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This paper is devoted to tackling the control problem for a class of discrete-time stochastic systems with randomly occurring
sensor saturations.The considered sensor saturation phenomenon is assumed to occur in a randomway based on the time-varying
Bernoulli distribution with measurable probability in real time. The aim of the paper is to design a nonfragile gain-scheduled
controller with probability-dependent gains which can be achieved by solving a convex optimization problem via semidefinite
programming method. Subsequently, a new kind of probability-dependent Lyapunov functional is proposed in order to derive the
controller with less conservatism. Finally, an illustrative example will demonstrate the effectiveness of our designed procedures.

1. Introduction

In reality, virtually almost all dynamic systems are subject to
stochastic perturbation, and stochastic model has been suc-
cessfully established to describe many practical systems, such
as economic systems, process control systems, networked
control systems (NCSs), and sensor network. For several
decades, the study of stabilization, control, and filtering
problem has drawnmany researchers’ attention; some results
can be found in [1–16]. On the other hand, time delays also
serve as one of the main sources for poor performance
and instability. Consequently, the stochastic control issue for
time-delay systems has also been intensively investigated; see,
for example, [2, 4, 7, 8, 10, 11, 13, 15].

The randomly occurring phenomenon is a newly emerg-
ed research topic which has drawn many researchers’ atten-
tion; see, for example, [1–3, 5, 6, 8, 9, 12–16]. It refers to these
phenomena appearing in a random way based on a certain
kind of probabilistic law including randomly occurring non-
linearities (RONs), missing measurements, randomly occur-
ring actuator faults, randomly varying sensor delays (RVSDs),
and randomly occurring sensor saturations (ROSSs), and so
on. For more details about randomly occurring phenomena,

the reader is referred to [9]. If not handled appropriately,
these phenomena could cause a reduction of performance
and/or launch a threat to the safety and reliability of the
plant. Therefore, it is not surprising that various filtering and
control techniques have been developed to deal with such
randomly occurring phenomena, in addition to 𝐻

∞
control

[16]/filtering [12] and𝐻
∞
state estimation [1]methods. In [2],

a robust sliding mode control has been designed for system
with mixed time-delays, randomly occurring uncertainties,
and RONs; while gain-constrained recursive filter approach
has been used in [5] for system with probabilistic sensor
delays, the extendedKalman filtering and quantized recursive
filtering problem for systemwithmissingmeasurements have
been studied in [3, 6], respectively. Therefore, in this paper,
the ROSS (one of the important randomly occurring phe-
nomena) is studied by exploiting gain-scheduling method,
which is another motivation of this paper.

Sensor saturation phenomenon is very common in prac-
tical engineering. It means that sensors cannot provide
signals of unlimited amplitude due mainly to the physical or
technological constraints. In another aspect, because of
random occurrences of networked induced phenomena in
networked control systems (NCSs), such as random sensor
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failures leading to intermittent saturation and sensor aging
resulting in changeable saturation level, sensor saturation
may occur in a random way. We consider this phenomenon
as randomly occurring sensor saturation, which has received
increasing attention, for instance, [1, 12]. Reference [1] dis-
cussed the 𝐻

∞
state estimation problem for discrete-time

complex networks with ROSSs and RVSDs, while [12] turned
to design an 𝐻

∞
filter for system with ROSSs and missing

measurements. However, to the best of authors’ knowledge,
rare published literature has dealt with ROSSs; therefore, this
paper tries to flourish the research on this phenomenon by
designing a nonfragile gain-scheduled controller.

Over the past decades, gain-scheduling method is one
of the most popular methods of controller designing and
has been extensively studied from theoretical and practical
viewpoints; see, for example, [8, 14, 15, 17–19]. The gain-
scheduling method is to design controller gains as functions
of the scheduling parameters, which can update the controller
with a set of tuning parameters in order to optimize the
closed-loop performance when outside environment changes
(e.g., the occurrences of a variety of randomly occurring
phenomena). It should be noted that the designed gain-
scheduling controller has not only the constant part but also
time-varying part which can be scheduled online according
to the corresponding time-varying parameters; see [8, 14, 15].
Therefore, it will naturally lead to less conservatism than the
conventional ones with fixed gains only.

On the other hand, it is well known that in order to get
better performance of the system, an accuracy controller is
needed to resist the impact by the uncertainties occurring
in the course of the implementation of a designed controller.
Such uncertainties can be due to the existence of parameter
drift, round-off errors in numerical computation during
controller implementation, and the safe-tuning margins
provided for engineering application. In these cases, the
nonfragile controller is a good choice, as it can tolerate
some level of controller parameter variations; see [7, 20–22].
However, the controller with uncertainties and outside envi-
ronment changes often occur simultaneously; unfortunately,
few papers have tackled this phenomenon, and therefore, we
proposed a nonfragile gain-scheduled controller in this paper
to fill the gap by making a few first attempts to deal with this
problem.

The main contributions of this paper are summarized as
follows: (1) a new nonfragile gain-scheduled control problem
is addressed for a class of discrete-time nonlinear stochas-
tic systems with randomly occurring phenomenon; (2) a
sequence of stochastic variables satisfying Bernoulli distribu-
tion is introduced to describe the time-varying features of the
ROSSs; (3) a time-varying Lyapunov functional dependent
on the saturation probability is proposed and applied to
improve the performance of system; (4) the parameters of the
nonfragile gain-scheduled controller can be adjusted online
according to the saturating probability estimated through
statistical tests.

Notation. In this paper,R𝑛,R𝑛×𝑚, and I+ denote, respectively,
the 𝑛-dimensional Euclidean space, the set of all 𝑛 × 𝑚 real
matrices, and the set of all positive integers. | ⋅ | refers to

the Euclidean norm in R𝑛. 𝐼 denotes the identity matrix of
compatible dimension. The notation 𝑋 ≥ 𝑌 (resp., 𝑋 >

𝑌), where 𝑋 and 𝑌 are symmetric matrices, means that
𝑋 − 𝑌 is positive semidefinite (resp., positive definite). For
a matrix𝑀,𝑀𝑇 and𝑀−1 represent its transpose and inverse,
respectively. The shorthand diag{𝑀

1
,𝑀
2
, . . . ,𝑀

𝑛
} denotes

a block diagonal matrix with diagonal blocks being the
matrices 𝑀

1
,𝑀
2
, . . . ,𝑀

𝑛
. In symmetric block matrices, the

symbol∗ is used as an ellipsis for terms induced by symmetry.
Matrices, if they are not explicitly stated, are assumed to have
compatible dimensions. In addition, E{𝑥} and Prob{𝑦} will,
respectively, mean expectation of 𝑥 and probability of 𝑦.

2. Problem Formulation

Consider the following discrete-time nonlinear stochastic
systems:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑) + 𝐵𝑢 (𝑘)

+ 𝑁𝑓 (𝑧 (𝑘)) + 𝐸𝑥 (𝑘) 𝜔 (𝑘) ,

(1)

𝑥 (𝑘) = 𝜌 (𝑘) , 𝑘 = −𝑑, −𝑑 + 1, . . . , 0, (2)

where 𝑥(𝑘) ∈ R𝑛 is the state, 𝑑 is a constant delay and 𝑧(𝑘) :=
𝐺𝑥(𝑘)+𝐺

𝑑
𝑥(𝑘−𝑑),𝜔(𝑘) is a one-dimensional Gaussian white

noise sequence satisfyingE{𝜔(𝑘)} = 0 andE{𝜔2(𝑘)} = 𝜎2, and
𝜌(𝑘) is the initial state of the system.𝐴, 𝐵,𝐷, 𝐸,𝑁,𝐺, and𝐺

𝑑

are constant real matrices of appropriate dimensions and 𝐵 is
of full column.The nonlinear function𝑓(⋅)with (𝑓(0) = 0) is
assumed as nonlinear disturbance and satisfies the following
sector-bounded condition:

[𝑓(𝑧(𝑘)) − 𝐹
1
𝑧 (𝑘)]
𝑇

[𝑓 (𝑧 (𝑘)) − 𝐹
2
𝑧 (𝑘)] ≤ 0, (3)

where 𝑓(⋅) belongs to the sector [𝐹
1
, 𝐹
2
], 𝐹
1
and 𝐹

2
are given

constant real matrices.
For the technique convenience, the nonlinear function

𝑓(𝑧(𝑘)) can be decomposed into a linear part and a nonlinear
part as

𝑓 (𝑧 (𝑘)) = 𝑓
𝑠
(𝑧 (𝑘)) + 𝐹

1
𝑧 (𝑘) ; (4)

then, from (3), we have

𝑓
𝑇

𝑠
(𝑧 (𝑘)) (𝑓

𝑠
(𝑧 (𝑘)) − 𝐹𝑧 (𝑘)) ≤ 0, (5)

where 𝐹 = 𝐹
2
− 𝐹
1
> 0.

The measurement output with sensor saturation is des-
cribed as

𝑦 (𝑘) = 𝜉 (𝑘) 󰜚 (𝐶𝑥 (𝑘)) + (1 − 𝜉 (𝑘)) 𝐶𝑥 (𝑘) , (6)

where 𝐶 is a constant real matrix of appropriate dimensions
and 󰜚(𝑥) = sign(𝑥)min{1, |𝑥|}. Here, the notation of “sign”
means the signum function, and we use the notation 󰜚

to denote saturation functions. Note that, without loss of
generality, the saturation level is taken as unity.

According to the definition of the saturation function,
we can get that the nonlinear function 󰜚 satisfies [󰜚(𝑥) −
𝑎𝑥][󰜚(𝑥) − 𝑥] ≤ 0 and |𝑥| ≤ 𝑎

−1, where 𝑎 is a positive scalar
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satisfying 0 < 𝑎 < 1, so the nonlinear function 󰜚(𝐶𝑥(𝑘))

satisfies [󰜚(𝐶𝑥(𝑘)) − 𝑎𝐶𝑥(𝑘)]𝑇[󰜚(𝐶𝑥(𝑘)) − 𝐶𝑥(𝑘)] ≤ 0, while
|𝑎𝐶𝑥(𝑘)| ≤ 1 and 𝑎 satisfies 0 < 𝑎 < 1.

The variable 𝜉(𝑘) ∈ R is a randomwhite sequence charac-
terizing the probabilistic sensor saturation, which obeys the
following time-varying Bernoulli distribution:

Prob {𝜉 (𝑘) = 1} = E {𝜉 (𝑘)} = 𝑝 (𝑘) ,

Prob {𝜉 (𝑘) = 0} = 1 − E {𝜉 (𝑘)} = 1 − 𝑝 (𝑘) ,
(7)

where 𝑝(𝑘) is a time-varying positive scalar sequence and
belongs to [𝑝

1
𝑝
2
] ⊆ [0 1] with 𝑝

1
and 𝑝

2
being the

lower and upper bounds of𝑝(𝑘), respectively.Throughout the
paper, for simplicity, we assume that 𝜉(𝑘), 𝜔(𝑘) and 𝜌(𝑘) are
uncorrelated.

Remark 1. In many practical systems, especially in NCSs,
the measurement output is often subject to ROSSs, and
the Bernoulli distribution model has been proven to be a
very flexible and effective way to model randomly occurring
phenomenon; see, for example, [1–3, 5, 6, 8, 13–15]. Further-
more, in practical engineering, the occurring probability of
sensor saturation phenomenon usually changes with time.
Therefore, in this paper, the occurrence of sensor saturation
is described by a random variable sequence 𝜉(𝑘) satisfying a
time-varying instead of time-invariant Bernoulli distribution
model, which will reduce the conservatismwhen used to deal
with the systems with time-varying ROSSs.

In this paper, we are interested in designing the following
nonfragile gain-scheduled static output feedback controller:

𝑢 (𝑘) = [𝐾 (𝑝 (𝑘)) + Δ𝐾] 𝑦 (𝑘) , (8)

where𝐾(𝑝(𝑘)) is the controller gain sequence to be designed
and assumed as the following structure:

𝐾(𝑝 (𝑘)) = 𝐾
0
+ 𝑝 (𝑘)𝐾

𝑢
; (9)

for every time step 𝑘, 𝑝(𝑘) is the time-varying parameter
of the controller gain, and 𝐾

0
and 𝐾

𝑢
are the constant

parameters of the controller gain to be designed, while
Δ𝐾 is an unknown matrix of appropriate dimensions and
represents the uncertainty in the controller, which is assumed
to be of the form

Δ𝐾 = 𝐿𝐻 (𝑘)𝑀, (10)

where 𝐿 and 𝑀 are known constant matrices with the
structured information of the uncertainty, and 𝐻(𝑘) is an
unknown, real, and time-varying matrix with Lebesgue-
measurable elements satisfying

𝐻
𝑇

(𝑘)𝐻 (𝑘) ≤ 𝐼, ∀𝑘. (11)

Remark 2. Instead of using the information of system states,
static output feedback control directly makes use of system
outputs to design controllers, which has proven to be much
simpler and easier to implement and has been extensively
used in various kinds of engineering fields; for more details,
we recommend some papers such as [23–27].

Remark 3. Owing to the pervasive existence of the uncertain-
ties during controller implementation, an accuracy controller
is needed to resist such an impact by the uncertainties, and
the nonfragile controller has been proven to be an effective
one; see, for example, [7, 20–22]. In another aspect, ROSSs
are ubiquitous during the process of measurement, especially
in NCSs, and gain-scheduling method has been successfully
utilized to tackle with randomly occurring phenomenon in
[8, 14, 15]. Therefore, in this paper, we design a nonfragile
gain-scheduled static output feedback controller for nonlin-
ear stochastic systems to deal with uncertainties and ROSSs
simultaneously.

From the aforementioned, the closed-loop system with
the nonfragile gain-scheduled controller is

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑) + 𝐵𝐾 (𝑝 (𝑘))

× [𝜉 (𝑘) 󰜚 (𝐶𝑥 (𝑘)) + (1 − 𝜉 (𝑘)) 𝐶𝑥 (𝑘)]

+ 𝑁𝑓 (𝑧 (𝑘)) + 𝐸𝑥 (𝑘) 𝜔 (𝑘) .

(12)

Before formulating the problem to be investigated, we
first introduce the following stability concepts.

Definition 4. The closed-loop system (12) is said to be expo-
nentially mean-square stable if, with 𝜔(𝑘) = 0, there exist
constant 𝛼 > 0 and 𝜏 ∈ (0, 1) such that

E {
󵄩󵄩󵄩󵄩𝑥𝑘

󵄩󵄩󵄩󵄩

2

} ≤ 𝛼𝜏
𝑘 sup
−𝑑≤𝑖≤0

E {
󵄩󵄩󵄩󵄩𝑥𝑖

󵄩󵄩󵄩󵄩

2

} , 𝑘 ∈ I
+

. (13)

In this paper, our purpose is to design a probability-
dependent nonfragile gain-scheduled controller of the form
(8) for the system (1) by exploiting a probability-dependent
Lyapunov functional and LMI method such that, for all
admissible sensor saturations and exogenous stochastic noise,
the closed-loop system (12) is exponentially mean-square
stable.

3. Main Results

The following lemmas will be used in the proofs of our main
results in this paper.

Lemma 5 ((Schur complement) [28]). Given constant matri-
ces Σ
1
, Σ
2
, Σ
3
, where Σ

1
= Σ
𝑇

1
and 0 < Σ

2
= Σ
𝑇

2
, then

Σ
1
+ Σ
𝑇

3
Σ
−1

2
Σ
3
≥ 0 if and only if

[
Σ
1

Σ
𝑇

3

Σ
3
−Σ
2

] ≥ 0 or [
−Σ
2
Σ
3

Σ
𝑇

3
Σ
1

] ≥ 0. (14)

Lemma 6 (see [13]). Let the matrix 𝐵 ∈ 𝑅
𝑛×𝑚 be of full-

column rank. There always exist two orthogonal matrices 𝑈 ∈

𝑅
𝑛×𝑛 and 𝑉 ∈ 𝑅

𝑛×𝑛 such that 𝐵 = 𝑈 [
Σ

0
] 𝑉
𝑇 and Σ =

diag{𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑚
}. If matrix 𝑆 has the following structure:

𝑆 = 𝑈 [
𝑆
11
𝑆
12

0 𝑆
22

]𝑈
𝑇, where 𝑆

11
, 𝑆
12

∈ 𝑅
𝑛×(𝑛−𝑚) and 𝑆

22
∈

𝑅
(𝑛−𝑚)×(𝑛−𝑚), then there exists a nonsingular matrix 𝑅 ∈ 𝑅

𝑚×𝑚

such that 𝑆𝐵 = 𝐵𝑅.
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Lemma 7 ((𝑆-procedure) [28]). For given matrices 𝑄 = 𝑄
𝑇,

𝐻, and 𝐸 with appropriate dimensions,

𝑄 +𝐻𝐹 (𝑘) 𝐸 + 𝐸
𝑇

𝐹
𝑇

(𝑘)𝐻
𝑇

< 0 (15)

holds for all 𝐹(𝑘) satisfying 𝐹𝑇(𝑘)𝐹(𝑘) ≤ 𝐼 if and only if there
exists 𝜀 > 0 such that

𝑄 + 𝜀
−1

𝐻𝐻
𝑇

+ 𝜀𝐸
𝑇

𝐸 < 0. (16)

For convenience of presentation, we first consider the
desired controller without uncertainty (i.e., Δ𝐾 = 0), and
the result will be shown in Theorem 8. Then, we design the
nonfragile gain-scheduled controller inTheorem 10 based on
the conclusion inTheorem 8.

Theorem 8. Consider the discrete-time nonlinear stochastic
systems with ROSSs (12). If there exist positive-definitematrices
𝑄(𝑝(𝑘)) and 𝑄

𝜏
, slack matrix 𝑆, and nonsingular matrices

𝑌(𝑝(𝑘)) and 𝑅, such that the following LMIs hold:

Υ :=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
𝜏
− 𝑄 (𝑝 (𝑘)) − 2𝑎𝐶

𝑇

𝐶 ∗ ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝜏

∗ ∗ ∗ ∗ ∗

(𝑎 + 1) 𝐶 0 −2𝐼 ∗ ∗ ∗ ∗

𝐹𝐺 𝐹𝐺
𝑑

0 −2𝐼 ∗ ∗ ∗

𝑆
𝑇

𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝑌 (𝑝 (𝑘)) 𝐶 𝑆
𝑇

𝐷 𝑝 (𝑘) 𝐵𝑌 (𝑝 (𝑘)) 𝑆
𝑇

𝑁 −Λ ∗ ∗

𝜎
2

𝑆
𝑇

𝐸 0 0 0 0 −𝜎
2

Λ ∗

Δ
𝑝
(𝑘) 𝐵𝑌 (𝑝 (𝑘)) 𝐶 0 Δ

𝑝
(𝑘) 𝐵𝑌 (𝑝 (𝑘)) 0 0 0 −Δ

𝑝
(𝑘) Λ

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (17)

where

Λ = −𝑄 (𝑝 (𝑘 + 1)) + 𝑆 + 𝑆
𝑇

, Δ
𝑝
(𝑘) = 𝑝 (𝑘) (1 − 𝑝 (𝑘)) ,

𝐴 = 𝐴 + 𝑁𝐹
1
𝐺, 𝐷 = 𝐷 + 𝑁𝐹

1
𝐺
𝑑
, 𝑆

𝑇

𝐵 = 𝐵𝑅,

𝑅𝐾 (𝑝 (𝑘)) = 𝑌 (𝑝 (𝑘)) , 𝐾 (𝑝 (𝑘)) = 𝑅
−1

𝑌 (𝑝 (𝑘)) ,

𝑌 (𝑝 (𝑘)) = 𝑌
0
+ 𝑝 (𝑘) 𝑌

𝑢
,

(18)

in this case, the constant gains of the desired controller can be
obtained as follows:

𝐾
0
= 𝑅
−1

𝑌
0
, 𝐾

𝑢
= 𝑅
−1

𝑌
𝑢
, (19)

and the closed-system (12) is then exponentially mean-square
stable for all 𝑝(𝑘) ∈ [𝑝

1
𝑝
2
].

Proof. Define the Lyapunov functional

𝑉 (𝑘) := 𝑥
𝑇

(𝑘) 𝑄 (𝑝 (𝑘)) 𝑥 (𝑘) +

𝑘−1

∑

𝑠=𝑘−𝑑

𝑥
𝑇

(𝑠) 𝑄
𝜏
𝑥 (𝑠) ; (20)

noting that E{𝜉(𝑘) − 𝑝(𝑘)} = 0, E{𝜔(𝑘)} = 0, and
E{[𝜉(𝑘) − 𝑝(𝑘)]

2

} = 𝑝(𝑘)(1 − 𝑝(𝑘)) ≜ Δ
𝑝
(𝑘), we can get

E {Δ𝑉 (𝑘)} = E {𝑥
𝑇

(𝑘 + 1)𝑄 (𝑝 (𝑘 + 1)) 𝑥 (𝑘 + 1)

− 𝑥
𝑇

(𝑘) (𝑄 (𝑝 (𝑘)) − 𝑄
𝜏
) 𝑥 (𝑘)

−𝑥
𝑇

(𝑘 − 𝑑)𝑄
𝜏
𝑥 (𝑘 − 𝑑)}

= E {[𝐴𝑥 (𝑘) + 𝑝 (𝑘) 𝐵𝐾 (𝑝 (𝑘))

× [󰜚 (𝐶𝑥 (𝑘)) − 𝐶𝑥 (𝑘)]

+ (𝜉 (𝑘) − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘))

× [󰜚 (𝐶𝑥 (𝑘)) − 𝐶𝑥 (𝑘)]

+ 𝐵𝐾 (𝑝 (𝑘)) 𝐶𝑥 (𝑘) + 𝑁𝑓 (𝑧 (𝑘))

+ 𝐷𝑥(𝑘 − 𝑑) + 𝐸𝑥 (𝑘) 𝜔 (𝑘)]
𝑇

𝑄 (𝑝 (𝑘 + 1))

× [𝐴𝑥 (𝑘) + 𝑝 (𝑘) 𝐵𝐾 (𝑝 (𝑘))

× [󰜚 (𝐶𝑥 (𝑘)) − 𝐶𝑥 (𝑘)]

+ (𝜉 (𝑘) − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘))

× [󰜚 (𝐶𝑥 (𝑘)) − 𝐶𝑥 (𝑘)]

+ 𝐵𝐾 (𝑝 (𝑘)) 𝐶𝑥 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑)

+𝑁𝑓 (𝑧 (𝑘)) + 𝐸𝑥 (𝑘) 𝜔 (𝑘)]

− 𝑥
𝑇

(𝑘) 𝑄 (𝑝 (𝑘)) 𝑥 (𝑘) + 𝑥
𝑇

(𝑘) 𝑄
𝜏
𝑥 (𝑘)

−𝑥
𝑇

(𝑘 − 𝑑)𝑄
𝜏
𝑥 (𝑘 − 𝑑)}

≤ E {[(𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶) 𝑥 (𝑘)

+ 𝑝 (𝑘) 𝐵𝐾 (𝑝 (𝑘)) 󰜚 (𝐶𝑥 (𝑘)) + 𝐷𝑥 (𝑘 − 𝑑)

+𝑁𝑓
𝑠
(𝑧 (𝑘))]

𝑇

𝑄 (𝑝 (𝑘 + 1))
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× [(𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶) 𝑥 (𝑘)

+ 𝑝 (𝑘) 𝐵𝐾 (𝑝 (𝑘)) 󰜚 (𝐶𝑥 (𝑘)) + 𝐷𝑥 (𝑘 − 𝑑)

+𝑁𝑓
𝑠
(𝑧 (𝑘))] + 𝑝 (𝑘) (1 − 𝑝 (𝑘))

× [𝐵𝐾 (𝑝 (𝑘)) (󰜚 (𝐶𝑥 (𝑘)) − 𝐶𝑥 (𝑘))]
𝑇

× 𝑄 (𝑝 (𝑘 + 1)) 𝐵𝐾 (𝑝 (𝑘))

× [󰜚 (𝐶𝑥 (𝑘)) − 𝐶𝑥 (𝑘)]

+ 𝜎
2

𝑥
𝑇

(𝑘) 𝐸
𝑇

𝑄 (𝑝 (𝑘 + 1)) 𝐸𝑥 (𝑘)

− 𝑥
𝑇

(𝑘) 𝑄 (𝑝 (𝑘)) 𝑥 (𝑘)

− 𝑥
𝑇

(𝑘 − 𝑑)𝑄
𝜏
𝑥 (𝑘 − 𝑑)

+ 𝑥
𝑇

(𝑘) 𝑄
𝜏
𝑥 (𝑘) + 2𝑓

𝑇

𝑠
(𝑧 (𝑘)) 𝐹𝐺𝑥 (𝑘)

+ 2𝑓
𝑇

𝑠
(𝑧 (𝑘)) 𝐹𝐺

𝑑
𝑥 (𝑘 − 𝑑)

− 2𝑓
𝑇

𝑠
(𝑧 (𝑘)) 𝑓

𝑠
(𝑧 (𝑘))

− 2󰜚
𝑇

(𝐶𝑥 (𝑘)) 󰜚 (𝐶𝑥 (𝑘))

+ (2 + 2𝑎) 󰜚
𝑇

(𝐶𝑥 (𝑘)) 𝐶𝑥 (𝑘)

−2𝑎(𝐶𝑥 (𝑘))
𝑇

𝐶𝑥 (𝑘)} .

(21)

Denote the following matrix variables:

𝜂 (𝑘) = [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑) 󰜚
𝑇

(𝐶𝑥 (𝑘)) 𝑓
𝑇

𝑠
(𝑧 (𝑘))]

𝑇

;

(22)

then, it is obvious that

E {Δ𝑉 (𝑘)} ≤ E {𝜂
𝑇

(𝑘)Ω𝜂 (𝑘)} , (23)

where

Ω =

[
[
[

[

Ω
1

∗ ∗ ∗

Ω
2
Ω
3

∗ ∗

Ω
4
Ω
5
Ω
6

∗

Ω
7
Ω
8
Ω
9
Ω
10

]
]
]

]

,

Ω
1
= [𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶]

𝑇

× 𝑄 (𝑝 (𝑘 + 1)) [𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶]

+ 𝜎
2

𝐸
𝑇

𝑄 (𝑝 (𝑘 + 1)) 𝐸

+ Δ
𝑝
(𝑘) (𝐵𝐾 (𝑝 (𝑘)) 𝐶)

𝑇

𝑄 (𝑝 (𝑘 + 1))

× 𝐵𝐾 (𝑝 (𝑘)) 𝐶 + 𝑄
𝜏
− 𝑄 (𝑝 (𝑘)) − 2𝑎𝐶

𝑇

𝐶,

Ω
2
= 𝐷
𝑇

𝑄 (𝑝 (𝑘 + 1)) [𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶] ,

Ω
3
= 𝐷
𝑇

𝑄 (𝑝 (𝑘 + 1))𝐷 − 𝑄
𝜏
,

Ω
4
= 𝑝 (𝑘) (𝐵𝐾 (𝑝 (𝑘)))

𝑇

𝑄 (𝑝 (𝑘 + 1))

× [𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶]

+ Δ
𝑝
(𝑘) (𝐵𝐾 (𝑝 (𝑘)))

𝑇

𝑄 (𝑝 (𝑘 + 1))

× 𝐵𝐾 (𝑝 (𝑘)) 𝐶 + (𝑎 + 1) 𝐶,

Ω
5
= 𝑝 (𝑘) (𝐵𝐾 (𝑝 (𝑘)))

𝑇

𝑄 (𝑝 (𝑘 + 1))𝐷,

Ω
6
= 𝑝
2

(𝑘) [𝐵𝐾 (𝑝 (𝑘))]
𝑇

𝑄 (𝑝 (𝑘 + 1))

× 𝐵𝐾 (𝑝 (𝑘)) + Δ
𝑝
(𝑘) [𝐵𝐾 (𝑝 (𝑘))]

𝑇

× 𝑄 (𝑝 (𝑘 + 1)) 𝐵𝐾 (𝑝 (𝑘)) − 2𝐼,

Ω
7
= 𝑁
𝑇

𝑄 (𝑝 (𝑘 + 1))

× [𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶] + 𝐹𝐺,

Ω
8
= 𝑁
𝑇

𝑄 (𝑝 (𝑘 + 1))𝐷 + 𝐹𝐺
𝑑
,

Ω
9
= 𝑝 (𝑘)𝑁

𝑇

𝑄 (𝑝 (𝑘 + 1)) 𝐵𝐾 (𝑝 (𝑘)) ,

Ω
10
= 𝑁
𝑇

𝑄 (𝑝 (𝑘 + 1))𝑁 − 2𝐼.

(24)

If Ω ≤ 0, we can conclude the following matrix by Schur
complement:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
𝜏
− 𝑄 (𝑝 (𝑘)) − 2𝑎𝐶

𝑇

𝐶 ∗ ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝜏

∗ ∗ ∗ ∗ ∗

(𝑎 + 1) 𝐶 0 −2𝐼 ∗ ∗ ∗ ∗

𝐹𝐺 𝐹𝐺
𝑑

0 −2𝐼 ∗ ∗ ∗

𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶 𝐷 𝑝 (𝑘) 𝐵𝐾 (𝑝 (𝑘)) 𝑁 −Λ ∗ ∗

𝐸 0 0 0 0 −𝜎
−2

Λ ∗

𝐵𝐾 (𝑝 (𝑘)) 𝐶 0 𝐵𝐾 (𝑝 (𝑘)) 0 0 0 −Δ
−1

𝑝
(𝑘) Λ

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (25)



6 Abstract and Applied Analysis

where

Λ = 𝑄
−1

(𝑝 (𝑘 + 1)) ; (26)

by preforming the congruence transformation diag{𝐼, 𝐼, 𝐼, 𝐼,
𝑆, 𝜎
2

𝑆, Δ
𝑝
(𝑘)𝑆} to (25), we have

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
𝜏
− 𝑄 (𝑝 (𝑘)) − 2𝑎𝐶

𝑇

𝐶 ∗ ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝜏

∗ ∗ ∗ ∗ ∗

(𝑎 + 1) 𝐶 0 −2𝐼 ∗ ∗ ∗ ∗

𝐹𝐺 𝐹𝐺
𝑑

0 −2𝐼 ∗ ∗ ∗

𝑆
𝑇

𝐴 + (1 − 𝑝 (𝑘)) 𝑆
𝑇

𝐵𝐾 (𝑝 (𝑘)) 𝐶 𝑆
𝑇

𝐷 𝑝 (𝑘) 𝑆
𝑇

𝐵𝐾 (𝑝 (𝑘)) 𝑆
𝑇

𝑁 −Λ̂ ∗ ∗

𝜎
2

𝑆
𝑇

𝐸 0 0 0 0 −𝜎
2

Λ̂ ∗

Δ
𝑝
(𝑘) 𝑆
𝑇

𝐵𝐾 (𝑝 (𝑘)) 𝐶 0 Δ
𝑝
(𝑘) 𝑆
𝑇

𝐵𝐾 (𝑝 (𝑘)) 0 0 0 −Δ
𝑝
(𝑘) Λ̂

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (27)

where

Λ̂ = 𝑆
𝑇

𝑄
−1

(𝑝 (𝑘 + 1)) 𝑆. (28)

From inequality

𝑆
𝑇

𝑄
−1

(𝑝 (𝑘 + 1)) 𝑆 ≥ 𝑆
𝑇

+ 𝑆 − 𝑄 (𝑝 (𝑘 + 1)) ≜ Λ, (29)

we can get

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
𝜏
− 𝑄 (𝑝 (𝑘)) − 2𝑎𝐶

𝑇

𝐶 ∗ ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝜏

∗ ∗ ∗ ∗ ∗

(𝑎 + 1) 𝐶 0 −2𝐼 ∗ ∗ ∗ ∗

𝐹𝐺 𝐹𝐺
𝑑

0 −2𝐼 ∗ ∗ ∗

𝑆
𝑇

𝐴 + (1 − 𝑝 (𝑘)) 𝑆
𝑇

𝐵𝐾 (𝑝 (𝑘)) 𝐶 𝑆
𝑇

𝐷 𝑝 (𝑘) 𝑆
𝑇

𝐵𝐾 (𝑝 (𝑘)) 𝑆
𝑇

𝑁 −Λ ∗ ∗

𝜎
2

𝑆
𝑇

𝐸 0 0 0 0 −𝜎
2

Λ ∗

Δ
𝑝
(𝑘) 𝑆
𝑇

𝐵𝐾 (𝑝 (𝑘)) 𝐶 0 Δ
𝑝
(𝑘) 𝑆
𝑇

𝐵𝐾 (𝑝 (𝑘)) 0 0 0 −Δ
𝑝
(𝑘) Λ

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0. (30)

By using Lemma 6, we have 𝑆
𝑇

𝐵 = 𝐵𝑅, and denoting
that 𝑅𝐾(𝑝(𝑘)) = 𝑌(𝑝(𝑘)), then (30) can be written as (17);
furthermore, we can know from Lemma 5 that Ω < 0 and,
subsequently,

E {Δ𝑉 (𝑘)} < −𝜆min (−Ω)E
󵄨󵄨󵄨󵄨𝜂 (𝑘)

󵄨󵄨󵄨󵄨

2

, (31)

where 𝜆min(−Ω) is the minimum eigenvalue of (−Ω). Finally,
we can confirm from Lemma 1 in [13] that the closed-loop
system is exponentially mean-square stable; then the proof of
this theorem is complete.

Remark 9. The ROSSs have been studied in [1, 12] by con-
structing a concise and effective time-invariant Bernoulli dis-
tribution model; however, in many practical systems, ROSSs
sometimes appear with time-varying probability. Therefore,
in this case, we considered ROSSs satisfying time-varying
Bernoulli distribution which is more reasonable in reality.

On the other hand, unlike other time-varying parameters
discussed in gain-scheduling technique or parameter-depen-
dent Lyapunov functional; see, for example, [17–19], the
parameter 𝑝(𝑘) considered in this paper is the time-varying
occurrence probability of ROSSs, based on which a new kind
of controller is designed and a novel probability-dependent
Lyapunov functional is proposed to reduce the potential
conservatism.

Next, we are in a position to consider the nonfragile gain-
scheduled controller design for system (12) based on what we
got inTheorem 8.

Theorem 10. Consider the discrete-time nonlinear stochastic
systems with ROSSs (12) and the nonfragile gain-scheduled
controller (8). If there exist positive-definite matrices 𝑄(𝑝(𝑘))
and 𝑄

𝜏
, slack matrix 𝑆, and nonsingular matrices 𝑌(𝑝(𝑘))
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and 𝑅, scalars 𝜀
1
> 0, 𝜀

2
> 0, LMIs (17), equations (18), and

the following LMIs hold:

[
[
[
[
[

[

Υ ∗ ∗ ∗ ∗

𝜀
1
Π
𝑇

2
−𝜀
1
𝐼 ∗ ∗ ∗

Π
3

0 −𝜀
1
𝐼 ∗ ∗

𝜀
2
Π
𝑇

4
0 0 −𝜀

2
𝐼 ∗

Π
5

0 0 0 −𝜀
2
𝐼

]
]
]
]
]

]

< 0, (32)

where

Π
2
= [0 0 0 0 [(1 − 𝑝 (𝑘)) 𝑆

𝑇

𝐵𝐿]
𝑇

0 [Δ
𝑝
(𝑘) 𝑆
𝑇

𝐵𝐿]
𝑇

]
𝑇

,

Π
3
= [𝑀𝐶 0 𝑀 0 0 0 0] ,

Π
4
= [0 0 0 0 [(2𝑝 (𝑘) − 1) 𝑆

𝑇

𝐵𝐿]
𝑇

0 0]

𝑇

,

Π
5
= [0 0 𝑀 0 0 0 0] ;

(33)

in this case, the constant gains of the desired controller can be
obtained as follows:

𝐾
0
= 𝑅
−1

𝑌
0
, 𝐾

𝑢
= 𝑅
−1

𝑌
𝑢
, (34)

and the closed-system (12) is then exponentially mean-square
stable for all 𝑝(𝑘) ∈ [𝑝

1
𝑝
2
].

Proof. In order to get the nonfragile gain-scheduled con-
troller, we replace the 𝐾(𝑝(𝑘)) with 𝐾(𝑝(𝑘)) + Δ𝐾; then,
𝑅𝐾(𝑝(𝑘)) = 𝑌(𝑝(𝑘)) can be written as 𝑅[𝐾(𝑝(𝑘)) + Δ𝐾] =

𝑌(𝑝(𝑘)) + Δ𝑌, Δ𝑌 = 𝑅Δ𝐾 = 𝑅𝐿𝐻(𝑘)𝑀. Noting that 𝑆𝑇𝐵 =

𝐵𝑅, we can rewrite (17) as

Υ + Π
2
𝐻(𝑘)Π

3
+ Π
𝑇

3
𝐻
𝑇

(𝑘)Π
𝑇

2

+ Π
4
𝐻(𝑘)Π

5
+ Π
𝑇

5
𝐻
𝑇

(𝑘)Π
𝑇

4
< 0.

(35)

From Lemma 7, we know that a necessary and sufficient
condition guaranteeing (35) is that there exist scalars 𝜀

1
> 0,

𝜀
2
> 0 such that

Υ + 𝜀
1
Π
2
Π
𝑇

2
+ 𝜀
−1

1
Π
𝑇

3
Π
3

+ 𝜀
2
Π
4
Π
𝑇

4
+ 𝜀
−1

2
Π
𝑇

5
Π
5
< 0;

(36)

by using the knowledge of Schur complement, we can find
that (36) is equivalent to (32). Now, the proof is complete.

Remark 11. In Theorem 10, a nonfragile gain-scheduled con-
troller has been designed based on a set of LMIs. However,
the LMIs are actually infinite owing to the time-varying
parameter 𝑝(𝑘) ∈ [𝑝

1
𝑝
2
]. In this case, the desired controller

cannot be obtained directly due to the infinite number of
LMIs. To handle such a problem, in the next theorem, we
have to convert this problem to a computationally accessible
one by assigning a specific form to 𝑝(𝑘). First of all, let us set
𝑄(𝑝(𝑘)) = 𝑄

0
+ 𝑝(𝑘)𝑄

𝑢
.

Theorem 12. Consider the discrete-time nonlinear stochastic
system with ROSSs (12). If there exist positive-definite matrices
𝑄
0
, 𝑄
𝑢
and 𝑄

𝜏
, slack matrix 𝑆 and nonsingular matrices

𝑌(𝑝(𝑘)) and 𝑅, such that the following LMIs hold:

M
𝑖𝑗𝑙𝑚

:=

[
[
[
[
[
[
[
[

[

Υ
𝑖𝑗𝑙𝑚

∗ ∗ ∗ ∗

𝜀
1
Π
𝑖𝑗

2

𝑇

−𝜀
1
𝐼 ∗ ∗ ∗

Π
3

0 −𝜀
1
𝐼 ∗ ∗

𝜀
2
Π
𝑖

4

𝑇

0 0 −𝜀
2
𝐼 ∗

Π
5

0 0 0 −𝜀
2
𝐼

]
]
]
]
]
]
]
]

]

< 0,

Υ
𝑖𝑗𝑙𝑚

:=

[
[
[
[
[
[
[
[
[
[
[

[

𝑄
𝜏
− 𝑄
𝑖

(𝑝 (𝑘)) − 2𝑎𝐶
𝑇

𝐶 ∗ ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝜏

∗ ∗ ∗ ∗ ∗

(𝑎 + 1) 𝐶 0 −2𝐼 ∗ ∗ ∗ ∗

𝐹𝐺 𝐹𝐺
𝑑

0 −2𝐼 ∗ ∗ ∗

𝑆
𝑇

𝐴 + (1 − 𝑝
𝑖
) 𝐵𝑌
𝑚

(𝑝 (𝑘)) 𝐶 𝑆
𝑇

𝐷 𝑝
𝑖
𝐵𝑌
𝑚

(𝑝 (𝑘)) 𝑆
𝑇

𝑁 −Λ
𝑙

∗ ∗

𝜎
2

𝑆
𝑇

𝐸 0 0 0 0 −𝜎
2

Λ
𝑙

∗

Δ
𝑖𝑗

𝐵𝑌
𝑚

(𝑝 (𝑘)) 𝐶 0 Δ
𝑖𝑗

𝐵𝑌
𝑚

(𝑝 (𝑘)) 0 0 0 −Δ
𝑖𝑗

Λ
𝑙

]
]
]
]
]
]
]
]
]
]
]

]

,

(37)

where

Λ = −𝑄
0
− 𝑝
𝑙
𝑄
𝑢
+ 𝑆 + 𝑆

𝑇

, Δ
𝑖𝑗

= 𝑝
𝑖
(1 − 𝑝

𝑗
) ,

𝐴 = 𝐴 + 𝑁𝐹
1
𝐺, 𝐷 = 𝐷 + 𝑁𝐹

1
𝐺
𝑑
,

𝑆
𝑇

𝐵 = 𝐵𝑅, 𝑅𝐾 (𝑝 (𝑘)) = 𝑌 (𝑝 (𝑘)) ,

𝐾 (𝑝 (𝑘)) = 𝑅
−1

𝑌 (𝑝 (𝑘)) ,

𝑌
𝑚

(𝑝 (𝑘)) = 𝑌
0
+ 𝑝
𝑚
𝑌
𝑢
,

𝑄
𝑖

(𝑝 (𝑘)) = 𝑄
0
+ 𝑝
𝑖
𝑄
𝑢
,

Π
𝑖𝑗

2
= [0 0 0 0 [(1 − 𝑝

𝑖
) 𝑆
𝑇

𝐵𝐿]
𝑇

0 [Δ
𝑖𝑗

𝑆
𝑇

𝐵𝐿]
𝑇

]

𝑇

,
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Π
3
= [𝑀𝐶 0 𝑀 0 0 0 0] ,

Π
𝑖

4
= [0 0 0 0 [(2𝑝

𝑖
− 1) 𝑆

𝑇

𝐵𝐿]
𝑇

0 0]

𝑇

,

Π
5
= [0 0 𝑀 0 0 0 0] ,

(38)

in this case, the constant gains of the desired controller can be
obtained as follows:

𝐾
0
= 𝑅
−1

𝑌
0
, 𝐾
𝑢
= 𝑅
−1

𝑌
𝑢
, (39)

and the closed-system (12) is then exponentially mean-square
stable for all 𝑝(𝑘) ∈ [𝑝

1
𝑝
2
].

Proof. Firstly, set

𝛼
1
(𝑘) =

𝑝
2
− 𝑝 (𝑘)

𝑝
2
− 𝑝
1

, 𝛼
2
(𝑘) =

𝑝 (𝑘) − 𝑝
1

𝑝
2
− 𝑝
1

; (40)

therefore, we have

𝑝 (𝑘) = 𝛼
1
(𝑘) 𝑝
1
+ 𝛼
2
(𝑘) 𝑝
2
, (41)

with 𝛼
𝑖
(𝑘) ≥ 0 (𝑖 = 1, 2) and 𝛼

1
(𝑘) + 𝛼

2
(𝑘) = 1. Similarly, let

𝛽
1
(𝑘) =

𝑝
2
− 𝑝 (𝑘 + 1)

𝑝
2
− 𝑝
1

, 𝛽
2
(𝑘) =

𝑝 (𝑘 + 1) − 𝑝
1

𝑝
2
− 𝑝
1

, (42)

and we have

𝑝 (𝑘 + 1) = 𝛽
1
(𝑘) 𝑝
1
+ 𝛽
2
(𝑘) 𝑝
2
, (43)

with𝛽
𝑖
(𝑘) ≥ 0 (𝑖 = 1, 2),𝛽

1
(𝑘)+𝛽

2
(𝑘) = 1. From the pervious

transformation, we can easily get

𝑄 (𝑝 (𝑘)) =

2

∑

𝑖=1

𝛼
𝑖
(𝑘) 𝑄
𝑖

(𝑝 (𝑘)) , Λ =

2

∑

𝑙=1

𝛽
𝑙
(𝑘) Λ
𝑙

,

𝑌 (𝑝 (𝑘)) =

2

∑

𝑚=1

𝛼
𝑚
(𝑘) 𝑌
𝑚

(𝑝 (𝑘)) .

(44)

On the other hand, it is easy to find that

2

∑

𝑖,𝑗,𝑙,𝑚=1

𝛼
𝑖
(𝑘) 𝛼
𝑗
(𝑘) 𝛼
𝑚
(𝑘) 𝛽
𝑙
(𝑘)M
𝑖𝑗𝑙𝑚

< 0. (45)

From (40)–(45), we can have that (32) in Theorem 10 is true;
then the proof is now complete.

Remark 13. By using the methods proposed in the proof of
Theorem 10, we choose 4 variables; then, it is easy to calculate
the number of LMIs as 24 depending on the upper and lower
bound of 𝑝(𝑘).

Table 1: Computing results.

𝑘 𝑝(𝑘) 𝑄(𝑝(𝑘)) 𝐾(𝑝(𝑘))

0 0.5068 [
1.7244 0.7450

0.7450 3.9564
] [

10.3093 −12.4590

−33.9040 40.8241
]

1 0.5082 [
1.7261 0.7443

0.7443 3.9568
] [

10.3094 −12.4590

−33.9045 40.8242
]

2 0.4928 [
1.7070 0.7513

0.7513 3.9522
] [

10.3078 −12.4588

−33.8992 40.8237
]

...
...

...
...

4. An Illustrative Example

In this section, the nonfragile gain-scheduled controller is
designed for the discrete-time nonlinear stochastic systems
with ROSSs.

The system parameters are given as follows:

𝐴 = [
0.44 0

0 0.81
] , 𝑁 = [

0.13 0.2

0.28 0.33
] ,

𝐵 = [
0.01 0

9.2 2.8
] , 𝐶 = [

0 0.19

0.6 2.20
] ,

𝐷 = [
0.02 0.14

0.15 0.18
] , 𝐹

1
= [

0.06 0

0 0.01
] ,

𝐹
2
= [

0.1 0

0 0.01
] , 𝐺 = [

0.08 0.12

0.08 0.02
] ,

𝐺
𝑑
= [

0.01 0.09

0.18 0.09
] , 𝐸 = [

0.3 0.19

0.1 0.02
] ,

𝐿 = [
0.01 0

0 0.02
] , 𝑀 = [

0.1 0

0 0.02
] ,

𝐻 (𝑘) = 𝐼, 𝑝
1
= 0.49, 𝑝

2
= 0.51,

𝜎
2

= 1, 𝑎 = 0.411, 𝜀
1
= 0.21, 𝜀

2
= 0.2.

(46)

Set the time-varying Bernoulli distribution sequences as
𝑝(𝑘) = 𝑝

1
+ (𝑝
2
− 𝑝
1
)| sin(𝑘)|, and the sector nonlinear

function 𝑓(𝑢) is taken by

𝑓 (𝑢) =
𝐹
1
+ 𝐹
2

2
𝑢 +

𝐹
2
− 𝐹
1

2
sin (𝑢) , (47)

which satisfies (3). Also, select the initial state 𝜌 = [2 −2]
𝑇.

According toTheorem 12, the constant controller param-
eters 𝐾

0
, 𝐾
𝑢
can be obtained as follows:

𝐾
0
= [

10.2565 −12.4544

−33.7306 40.8091
] , 𝐾

𝑢
= [

0.1041 −0.0090

−0.3421 0.0296
] .

(48)

Then, according to the measured time-varying proba-
bility parameters 𝑝(𝑘), the gain-scheduled controller gain
𝐾(𝑝(𝑘)) and parameter-dependent Lyapunovmatrix𝑄(𝑝(𝑘))
can be calculated at every time step 𝑘 as in Table 1.
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Figure 1: State evolution 𝑥(𝑘) of uncontrolled systems.
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Figure 2: State evolution 𝑥(𝑘) of controlled systems.

Figure 1 gives the response curves of state 𝑥(𝑘) of
uncontrolled systems. Figure 2 depicts the simulation results
of state 𝑥(𝑘) of the controlled systems.The simulation results
have illustrated our theoretical analysis.

5. Conclusions

In this paper, the nonfragile gain-scheduled control problem
for a class of discrete stochastic systems with ROSSs is
tackled, and the sensor saturation phenomenon is assumed to
occur in a random way based on the time-varying Bernoulli
distribution with measurable probability in real time. By
employing probability-dependent Lyapunov functional, we
design a nonfragile gain-scheduled controller with the gain

including both constant and time-varying parameters such
that, for all admissible sensor saturations, time-delays and
noise disturbances, the closed-loop system is still exponen-
tially mean-square stable. Furthermore, we can extend the
main results to more complex and realistic systems, for
instance, complex networks and systems with several kinds
of randomly occurring phenomena simultaneously. Mean-
while, we can also consider corresponding control/filtering
problems for time-varying systemswith time-varying ROSSs,
such as robust sliding mode control, quantized recursive
filtering, or extended Kalman filtering.The related references
can be found; see, for example, [2, 3, 6].
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