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Fluctuation dynamics of financial price changes is developed and investigated by oriented percolation system; oriented percolation
is percolation with a special direction along which the activity can only propagate one way but not the other. Then, nonlinear
behaviors of distribution and leverage effect of return time series are studied for the proposed model and the real stock market
by comparison. We also investigate the scaling behaviors of return intervals. And a scaling function of exponential parameter is
introduced to analyze fluctuation behaviors of return intervals. The empirical research exhibits that, for proper parameters, the
simulation data of the model can fit the real markets to a certain extent.

1. Introduction

Fluctuation behaviors of financialmarket indexes and returns
have long been a focus of economic research. Some behaviors
(or stylized facts) of market fluctuations are uncovered
by high frequency financial time series, such as power-
law tail distribution of returns, volatility clustering, and
aggregational gaussianity and multifractality of volatility [1–
12]. There has been considerable interest in application of
statistical physics to financial market dynamics [13–22], since
econometric modeling is vital in finance and in financial
time series analysis. The modeling of dynamics of forwards
prices is becoming a key problem in the risk management,
physical assets valuation, derivatives pricing, and so forth.
Any modeling, the creation of representations of reality,
aiming at understanding price fluctuations needs to define
a mechanism for the formation of the price, in an attempt
to reproduce and explain this set of stylized facts [23–25].
Percolation, the popular model of statistical physics systems
[26–30], has been employed to model and explore these
empirical facts of price changes in financial markets [3, 13–
16]. For example, Stauffer and Aharony [14] developed a
price model by lattice percolation, the local interaction or

influence among traders in one stock market is modeled, and
a cluster of percolation is applied to describe the cluster of
traders sharing the same opinion about the market. Recently,
statistical behaviors of waiting times between two successive
price changes with high frequency financial data have been
analyzed [12, 16, 22, 31]. Wang et al. [31] studied the return
intervals between price volatilities which are above some
threshold. They also showed that the probability density
function (PDF) of return intervals follows a certain scaling
function. In the present paper, the local interaction among
traders is developed by the oriented percolation to reproduce
the nature of stock price fluctuations. We assume that the
dispersal of information in the stock market affects the
investment decisions of market participants and contribute
the stock price fluctuations to the traders’ investment deci-
sions toward the stock market. Then we study the power-
law distributions and the leverage effects of returns for the
proposed model and the real stock market indexes. Further,
we investigate the probability density functions of return
intervals series of the simulation data and the actual data.
Then a scaling function of exponential parameter is intro-
duced to analyze the corresponding scaling relationships, and
this new approach may be useful to bring out some statistical
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Figure 1: Schematic diagram of two-dimensional oriented percolation. The arrows indicate the direction of percolation.

properties for the return intervals. For the empirical research,
the price data of Shanghai Stock Exchange Composite Index
(SSE) and Shenzhen Stock Exchange Component Index
(SZSE) are selected as the empirical data.

2. Financial Time Series Model

2.1. Brief Description of Oriented Percolation. Oriented per-
colation originally concerns a class of models that mimic
filtering of fluids through porous materials along a given
direction. In recent years, percolation theory, which describes
the behavior of connected clusters in a random graph, as an
extensive mathematical model of percolation, has emerged
as a cornerstone of the disordered physical system theory
and also has brought new understanding to a broad range of
topics in society [9, 14, 26–29]. We consider a regular lattice,
like a square lattice, and make it into a random network
by randomly “occupying” bonds (edges) with a statistically
independent probability 𝑝. Let V = {(𝑚, 𝑛) ∈ Z2 : 𝑚 +

𝑛 is even, 𝑚 and 𝑛 are integers, and 𝑛 ≥ 0}, and draw an
oriented arc from each (𝑚, 𝑛) ∈ V only to (𝑚 + 1, 𝑛 + 1)

and to (𝑚−1, 𝑛+1), see Figure 1. Each arc, also called a bond
(edge), is independently open with probability 𝑝 (0 ≤ 𝑝 ≤ 1)
and closed with probability 1 − 𝑝. We have 𝑥 → 𝑦 if there
is an open path from 𝑥 to 𝑦; that is, there is a sequence
𝑥 = 𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑗
= 𝑦 of points inV such that for each 𝑘 ≤ 𝑗,

the arc from 𝑥
𝑘−1

to 𝑥
𝑘
is open. Considering the subgraph

consisting of open paths in the lattice, the connected parts
of subgraph constitute the open cluster. Let 𝐷(𝑥) = {𝑦 :

𝑥 → 𝑦} denote the open cluster containing 𝑥, and |𝐷(𝑥)|
is the number of vertices in 𝐷(𝑥), where 𝐷(0) is the set of
all the points included in an open cluster from the origin of
coordinates. The infinite open cluster event is defined by

Ω
∞
= {|𝐷 (0)| = ∞}

= {there is an infinite open path from (0, 0)} .

(1)

The state of the dynamic system from the original point at
“time 𝑛” is given by 𝜉{0}

𝑛
= {𝑚 : (𝑚, 𝑛) ∈ V and 0 → (𝑚, 𝑛)}.

The most important feature of oriented percolation system
is the critical point 𝑝

𝑐
= inf{𝑝 : 𝑃(𝜉

{0}

𝑛
̸= 0, for all 𝑛) >

0}, which is the probability that the infinite connectivity of
percolation first occurs; that is, percolation networks exhibit
the critical phenomena.When 𝑝 > 𝑝

𝑐
, the percolation cluster

tends to infinity, and also the percolation occurs. According
to the percolation theory [26, 27], the critical value of 𝑝

𝑐
can

be estimated by 0.6298 ≤ 𝑝
𝑐
≤ 0.84. Let

𝑟
{0}

𝑛
= sup 𝜉{0}

𝑛
, 𝑙

{0}

𝑛
= inf 𝜉{0}

𝑛
, (2)

where we suppose that sup 0 = −∞ and inf 0 = +∞. And
𝑟
{0}

𝑛
and 𝑙
{0}

𝑛
stand for the right edge process and the left

edge process of 𝜉{0}
𝑛
, respectively. Then we have the following

results [26, 27]. On Ω
∞
, in the supercritical case 𝑝 > 𝑝

𝑐
, we

have

lim
𝑛→∞

𝑟
{0}

𝑛

𝑛
= 𝛼 (𝑝) , lim

𝑛→∞

𝑙
{0}

𝑛

𝑛
= −𝛼 (𝑝) , a.s. (3)

where 𝛼(𝑝) > 0. In the subcritical case 𝑝 < 𝑝
𝑐
, the process

𝜉
{0}

𝑛
dies out exponentially fast. There is a constant 𝛾(𝑝) > 0

so that

𝑃 (𝜉
{0}

𝑛
̸= 0) ≤ 𝑒

−𝛾𝑛
,

1

𝑛
ln 𝑃 (𝜉{0}

𝑛
̸= 0) → 𝛾 as 𝑛 → ∞.

(4)

In the present paper, the interaction among particles of
oriented percolation is applied to describe the interaction
among investors in a financial market, and the open proba-
bility 𝑝 of a bond is considered as the dispersal intensity of
information.

2.2. Financial Price Model. Financial time series analysis is
an active topic to understand the behavior of stock price
fluctuation, which has long been a focus of economic research
[23, 24]. And econometric modeling is vital in finance and
in financial time series analysis. In this section, the oriented
percolation is applied to construct the financial price model,
which is considered as the creation of representation of
reality.

In the present paper, we assume that the price fluctuation
results from the traders’ investment attitudes toward the
stock market. The open cluster in percolation theory is used
to define the cluster of traders sharing the same opinion
(or same information) on the market, and then the local
interaction among traders in a stock market is modeled. The
proposed financial model is constructed as follows. Consider
a two-dimensional network, a 𝐿 × 𝐿 lattice, where 𝐿 is a
positive integer. The node of the 𝐿 × 𝐿 lattice represents
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Figure 2: (a) Probability density functions of returns for SSE index and the financial model with different values of 𝑝. (b) Corresponding
power-law distributions of returns.

an agent in the real market, and the random percolation
clusters are used as groups of traders. For each edge, it is
independently designated as open with probability 𝑝 and
closed with probability 1−𝑝.The trader can only transmit the
information to his nearest two neighbors if the corresponding
connected edge is open. Assume that each trader can trade
the stock at every day 𝑡, and, at the beginning of trading day
𝑡, suppose that the investor at the origin of 𝐷(0) receives
some information. We define a random variable 𝜉

𝑡
for this

investor; suppose that this investor takes buying position
(𝜉
𝑡
= +1), selling position (𝜉

𝑡
= −1), or neutral position (𝜉

𝑡
=

0) with probability 𝑝
1
, 𝑝
2
, or 1 − 𝑝

1
− 𝑝
2
, respectively. Then

this investor sends positive, negative, or neutral signal to his
neighbors. Thus, the information can be transported just like
the water filtering in percolation theory with the probability
𝑝. In the following, we let 𝑝

1
= 𝑝
2
= 0.5, for a fixed 𝑡; the

aggregate excess demand for the asset at time 𝑡 is defined by
A(𝑡) = 𝜉

𝑡
𝐷(0)/𝐿

2, where 𝑡 ∈ {1, 2, 3, . . . , 𝑇}. From the above
definitions and [32, 33], we define the formula of a discrete
time stock price as

𝑆 (𝑡) = 𝑆 (𝑡 − 1) exp {𝛽A (𝑡)} ,

𝑆 (𝑡) = 𝑆 (0) exp{𝛽
𝑡

∑

𝑘=1

A (𝑘)} ,

(5)

where 𝛽 (>0) represents the depth parameter of the market
and 𝑆(0) is the initial stock price at time 𝑡 = 0. The formula of
the stock logarithmic return 𝑡 to 𝑡 + 1 is given by

𝑟 (𝑡) = ln 𝑆 (𝑡 + 1) − ln 𝑆 (𝑡) . (6)

3. Statistical Behaviors of Financial
Time Series

3.1. Distribution of Return Time Series. Empirical research
shows that the fluctuation of returns is believed to follow

a Gaussian distribution for long time range, but when being
studied for short steps, especially for the tails, the proba-
bility density of returns would deviate from the Gaussian
distribution while showing sharp peak and fat tail behaviors.
Figure 2(a) exhibits the probability distributions of the sim-
ulation data (where we let the parameter 𝑝 = 0.65, 0.7, 0.75,
0.8, and 0.85) and the actual data (SSE).Through calculation,
we get the kurtosis values for the 6 data sets: 6.1877, 7.5707,
7.6983, 7.7579, 8.9145, and 5.6012, respectively. It is known that
the kurtosis shows the centrality of data and the skewness
shows the symmetry.While, for standard normal distribution
the values are 3 and 0, respectively. We find that the kurtosis
values of the simulation data (which are all larger than 3)
increase as the 𝑝 increases. Thus, the sharp peak of returns
is obvious and the fat tail is also visible compared with the
Gaussian distribution. Since the probability 𝑝 of the model
relates to the spreading range of information, as 𝑝 increases,
the market is going to be more active, resulting in large
volatilities of stock prices. The cumulative distributions of
returns in Figure 2(b) exhibit the power-law distributions,
which is a universal property and largely observed in financial
systems [23–25]. Empirical results show that the distribution
of logarithmic returns follow a power-law distribution; that
is, 𝑃(𝑟(𝑡) > 𝑥) ∼ 𝑥−𝜇, where 𝑟(𝑡) is the returns of stock prices
and the exponent 𝜇 is nearly 3.

3.2. The Leverage Effect. The leverage effect, or volatility
asymmetry, which corresponds to a negative correlation
between past returns and future volatility [1, 4, 5], describes
the volatility-return correlation. It is observed that the
amplitude of relative price fluctuations of stock tends to
increase when its price drops. According to this, a price drop
increases the risk of a company to go bankrupt, so the stock
will become more volatile [2, 10]. Although various single
correlation coefficients quantifying the leverage effect have
been measured and discussed within GARCH-like models
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Figure 3: Volatility-return correlations of returns for the financial model with the dispersal intensity (a) 𝑝 = 0.65, (b) 𝑝 = 0.75, and (c)
𝑝 = 0.85.

[5], the full temporal structure of this correlation has not
been widely investigated. So we explore a new point of view
to study the volatility-return correlation for the return time
series. The daily price change Δ𝑆(𝑡) is denoted by Δ𝑆(𝑡) =
𝑆(𝑡 + 1) − 𝑆(𝑡), and the relative price change is given as
Δ𝑥(𝑡) = Δ𝑆(𝑡)/𝑆(𝑡); actually, Δ𝑥(𝑡) is equal to 𝑟(𝑡) which
is defined in Section 2.2. The leverage correlation function
which measures the correlation between the price change at
time 𝑡 and a measure of the square volatility at time 𝑡 + 𝜏 is
given

𝐿 (𝜏) =
1

𝑍
⟨[Δ𝑥 (𝑡 + 𝜏)]

2
Δ𝑥 (𝑡)⟩ , (7)

where the bracket refers to a time average and the coefficient
𝑍 is a normalization which is chosen as 𝑍 = ⟨[Δ𝑥(𝑡)]

2
⟩
2. We

analyze the behaviors of the leverage correlation function for
the simulation data with the parameters 𝑝 = 0.65, 0.75, and

0.85 in Figure 3, while the timewindow 𝜏 ranging from−50 to
400.The corresponding leverage correlation function𝐿(𝜏) for
SSE and SZSE are displayed in Figure 4; here the daily closing
price data from January 1991 to February 2012 are considered
by this research.

The above empirical results tell us that the trend of 𝐿(𝜏)
is various for negative values and positive values of 𝜏. We
focus on positive values of 𝜏; as can be seen from these
figures, 𝐿(𝜏) for all the data are significant and negative; price
drops increase the subsequent volatility—this is the so-called
leverage effect. Furthermore, this correlation function can be
fitted by single exponentials:

𝐿fit (𝜏) = 𝑎 exp {𝑏𝜏} . (8)

Here, |𝑎| reflects the amplitude of volatility and |1/𝑏|mirrors
the decay time which presents an exponential decay. While
it can be contrasted with the slow, power-law-like decay of
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Figure 4: Volatility-return correlations of real returns for (a) SSE and (b) SZSE.
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Figure 5: (a) The plot of 5min interval intraday patterns for SSE. (b) The return intervals of SSE volatilities on different thresholds in four
trading days.

the volatility correlation function, which can not be charac-
terized by a unique decay time [3, 7, 25], the insets of Figures
3 and 4 display the values of 𝑎, 𝑏 and the solid line shows the
exponential fit.

4. Systematic Comparisons for
Return Interval Series

In this section, we make systematic comparisons between the
return intervals of the financial model and the actual data.
The price series of SSE and SZSE fromMay 2001 to July 2005,
which have 5min interval length, are selected as the actual
data. Then we study the statistical behaviors of the return
intervals, especially for a new introduced exponent parameter
in Section 4.3.

4.1. Description of Return Intervals. The characteristics of
isolated high volatility events in price fluctuations and the
distributions of return intervals between these events are of
great interest in financial research. The intraday volatility
return intervals reflect the time gaps between some fixed
returns, which also show specific patterns because of different
behaviors of traders at different periods in the trading day
[31]. Let 𝐴(𝑠) denote the intraday pattern, which is the price
change at a particular moment 𝑠 of the trading day averaged
over all𝑁 trading days and defined as

𝐴 (𝑠) =

𝑁

∑

𝑘=1

𝑟
𝑘
(𝑠)

𝑁
, (9)

where 𝑟𝑘(𝑠) is the logarithmic return at time 𝑠 of day 𝑘.
Figure 5(a) is the plot of the intraday pattern 𝐴(𝑠) of SSE
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Figure 6: PDFs of the return intervals on the same threshold 𝑞 in a semilog plot. (a), (b), (c), and (d) Plots of function 𝑃
𝑞
(𝜏) for 𝑞 = 0.5, 1, 1.5,

and 2, respectively.

Composite Index. In order to obviate the effect of the daily
vibration, the intraday pattern is scaled and defined by

𝑟

(𝑡) =

|𝑟 (𝑡)|

𝐴 (𝑠)
=


𝑟
𝑘
(𝑠)


𝐴 (𝑠)
, (10)

where 𝑟(𝑡) = 𝑟
𝑘
(𝑠) depends on 𝑘 and 𝑠. That is, for any

𝑟(𝑡) at time 𝑡, a corresponding 𝑟𝑘(𝑠) at time 𝑠 in 𝑘th trading
day exists, and the time scale here is 5min. The normalized
volatility 𝐶(𝑡) is defined by

𝐶 (𝑡) =
𝑟

(𝑡)

√𝐸[𝑟 (𝑡)]
2

− (𝐸 [𝑟 (𝑡)])
2

. (11)

The return interval 𝜏 is the random time length between
successive volatilities for serial volatility 𝐶(𝑡) which depends
on the threshold 𝑞. Figure 5(b) well illustrates the return
intervals for SSE on different thresholds in four trading days.
As shown in the figure, every volatility𝐶(𝑡) above a threshold
𝑞 is picked, and the series of the time intervals between those
events 𝜏(𝑞) is generated. In this paper, we mainly investigate
the return intervals when the values of 𝑞 are selected as
0.5, 1, 1.5, and 2, respectively. Recent research shows that
the probability density function of the return intervals 𝑃

𝑞
(𝜏)

follows the scaling relation 𝑃
𝑞
(𝜏) = ⟨𝜏⟩

−1
𝑓(𝜏/⟨𝜏⟩), where ⟨𝜏⟩

is the mean return interval and 𝑓(𝑥) ∼ 𝑒−𝛼𝑥
𝛾

; see [31]. In the
present paper, we find that the corresponding PDFs of return
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intervals for the pricemodel and SSE follow this scaling form,
and some new scaling functions are well approximated by
other stretched exponential, such as ℎ(𝑥) ∼ 𝑒−𝛼(ln 𝑥)

𝛾

.

4.2. Comparisons of Statistical Properties for the Return Inter-
vals. For four fixed threshold values 𝑞, the probability density
functions 𝑃

𝑞
(𝜏) of return intervals 𝜏 for the simulation data

and SSE, SZSE are given in Figure 6. For the financial model
with the parameter values 𝑝 of 0.6, 0.7, and 0.8, the number of
simulation data is about 48000, respectively.The actual 5min
price data from SSE and SZSE indexes have the same quantity.

It can be seen that the distributions of the actual data
and the simulation data have the similar trend; especially,
when the parameter 𝑝 ranges from 0.7 to 0.8, the probability

density distributions of the simulation data becomes closer
to those of the actual data. Thus, for the discussion in next
section, we select the data with 𝑝 = 0.75 to stand for the
simulation data. Taking a close look at the figure, for fixed
return interval 𝜏, 𝑃(𝜏) becomes larger with 𝑝 increasing,
which implies that investment information spreading more
widely in stock market will cause larger price fluctuations.
Further, we study the patterns of function 𝑃

𝑞
(𝜏)⟨𝜏⟩ versus

𝜏/⟨𝜏⟩ for SSE, SZSE, and the simulation data in Figure 7, and
find that the scaled probability density curves of all the data
which decay as a power-law line are similar to each other.

4.3. New Scaling Relations of Return Internals for Differ-
ent Exponent Values. In this section, a scaling function of
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Figure 8: Scaling probability density functions 𝑃(𝜏)⟨𝜏⟩𝜃 of return intervals for different vlaues 𝜃 on threshold 𝑞 = 2. (a) and (c) Plot and
log-log plot of the price model with 𝑝 = 0.75, respectively. (b) and (d) Plot and log-log plot for SSE, respectively.

exponential parameter is introduced to analyze fluctuation
behaviors of return intervals, and this exponent parameter
𝜃 can bring some regular patterns in the present financial
research.The scaling relationswewill investigate are𝑃(𝜏)⟨𝜏⟩𝜃

versus (𝜏/⟨𝜏⟩)𝜃 and (𝑃(𝜏)⟨𝜏⟩)𝜃 versus (𝜏/⟨𝜏⟩)𝜃. Considering
that the length of return intervals series should be rational,
we set the threshold 𝑞 = 2. The plots of the scaling relation
of 𝑃(𝜏)⟨𝜏⟩𝜃 versus (𝜏/⟨𝜏⟩)𝜃 are exhibited in Figure 8, where
the exponent parameter 𝜃 ranges from 0.6 to 2 with the step

of 0.2. Here, all the fitting curves of 𝑃(𝜏)⟨𝜏⟩𝜃 are got by the
stretched exponential function: ℎ(𝑥) = 𝜔𝑒−𝛼(ln 𝑥)

𝛾

.
In the following, we investigate the patterns of scaling

function (𝑃(𝜏)⟨𝜏⟩)𝜃 versus (𝜏/⟨𝜏⟩)𝜃 for the simulation data
and SSE. In Figures 9(a) and 9(c), for different exponent
values of 𝜃, the scatterplots show the similar trend, while
the patterns of (𝑃(𝜏)⟨𝜏⟩)𝜃 with the exponent 𝜃 increasing
can be observed clearly from the three-dimensional view in
Figures 9(b) and 9(d). The empirical research shows that
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Figure 9: Scaling probability density functions (𝑃(𝜏)⟨𝜏⟩)𝜃 of return intervals for different values 𝜃 on threshold 𝑞 = 2. (a) and (b) log-log
plot and three-dimensional plot of the price model with 𝑝 = 0.75, respectively. (c) and (d) log-log plot and three-dimensional plot for SSE,
respectively.

the simulation data and the actual data have the similar
scaling form expressed by (𝑃(𝜏)⟨𝜏⟩)𝜃 = ℎ((𝜏/⟨𝜏⟩)

𝜃
), which

can be well approximated by the stretch exponential ℎ(𝑥) =
𝜔𝑒
−𝛼(ln 𝑥)𝛾 . Table 1 shows the statistical analysis of ℎ(𝑥) for

the simulation data and SSE index, and all parameters are
estimated by the least squares fitting technique. We can find
that the fitting curves of the simulation data show the similar

behaviors with SSE index; especially, for one database, the
values of 𝛾 keep the same with the various values of 𝜃.

Next we study the distribution of the scaling function
(𝑃(𝜏)⟨𝜏⟩)

𝜃 with a fixed 𝜃 under different 𝑞. Firstly, for
𝜃 = 0.9, we compare the PDF of 𝑃(𝜏) and the scaling
function (𝑃(𝜏)⟨𝜏⟩)

𝜃 of return intervals. Figures 10(a) and
10(c) indicate that the patterns of𝑃(𝜏) for four different values
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Figure 10: Semilog plots of probability density functions and scaling functions of return intervals for different threshold 𝑞. (a) and (b)
Corresponding plots for the price model. (c) and (d) Corresponding plots for SSE index.

Table 1: Statistical analysis of ℎ(𝑥) for the simulation data and SSE.

𝜃
𝜔 𝛼 𝛾

S. data SSE S. data SSE S. data SSE
0.6 0.57 ± 0.02 0.52 ± 0.02 1.18 ± 0.06 1.06 ± 0.06 1.6 ± 0.05 1.56 ± 0.05

0.8 0.47 ± 0.02 0.41 ± 0.02 1.57 ± 0.06 1.41 ± 0.06 1.6 ± 0.05 1.56 ± 0.05

1.0 0.39 ± 0.02 0.33 ± 0.02 1.96 ± 0.06 1.76 ± 0.06 1.6 ± 0.05 1.56 ± 0.05

1.2 0.33 ± 0.02 0.26 ± 0.02 2.35 ± 0.06 2.12 ± 0.06 1.6 ± 0.05 1.56 ± 0.05

1.4 0.27 ± 0.02 0.21 ± 0.02 2.74 ± 0.06 2.47 ± 0.06 1.6 ± 0.05 1.56 ± 0.05

1.6 0.23 ± 0.02 0.17 ± 0.02 3.13 ± 0.06 2.82 ± 0.06 1.6 ± 0.05 1.56 ± 0.05

1.8 0.19 ± 0.02 0.14 ± 0.02 3.52 ± 0.06 3.18 ± 0.06 1.6 ± 0.05 1.56 ± 0.05

2.0 0.16 ± 0.02 0.11 ± 0.02 3.92 ± 0.06 3.53 ± 0.06 1.6 ± 0.05 1.56 ± 0.05

Note: S. data means the simulation data.
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Figure 11: Scaling probability density functions of return intervals for themodel and SSEwith different threshold 𝑞.The inset plots are log-log
plots and the red lines are the fitted curves. (a) Corresponding plots for the price model. (b) Corresponding plots for SSE index.

of 𝑞 are separated from each other, which all collapse with
𝜏 increasing, whereas Figures 10(b) and 10(d) exhibit that
four patterns of (𝑃(𝜏)⟨𝜏⟩)𝜃 are very close to each other and
decay as a line approximately in the semilog plot. From the
comparison, it is also found that the distribution of return
intervals from the simulation data and SSE has the similar
scaling behaviors.

We analyze the scaling function (𝑃(𝜏)⟨𝜏⟩)𝜃 of the model
and SSE in detail with 𝜃 = 0.9 for different 𝑞. We find
that they have similar statistical properties and all databases
correspond with a single scaling relation by observing
Figure 11. It also supports the view that the scaling relation
can be approximated by ℎ(𝑥) which is mentioned in the last
paragraph of Section 4.1.

5. Conclusion

In the present paper, the oriented percolation is applied
to develop a stock price process. We study the statistical
properties of the price returns and also investigate the scaling
behaviors of the return intervals for the simulation data and
the actual data. And a scaling probability density function of
exponential parameter is introduced to analyze fluctuation
behaviors of return intervals. For different exponential values
of 𝜃 and threshold values of 𝑞, we make statistical analysis of
scaled probability density functions for both the simulation
data and the actual data. The empirical research exhibits
that they have the similar scaling behaviors, and the scaling
form can be approximately fitted by a stretched exponential
function. All the comparisons reflect that, for the proper

parameters, the simulation data of the model can fit the real
market to a certain extent.
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