the occasional longer links, defined as a
shortcut. Only a few of these longer links are required in order
to obtain a Small-World network state.

Nishikawa et al. [3] suggested a SSWN and verified their
theory with examples. They showed that the 𝐿 of a Small-
World networkwith fixed shortcuts is aminimumwhen there

Figure 3: Examples of shortcut configuration with a center node.

is a “center” node, from which all shortcuts are connected to
uniformly distributed nodes in the network [4]. An example
of such a configuration is illustrated in Figure 3.

They defined the SSWN theory as follows.

(i) A SSWN is composed of two parts: the underlying
network (e.g., a regular lattice) and the subnetwork
of shortcuts containing only the shortcuts and their
nodes.

(ii) The nodes in the subnetwork of shortcuts must be
uniformly distributed over the network.

(iii) Finally, among all possible configurations of con-
nected subnetworks of shortcuts with uniformly dis-
tributed nodes, the ones with a single center involve
the largest number of nodes.

These arguments indicate that, given a fixed number of
shortcuts, the networks connected with a sub-network of
shortcuts having uniformly distributed nodes have smaller 𝐿
than a typical random configuration, and, among these, the
ones with a single center minimize 𝐿. In other words, the
Smallest-Small-World networks are characterized by these
structures.
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Figure 4: Relation between music improvisation and engineering optimization [15, 16].

Table 2: Definitions and specifications of two design variables problems.

Functions Definition

Rosenbrock’s valley
Minimize 𝑓 (𝑥

1
, 𝑥
2
) = 100 (𝑥

2

1
− 𝑥
2

2
)
2

+ (1 − 𝑥
1
)
2

−2.048 ≤ 𝑥
1
≤ 2.048, −2.048 ≤ 𝑥

2
≤ 2.048

𝑥
1
= 1, 𝑥

2
= 1, 𝑓 (1, 1) = 0

Branin’s function

Minimize 𝑓 (𝑥
1
, 𝑥
2
) = 𝑎(𝑥

2
− 𝑏𝑥
2

1
+ 𝑐𝑥
1
− 𝑑)
2

+ 𝑒 (1 − 𝑓) cos (𝑥
1
) + 10

𝑎 = 1, 𝑏 = 5.1/4𝜋
2
, 𝑐 = 5/𝜋, 𝑑 = 6, 𝑒 = 10, 𝑓 = 1/8𝜋

−5 ≤ 𝑥
1
≤ 10, 0 ≤ 𝑥

2
≤ 15

(𝑥
1
, 𝑥
2
) = (−𝜋, 12.275) , (𝜋, 2.275) , (9.42478, 2.475)

𝑓 (𝑥
1
, 𝑥
2
) = 0.397887

Easom’s function
Minimize 𝑓 (𝑥

1
, 𝑥
2
) = − cos (𝑥

1
) cos (𝑥

2
) exp (−(𝑥

1
− 𝜋)
2

− (𝑥
2
− 𝜋)
2

)

−100 ≤ 𝑥
1
≤ 100, −100 ≤ 𝑥

2
≤ 100

(𝑥
1
, 𝑥
2
) = (𝜋, 𝜋) , 𝑓 (𝑥

1
, 𝑥
2
) = −1

Goldstein price’s function

Minimize 𝑓 (𝑥
1
, 𝑥
2
) = [1 + (𝑥

1
+ 𝑥
2
+ 1)
2
(19 − 14𝑥

1
+ 3𝑥
2

1
− 14𝑥

2
+ 6𝑥
1
𝑥
2
+ 3𝑥
2

2
)]

× [30 + (2𝑥
1
− 3𝑥
2
)
2

(18 − 32𝑥
1
+ 12𝑥

2

1
+ 48𝑥

2
− 36𝑥

1
𝑥
2
+ 27𝑥

2

2
)]

−2 ≤ 𝑥
1
≤ 2, −2 ≤ 𝑥

2
≤ 2

(𝑥
1
, 𝑥
2
) = (0, −1) , 𝑓 (𝑥

1
, 𝑥
2
) = 3

Six-hump camel back function
Minimize 𝑓 (𝑥

1
, 𝑥
2
) = (4 − 2.1𝑥

2

1
+ 𝑥
4

1
/3) 𝑥
2

1
+ 𝑥
1
𝑥
2
+ (−4 + 4𝑥

2

2
) 𝑥
2

2

−3 ≤ 𝑥
1
≤ 3, −2 ≤ 𝑥

2
≤ 2

(𝑥
1
, 𝑥
2
) = (−0.0898, 0.7126) , (0.0898, −0.7126) 𝑓 (𝑥

1
, 𝑥
2
) = −1.0316

2.3. Harmony Search Algorithm. The HS algorithm is based
on musical performance processes that occur when a musi-
cian searches for a better state of harmony such as during jazz
improvisation. Jazz improvisation seeks musically pleasing
harmony (a perfect state) as determined by an aesthetic
standard, just as an optimization process seeks a global

solution (a perfect state) as determined by an objective
function. The pitch of each musical instrument determines
the aesthetic quality, just as a set of values assigned to
each decision determines the value of the objective function.
Figure 4 shows the details of the analogy between music
improvisation and engineering optimization [15, 16].
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In musical improvisation, each player sounds any pitch
within the possible range, together making one harmony
vector. If all the pitches make a good harmony, that experi-
ence is stored in each player’s memory, and the possibility of
making a good harmony is increased next the time. Similarly,
in engineering optimization, each decision variable initially
chooses any value within the possible range, together making
one solution vector. If all the values of the decision variables
result in a good solution, that experience is stored in each
variable’s memory, and the possibility of making a good
solution is also increased at the next iteration. In brief, the
steps of HS algorithm are given as follows [16, 17].

Step 1 (initialize the problem and algorithm parameters). The
optimization problem is defined as minimize 𝑓(𝑥) subject
to 𝑥
𝑖𝐿

≤ 𝑥
𝑖

≤ 𝑥
𝑖𝑈

(𝑖 = 1, 2, . . . , 𝑁) and other existing
constraints. 𝑥

𝑖𝐿
and 𝑥

𝑖𝑈
are the lower and upper bounds of

decision variables, respectively.TheHS algorithmparameters
are also specified in this step. They are the harmony memory
size (HMS), or the number of solution vectors in the harmony
memory, HMCR, bandwidth (𝑏

𝑤
), PAR, and the number of

improvisations (𝐾), or stopping criterion.

Step 2 (initialize the harmonymemory). The initial harmony
memory (HM) is generated from a uniform distribution in
the ranges [𝑥

𝑖𝐿
, 𝑥
𝑖𝑈
] (𝑖 = 1, 2, . . . , 𝑁), as given in (1):

𝐻𝑀 =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑥
1

1
𝑥
1

2
⋅ ⋅ ⋅ 𝑥

1

𝑁

𝑥
2

1
𝑥
1

2
⋅ ⋅ ⋅ 𝑥

2

𝑁

...
...

...

𝑥
HMS−1
1

𝑥
HMS−1
2

⋅ ⋅ ⋅ 𝑥
HMS−1
𝑁

𝑥
HMS
1

𝑥
HMS
2

⋅ ⋅ ⋅ 𝑥
HMS
𝑁

]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (1)

Step 3 (improvise a new harmony). Generating a new har-
mony is called improvisation. The new harmony vector
𝑥
󸀠
= (𝑥
󸀠

1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑁
) is determined by three rules: memory

consideration, pitch adjustment, and random selection. The
pseudocode for generating a new harmony search is given as
shown in Algorithm 1 [17].

𝑥
󸀠

𝑖
(𝑖 = 1, 2, . . . , 𝑁) is the 𝑖th component of𝑥󸀠, and𝑥

𝑗

𝑖
(𝑗 =

1, 2, . . . ,HMS) is the 𝑖th component of the 𝑗th candidate
solution vector in the HM. rand is a uniformly generated
random number in the region of [0, 1], and 𝑏

𝑤
is an arbitrary

distance bandwidth.

Step 4 (update harmony memory). If the fitness of the
improvised harmony vector 𝑥

󸀠
= (𝑥
󸀠

1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑁
) is better

than that of the worst harmony, replace the worst harmony
in the HM with 𝑥

󸀠.

Step 5 (check the stopping criterion). If the stopping criterion
(maximum number of iterations,𝐾) is satisfied, computation

Table 3: Obtained statistical results of 2D benchmark problem.

SSWCHS CHS SHS
1. Rosenbrock

Mean 1.74𝐸 − 06 3.99𝐸 − 08 2.37𝐸 − 04

Best 3.60𝐸 − 11 1.60𝐸 − 11 4.07𝐸 − 09

Worst 2.30𝐸 − 05 4.29𝐸 − 07 1.63𝐸 − 02

SD 3.77𝐸 − 06 7.16𝐸 − 08 1.65𝐸 − 03

Feasible solution 100 100 89
Mean iteration 698.68 1,102.25 20,142.62
Iteration SD 574.89 1,030.11 1,091.92

2. Branin’s function
Mean 3.98𝐸 − 01 3.98𝐸 − 01 3.98𝐸 − 01

Best 3.58𝐸 − 07 3.58𝐸 − 07 3.58𝐸 − 07

Worst 3.58𝐸 − 07 3.58𝐸 − 07 4.33𝐸 − 07

SD 2.04𝐸 − 11 1.29𝐸 − 12 8.20𝐸 − 09

Feasible solution 100 100 89
Mean iteration 211.94 444.13 2,593.45
Iteration SD 124.18 225.88 225.88

3. Easom’s function
Mean −6.70𝐸 − 01 −9.41𝐸 − 01 −4.90𝐸 − 01

Best 3.60𝐸 − 13 3.60𝐸 − 13 8.21𝐸 − 13

Worst 1.00𝐸 + 00 7.44𝐸 − 01 1.00𝐸 + 00

SD 4.70𝐸 − 01 1.45𝐸 − 01 5.00𝐸 − 01

Feasible solution 67 67 49
Mean iteration 1,501.27 2,461.70 10,817.10
Iteration SD 564.37 969.64 1,133.84

4. Goldstein price’s function
Mean 3.00𝐸 + 00 3.00𝐸 + 00 1.92𝐸 + 01

Best 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00

Worst 1.21𝐸 − 05 1.12𝐸 − 05 2.70𝐸 + 01

SD 1.62𝐸 − 06 1.93𝐸 − 06 1.32𝐸 + 01

Feasible solution 100 100 40
Mean iteration 257.89 423.43 1,009.08
Iteration SD 150.64 177.71 280.99

5. Six-hump camel back function
Mean −1.03𝐸 + 00 −1.03𝐸 + 00 −1.03𝐸 + 00

Best 2.85𝐸 − 05 2.85𝐸 − 05 2.84𝐸 − 05

Worst 2.85𝐸 − 05 2.85𝐸 − 05 2.85𝐸 − 05

SD 2.51𝐸 − 11 2.79𝐸 − 10 1.36𝐸 − 09

Feasible solution 100 100 100
Mean iteration 87.34 152.80 852.06
Iteration SD 33.13 67.30 67.30
“SD” stands for standard deviation.

is terminated. Otherwise, go to Step 3. The most important
step of the HS algorithm is Step 3, which includes memory
consideration, pitch adjustment, and random selection. The
PAR and 𝑏

𝑤
have a profound effect on the performance of the

HS.
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for each 𝑖 ∈ [1,N] do
if rand() ≤HMCR then
𝑥
󸀠

𝑖
= 𝑥
𝑗

𝑖
(𝑗 = 1, 2, . . . ,HMS)%memory consideration

if rand() ≤ PAR then
𝑥
󸀠

𝑖
= 𝑥
󸀠

𝑖
± rand() × 𝑏

𝑤
% pitch adjustment

if 𝑥
󸀠

𝑖
> 𝑥
𝑖𝑈

𝑥
󸀠

𝑖
= 𝑥
𝑖𝑈

elseif 𝑥󸀠
𝑖
< 𝑥
𝑖𝐿

𝑥
󸀠

𝑖
= 𝑥
𝑖𝐿

end
end

else
𝑥
󸀠

𝑖
= 𝑥
𝑖𝐿
+ rand() × (𝑥

𝑖𝑈
− 𝑥
𝑖𝐿
) % random selection

end
end

Algorithm 1

Build initial population

Calculation of initial objective function value of HM

Improvise a new harmony from HM by HMCR, PAR

Update the HM (center node in subpopulations)

Stopping criteria

End

Divide  the population to subpopulations

No

Ok

Figure 5: Flowchart of the CHS.

3. Smallest-Small-World Cellular
Harmony Search

In the present paper, we proposed the improvedHS algorithm
that uses the CA concept and has the topological structure of
the SSWN. A population is just a group of certain number of
arbitrary objects in the same generation as for the generation
in the original HS. Meanwhile, these objects are not related
to each other. In the configuration of these populations as a
kind of random network, the 𝐿 and 𝐶 are also very low. In
contrast, if the population only consists of a grid of cellular
networks, the 𝐶 is relatively high; however, the 𝐿 is also
high. Because high 𝐿makes the interactions of remote nodes
difficult, we need to reduce the 𝐿. Table 1 shows the efficiency
and comparison of clustering coefficient and path length.
The Small-World network models have the advantages of
both random and regular network. They have low 𝐿 for fast
interaction between nodes, and they have high 𝐶 ensuring
sufficient redundancy for high fault tolerance [3]. In this
study, therefore, the population of the original HS consists
of a form of cellular networks. And then we can reduce

characteristic path length (𝐿) and increase the clustering
coefficient (𝐶) using the shortcuts concepts of Small-World
network.

3.1. Cellular Harmony Search (CHS). The operation process
of the cellular harmony search (CHS) is shown in Figure 5.
The CHS’s operation process is the same as the existing
original HS. However, the CHS’s initial population has a
cellular form. In this process, new generations in the sub-
network from the PAR and HMCR processes are compared
with the existing population, and then replace the lowest
ranked object. After each small grid within the objects of
the highest priority, a node is located in the center of the
sub-network. Finally, the centers of the sub-network nodes
are compared, and the object of the entire population of the
highest priority and the central node are replaced.

3.2. Smallest Small World Cellular Harmony Search
(SSWCHS). Smallest Small World cellular harmony search
(SWCHS) performs its operation between the center nodes
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Table 4: Definitions and specification of 30D benchmark problems.

Functions Definition

Step function
Minimize 𝑓 (𝑥) =

𝑛

∑

𝑖=1

([𝑥
𝑖
+ 0.5])

2

− 30 ≤ 𝑥
𝑖
≤ 30

min (𝑓) = 𝑓 (0, . . . , 0) = 0

The Rastrigin function Minimize 𝑓 (𝑥) = 10𝑛 +

𝑛

∑

𝑖=1

[𝑥
2

𝑖
− 10 cos(2𝜋𝑥

𝑖
)] − 5.12 ≤ 𝑥

𝑖
≤ 5.12 min (𝑓) =

𝑓 (0, . . . , 0) = 0

The Griewank function
Minimize 𝑓 (𝑥) = (1/4000)

𝑛

∑

𝑖=1

𝑥
2

𝑖
−

𝑛

∏

𝑖=1

cos (𝑥
𝑖
/√𝑖) + 1 − 600 ≤ 𝑥

𝑖
≤ 600

min (𝑓) = 𝑓 (0, . . . , 0) = 0

The Ackley function
Minimize 𝑓 (𝑥) = −𝑎 exp(−𝑏√(1/𝑛)

𝑛

∑

𝑖=1

𝑥
2

𝑖
)) − exp((1/𝑛)

𝑛

∑

𝑖=1

cos (𝑐𝑥
𝑖
)) + 𝑎 + exp(1)

𝑎 = 20, 𝑏 = 0.2, 𝑐 = 2𝜋 − 32.768 ≤ 𝑥
𝑖
≤ 32.768

min (𝑓) = 𝑓 (0, . . . , 0) = 0

Table 5: Results of 30ND Problems.

SSWCHS CHS SHS
1. Step function

Mean 0.00𝐸 + 00 1.09𝐸 + 00 5.60𝐸 + 00

Best 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00

Worst 0.00𝐸 + 00 3.00𝐸 + 00 1.20𝐸 + 01

SD 0.00𝐸 + 00 9.81𝐸 − 01 2.53𝐸 + 00

Feasible solution 100 36 1
Mean iteration 30,673.72 148,717.39 91,353.00
Iteration SD 41,902.01 49,240.37 —

2. Rastrigin function
Mean 4.69𝐸 − 02 2.99𝐸 + 00 6.09𝐸 + 00

Best 2.78𝐸 − 03 1.12𝐸 − 02 1.01𝐸 + 00

Worst 1.00𝐸 + 00 5.01𝐸 + 00 8.98𝐸 + 00

SD 1.95𝐸 − 01 1.31𝐸 + 00 1.99𝐸 + 00

Feasible solution 92 0 0
Mean iteration 113,790.16 — —
Iteration SD 47,257.60 — —

3. Griewank function
Mean 1.03𝐸 − 01 1.43𝐸 − 01 6.94𝐸 − 01

Best 1.46𝐸 − 06 2.71𝐸 − 02 5.47𝐸 − 06

Worst 4.86𝐸 − 01 4.85𝐸 − 01 1.25𝐸 + 00

SD 9.80𝐸 − 02 8.06𝐸 − 02 4.47𝐸 − 01

Feasible solution 10 0 3
Mean iteration 73,642.00 — 208,726.00
Iteration SD 43,912.52 — 26,918.84

4. Ackley function
Mean 4.62𝐸 − 02 1.31𝐸 + 00 1.58𝐸 + 00

Best 3.51𝐸 − 03 6.10𝐸 − 03 5.97𝐸 − 03

Worst 1.50𝐸 + 00 1.65𝐸 + 00 3.46𝐸 + 00

SD 2.11𝐸 − 01 2.78𝐸 − 01 7.17𝐸 − 01

Feasible solution 96 3 8
Mean iteration 79,262.84 141,376.33 160,133.00
Iteration SD 64,770.38 35,365.89 58,642.35

by adding shortcuts in the CHS.The CHS operation between
the center nodes is added in the calculation process as shown

in Figure 6. In this process, the SSWCHS is performed to
obtain the final optimal solution through operations between
the small grids of optimum object.

4. Applications and Results

In this study, the proposed SSWCHS was applied for solving
unconstrained benchmark functions widely examined in the
literature. The SSWCHS, CHS, and original simple harmony
search (SHS) problems were performed in this study to have
comparisons among optimizers. The optimization task was
carried out using 100 independent runs based on the results
depending on the type of problem. Statistical values, includ-
ing best, worst, and mean values, and mean iteration number
were obtained to evaluate the performance of the reported
algorithms. Benchmark functions were utilized to evaluate
the performance of considered optimization techniques.
Among benchmark functions, five benchmark functions have
2 design variables and the rest have 30 design variables [18].
The benchmark functions have difficulty in terms of number
of local optimum points and also the search space of these
functions is almost wide and can challenge the efficiency
of methods. The SSWCHS, CHS, and SHS algorithms were
applied and run separately. The SSWCHS and CHS that
occur at random initial solution were applied equally, and
the initial solution in the SHS was applied differently because
of the size of the HM. The HMS in the SSWCHS and CHS
was composed by 225 cellular structures, and the SHS was
composed by 5 HMS.Therefore, the number of shortcuts can
be predetermined as shown in Figure 7. Two and 30 design
variable problems were initialized using 0.3 PAR and 0.95
HMCR, respectively. The 2 and 30 design variable functions
were performedwith 50,000 iterations and 250,000 iterations,
respectively. Feasible solution has a margin of error of 10−4
and 10−2 in the 2 and 30 design variable functions.Mean value
and standard deviation of iteration can indicate the degree
of convergence. From the number of feasible solution, the
accuracy percentage of each algorithm can be compared.

4.1. Problems Having Two Design Variables. In this study, the
following problems were applied as shown in Table 2.
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Build initial population

Calculation of initial objective function value of HM

Improvise a new harmony from HM by HMCR, PAR

Update the HM (center node in subpopulations)

Stopping criteria

End

Divide  the population to subpopulations

Build second population (best node in subpopulations)

Improvise a new harmony from HM by HMCR, 
PAR (second population)

Update the HM (global center node)

No

Ok

Considering smallest-
Small-World theory

Figure 6: Flowchart of the SSWCHS.

Table 3 shows the obtained results of the 2D benchmark
functions. The SSWCHS and CHS relatively showed good
results, compared to the SHS. The result of each benchmark
function indicated that Easom’s function could not find
perfect optimal solution by the SSWCHS and CHS. The
parameters of Easom’s function have a wide search range. For
this reason, Easom’s function showed less search capability
for the optimal value than the other functions. In such case,
increasing the number of iterations is considered to reach
the optimal solution so that the ratio can be improved.
One can see that the value of the entire functions which is
mean iteration and iteration standard deviation value of the
SSWCHS are smaller than those of the CHS.These results can
conclude that the SSWCHS converged faster than the CHS,
and it can estimate a reliable optimal solution.

4.2. Problems Having 30 Design Variables. In this study, the
following benchmark problems were applied as shown in
Table 4.

Table 5 shows the attained results of 30D benchmark
functions.The SSWCHS relatively showed good results com-
pared with the CHS and SHS. For all benchmark problems
given in Table 4, except Griewank’s function, the SSWCHS
showed its superiority over other reported methods. In case
of Griewangk’s function, we can see that with the ratio of 10%
the optimal solution is reached. Because it had wide search
ranges of parameters from −600 to 600. By contrast to the 2D

problems, 30D functions needmore time to reach the optimal
solution.However, the SSWCHS showedmuchhigher perfor-
mance than the CHS and SHS. In particular, the arithmetic
mean and the standard deviation in the SSWCHS are lower
than those in other algorithms, indicating stability and faster
convergence. For the Ackley function and the Griewangk
function, however, the CHS and SHS offered lower standard
deviation of iteration than the SWSCHS. However, in this
case, the number of feasible solutions was very small and
mean iterationwas larger than that obtained by the SSWCHS.
In case of the percentage of optimal solutions of the SHS, the
values of the Griewangk function and Ackley function were
larger than those of the CHS.

5. Conclusions

In this study, an improved HS algorithm which combines the
CA and the topological structure of Smallest-Small-World
network is proposed. Most of previous studies, there have
been a lack of studies on the performance improvement of the
harmony search algorithm by use of population or memory
structures. A new hybrid harmony search algorithm hav-
ing high clustering coefficient and short characteristic path
length was required. The hybrid HS algorithm developed in
this paper has good exploration and exploitation efficiencies.
Nine benchmark functions were applied to assess the perfor-
mance of the proposed algorithm. The applied benchmark



Journal of Applied Mathematics 9

1 2 3 10 11 12 19 20 21 28 29 30 37 38 39

4 5 6 13 14 15 22 23 24 31 32 33 40 41 42

7 8 9 16 17 18 25 26 27 34 35 36 43 44 45

46 47 48 55 56 57 64 65 66 73 74 75 82 83 84

49 50 51 58 59 60 67 68 69 76 77 78 85 86 87

52 53 54 61 62 63 70 71 72 79 80 81 88 89 90

91 92 93 100 101 102 109 110 111 118 119 120 127 128 129

94 95 96 103 104 105 112 113 114 121 122 123 130 131 132

97 98 99 106 107 108 115 116 117 124 125 126 133 134 135

136 137 138 145 146 147 154 155 156 163 164 165 172 173 174

139 140 141 148 149 150 157 158 159 166 167 168 175 176 177

142 143 144 151 152 153 160 161 162 169 170 171 178 179 180

181 182 183 190 191 192 199 200 201 208 209 210 217 218 219

184 185 186 193 194 195 202 203 204 211 212 213 220 221 222

187 188 189 196 197 198 205 206 207 214 215 216 223 224 225

Center node (global)
Shortcut

The number of shortcuts: 24

Figure 7: Smallest Small World harmony search network.

functions consist of five 2D functions and four 30D functions.
The evaluation indexes of the SSWCHSwere better than those
of CHS and SHS in terms of solution quality. The SSWCHS
algorithm showed generally faster convergence and more
stability than the CHS or SHS. It shows very competitive
solutionswith less number of iterations than other considered
algorithms. It is recommended that the optimization tech-
niques, as new algorithms became available, be used in a wide
range of engineering optimization problems. However, the
SSWCHS has so many of the HS structures that it can affect
computation time. Therefore, it remains a complementary
part. As a further research, parameter variations are expected
to develop using the proposed SSWCHS.
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