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Mean consensus problem is studied using a class of discrete time multiagent systems in which information exchange is subjected
to some network-induced constraints.These constraints include package dropout, time delay, and package disorder. Using Markov
jump system method, the necessary and sufficient condition of mean square consensus is obtained and a design procedure is
presented such that multiagent systems reach mean square consensus.

1. Introduction

Cooperative control of networked multiagent systems by
information exchange has received extensive attention
presently, because of their extensive applications in flocking,
swarming, distributed sensor fusion, attitude alignment,
and so forth (see [1, 2] for surveys). An important problem
for cooperative control is to design an appropriate control
law such that a multiagent system reaches consensus in
the presence of insecure information exchange. Distributed
cooperative control of networked multiagent systems has
been investigated in various perspectives [3–7]. In [3], the
leaderless consensus problem is studied. The problem of
consensus with leader node was researched in [4–7]. For
networked multiagent systems of linear dynamics, consensus
using state feedback or output feedback was analysed in
[8, 9].

Unmodelled time delay during the design phase is
an important factor that may affect the performance of
dynamical systems. It can even, in some situation, cause
instability of a system. In these years, consensus in networked
multiagent systemswith time delaywas discussed using linear
matrix inequality (LMI) method [10–12]. In [10], the average-
consensus problem for continuous-time multiagents with

switching topology and time delay was studied. The work of
[11] investigated the average consensus problem in undirected
networks with fixed and switching topologies under time-
varying communication delays. The consensus problem was
solved in [12] on directed graphs of the multiagent system
with model uncertainty and time delay.

In the information exchange of network, there are not
only time-delay but also other network-induced constraints.
The other network-induced constraints, which include pack-
age dropout and package disorder, also affect the consen-
sus of networked multiagent systems. However, not many
works have studied multiagent systems with these network-
induced constraints. Based on Markov jump system method
[13–15], this paper considers mean square consensus of
multiagent systems of first-order integrator under network-
induced constraints such as package dropout, time delay, and
package disorder. By system transformation, the necessary
and sufficient condition of mean square consensus problem
is provided and a corresponding design algorithm is given.

The remainder of the paper is organized as follows.
Section 2 contains the formulation of the problem and
terminology. The main results are presented in Section 3.
Section 4 provides the numerical simulation and Section 5
draws conclusions.
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2. Problem Formulation and Preliminaries

In this paper, Z+ is used to denote the set of all nonnegative
integers.The 𝑛×𝑛 identitymatrix is denoted by 𝐼

𝑛
.The 𝑖th row

of 𝐼
𝑛
is denoted by 𝑒(𝑖, 𝑛). If a matrix 𝑃 is positive (negative)

definite, it is denoted by 𝑃 > 0(< 0). The notation # within
a matrix represents the symmetric term of the matrix. The
expected value is represented by 𝐸[∙].

Here a discrete-time system is considered that it consists
of 2 agents. Each agent is a first-order integrator, which,

𝑥
1

(𝑘 + 1) = 𝑥
1

(𝑘) + 𝑏𝑢
1

(𝑘) ,

𝑥
2

(𝑘 + 1) = 𝑥
2

(𝑘) + 𝑏𝑢
2

(𝑘) 𝑘 ∈ 𝑍
+

,

(1)

where 𝑥
1
(𝑘) ∈ 𝑅 and 𝑥

2
(𝑘) ∈ 𝑅 are the state at time step

𝑘,𝑢
1
(𝑘) ∈ 𝑅 and 𝑢

2
(𝑘) ∈ 𝑅 are the control at time step

𝑘, and 𝑏 ∈ 𝑅 is constant. The two agents exchange their
state through two communication channels: channel no. 1 and
channel no. 2. At each 𝑘, agent 1 transmits 𝑥

1
(𝑘) to agent 2

through channel no. 1. Agent 2 utilizes 𝑧(𝑘) as the information
obtained from channel no. 1 at 𝑘. Due to random package
dropout, time delay, and package disorder in communication,
the receiving scenarios in the side of agent 2 at 𝑘 are various.
Agent 2 may receive one package 𝑥

1
(𝑘 − 𝑡) from channel

no. 1 at 𝑘. The package 𝑥
1
(𝑘 − 𝑡) is sent by agent 1 at 𝑘 − 𝑡

no later than 𝑘. After received, 𝑥
1
(𝑘 − 𝑡) is examined to see

whether it is of disorder (i.e., whether agent 2 has received any
packages sent later than 𝑘 − 𝑡). If 𝑥

1
(𝑘 − 𝑡) is not of disorder,

𝑧(𝑘) ← 𝑥
1
(𝑘−𝑡). If𝑥

1
(𝑘−𝑡) is of disorder,𝑥

1
(𝑘−𝑡) is discarded

and 𝑧(𝑘) ← 𝑧(𝑘 − 1). Agent 2 may receive severe package
𝑥
1
(𝑘 − 𝑡

1
), 𝑥
1
(𝑘 − 𝑡

2
), . . . , 𝑥

1
(𝑘 − 𝑡

𝑑
) from channel no. 1 at

𝑘. Except the newest 𝑥
1
(𝑘 − 𝑡

∗
) with 𝑡

∗
= min(𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑑
),

these packages are discarded. If 𝑥
1
(𝑘 − 𝑡

∗
) is not of disorder,

𝑧(𝑘) ← 𝑥
1
(𝑘 − 𝑡

∗
). If 𝑥

1
(𝑘 − 𝑡

∗
) is of disorder, it is also

discarded and 𝑧(𝑘) ← 𝑧(𝑘 − 1). Agent 2 may receive no
package from channel no. 1 at 𝑘. In this case, 𝑧(𝑘) ← 𝑧(𝑘 − 1).

From the above mechanism, it is seen that 𝑧(𝑘) = 𝑥
1
(𝑘 −

𝛼
𝑘
) with some random 𝛼

𝑘
∈ 𝑍
+ constrained by

𝛼
𝑘+1

≤ 𝛼
𝑘

+ 1 ∀𝑘 ∈ 𝑍
+

. (2)

On 𝛼
𝑘
, we adopt an assumption which is made by some

researchers in networked control [16]; that is, 𝛼
𝑘
is assumed

to be a Markov chain taking values in a finite set {0, 1, . . . , 𝑚}

with transition probabilities:

𝜙
𝑠,𝑙

= Pr (𝛼
𝑘+1

= 𝑙 | 𝛼
𝑘

= 𝑠) ∀𝑠, 𝑙 ∈ {0, 1, . . . , 𝑚} , (3)

where 𝑚 is a given nonnegative integer. The transition
probability matrix

Φ =

[

[

[

[

[

[

[

𝜙
0,0

𝜙
0,1

0 ⋅ ⋅ ⋅ 0

𝜙
1,0

𝜙
1,1

𝜙
1,2

⋅ ⋅ ⋅ 0

...
...

...
...

...
𝜙
𝑚−1,0

𝜙
𝑚−1,1

𝜙
𝑚−1,2

⋅ ⋅ ⋅ 𝜙
𝑚−1,𝑚

𝜙
𝑚,0

𝜙
𝑚,1

𝜙
𝑚,2

⋅ ⋅ ⋅ 𝜙
𝑚,𝑚

]

]

]

]

]

]

]

∈ 𝑅
(𝑚+1)×(𝑚+1)

(4)

is also known. The expression (4) of Φ displays that, for the
reason of constraint (2), 𝜙

𝑠,𝑙
= 0 when 𝑙 > 𝑠 + 1. Thus, we

have described the communication in channel no. 1 using
Markov chain 𝛼

𝑘
. The samemethod is applied to describe the

communication in channel no. 2. Agent 1 obtains 𝑥
2
(𝑘 − 𝛽

𝑘
)

from channel no. 2 at 𝑘, where 𝛽
𝑘
is a Markov chain taking

values in a known set {0, 1, . . . , 𝑛} with a known transition
probability matrix

Ψ =

[

[

[

[

[

[

[

𝜑
0,0

𝜑
0,1

0 ⋅ ⋅ ⋅ 0

𝜑
1,0

𝜑
1,1

𝜑
1,2

⋅ ⋅ ⋅ 0

...
...

...
...

...
𝜑
𝑛−1,0

𝜑
𝑛−1,1

𝜑
𝑛−1,2

⋅ ⋅ ⋅ 𝜑
𝑛−1,𝑛

𝜑
𝑛,0

𝜑
𝑛,1

𝜑
𝑛,2

⋅ ⋅ ⋅ 𝜑
𝑛,𝑛

]

]

]

]

]

]

]

∈ 𝑅
(𝑛+1)×(𝑛+1)

. (5)

The goal of agents 1 and 2 is a prescribed state 𝑥
∗

∈ 𝑅.
In this paper, agent 1 is aware of 𝑥

∗ while agent 2 is not.
Consequently, agent 1 employs control law

𝑢
1

(𝑘) = −ℎ ((𝑥
2

(𝑘 − 𝛽
𝑘
) − 𝑥
1

(𝑘)) − (𝑥
1

(𝑘) − 𝑥
∗

)) (6)

but agent 2 employs control law

𝑢
2

(𝑘) = −ℎ (𝑥
1

(𝑘 − 𝛼
𝑘
) − 𝑥
2

(𝑘)) , (7)

where ℎ ∈ 𝑅 is the control parameter.
The above multiagent system is said to be mean square

consensus if ∀𝑥
1
(0) ∈ 𝑅, ∀𝑥

2
(0) ∈ 𝑅, ∀𝛼

0
∈ {0, 1, . . . , 𝑚},

∀𝛽
0

∈ {0, 1, . . . , 𝑚},

lim
𝑘→∞

𝐸 [(𝑥
1

(𝑘) − 𝑥
∗

)
2

] = 0

lim
𝑘→∞

𝐸 [(𝑥
2

(𝑘) − 𝑥
∗

)
2

] = 0.

(8)

Our objective is to design ℎ such that the two agents reach
mean square consensus.

3. Main Result

Define

𝑦
1

(𝑘) = 𝑥
1

(𝑘) − 𝑥
∗

𝑦
2

(𝑘) = 𝑥
2

(𝑘) − 𝑥
∗

∀𝑘 ∈ 𝑍
+

.

(9)

Then from (1), (6), (7), and (9), we have

𝑦
1

(𝑘 + 1) = (1 + 2𝑏ℎ) 𝑦
1

(𝑘) − 𝑏ℎ𝑦
2

(𝑘 − 𝛽
𝑘
)

𝑦
2

(𝑘 + 1) = −𝑏ℎ𝑦
1

(𝑘 − 𝛼
𝑘
) + (1 + 𝑏ℎ) 𝑦

2
(𝑘) .

(10)

Further, denote

𝑌 (𝑘) =

[

[

[

[

[

[

[

[

[

[

𝑦
1

(𝑘)

...
𝑦
1

(𝑘 − 𝑚)

𝑦
2

(𝑘)

...
𝑦
2

(𝑘 − 𝑛)

]

]

]

]

]

]

]

]

]

]

𝑇

∈ 𝑅
𝑚+𝑛+2

. (11)
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Obviously, mean square consensus (8) is equivalent to
lim
𝑘→∞

𝐸[𝑌
T

(𝑘)𝑌(𝑘)] = 0. Using (11), system (10) is
transformed into

𝑌 (𝑘 + 1) = 𝐺
ℎ

(𝛼
𝑘
, 𝛽
𝑘
) 𝑌 (𝑘) , (12)

where

𝐺
ℎ

(𝛼
𝑘
, 𝛽
𝑘
) = [

𝐺
ℎ11

𝐺
ℎ12

(𝛽
𝑘
)

𝐺
ℎ21

(𝛼
𝑘
) 𝐺

ℎ22

] ∈ 𝑅
(𝑚+𝑛+2)×(𝑚+𝑛+2)

,

𝐺
ℎ11

=

[

[

[

[

[

[

[

1 + 2𝑏ℎ 0 ⋅ ⋅ ⋅ 0 0

1 0

1 0

d
...

1 0

]

]

]

]

]

]

]

∈ 𝑅
(𝑚+1)×(𝑚+1)

,

𝐺
ℎ12

(𝛽
𝑘
) = 𝑏ℎ [

−𝑒 (𝛽
𝑘
, 𝑛 + 1)

0
] ∈ 𝑅

(𝑚+1)×(𝑛+1)

,

𝐺
ℎ21

(𝛽
𝑘
) = 𝑏ℎ [

−𝑒 (𝛼
𝑘
, 𝑚 + 1)

0
] ∈ 𝑅

(𝑛+1)×(𝑚+1)

,

𝐺
ℎ22

=

[

[

[

[

[

[

[

1 + 𝑏ℎ 0 ⋅ ⋅ ⋅ 0 0

1 0

1 0

d
...

1 0

]

]

]

]

]

]

]

∈ 𝑅
(𝑛+1)×(𝑛+1)

.

(13)

On system (12), [16] presented the following.

Lemma 1. Suppose that Markov chains 𝛼
𝑘
and 𝛽

𝑘
are inde-

pendent. System (12) achieves lim
𝑘→∞

𝐸[𝑌
T

(𝑘)𝑌(𝑘)] = 0 if
and only if there exist positive definite matrices 𝑃(𝛼, 𝛽) ∈

R(𝑚+𝑛+2)×(𝑚+𝑛+2), 𝛼 ∈ {0, 1, . . . , 𝑚}, 𝛽 ∈ {0, 1, . . . , 𝑛} such that

𝑃 (𝛼, 𝛽) − 𝐺
T
ℎ

(𝛼, 𝛽) (

𝑚

∑

𝑖=0

𝑛

∑

𝑗=0

𝜙
𝛼,𝑖

𝜑
𝛽,𝑗

𝑃 (𝑖, 𝑗)) 𝐺
ℎ

(𝛼, 𝛽) > 0.

(14)

Actually, the condition in Lemma 1 can be converted
using Schur complement.

Lemma 2 (see [17]). Let 𝑆 = [
𝑆
11
𝑆
12

𝑆
21
𝑆
22

] be given partitioned
matrix. Then 𝑆 > 0 if and only if 𝑆

22
> 0 and 𝑆

11
− 𝑆
12

𝑆
−1

22
𝑆
21

>

0.

Through the above converting, the necessary and suffi-
cient condition is obtained from mean square consensus of
the multiagent system.

Theorem 3. Suppose that Markov chains 𝛼
𝑘
and 𝛽

𝑘
are

independent. The multiagent system in Section 2 achieves
mean square consensus if and only if there exist ℎ ∈ R and

positive definite matrices𝑃(𝛼, 𝛽) ∈ R(𝑚+𝑛+2)×(𝑚+𝑛+2), 𝑄(𝛼, 𝛽) ∈

R(𝑚+𝑛+2)×(𝑚+𝑛+2), 𝛼 ∈ {0, 1, . . . , 𝑚}, 𝛽 ∈ {0, 1, . . . , 𝑛} such that

[

[

[

[

[

[

[

𝑃 (𝛼, 𝛽) #
√𝜙
𝛼,0

𝜑
𝛽,0

𝐺
ℎ

(𝛼, 𝛽) 𝑄 (0, 0)

... d

√𝜙
𝛼,𝑚

𝜑
𝛽,𝑛

𝐺
ℎ

(𝛼, 𝛽) 𝑄 (𝑚, 𝑛)

]

]

]

]

]

]

]

> 0

𝑃 (𝛼, 𝛽) − 𝑄
−1

(𝛼, 𝛽) = 0.

(15)

In order to deal with the condition in Theorem 3 using
Cone Complementarity Linearisation algorithm [18], for 𝑟 ∈

𝑍
+, we construct LMI

[

[

[

[

[

[

[

𝑃
𝑟

(𝛼, 𝛽) #
√𝜙
𝛼,0

𝜑
𝛽,0

𝐺
ℎ

(𝛼, 𝛽) 𝑄 (0, 0)

... d

√𝜙
𝛼,𝑚

𝜑
𝛽,𝑛

𝐺
ℎ

(𝛼, 𝛽) 𝑄 (𝑚, 𝑛)

]

]

]

]

]

]

]

> 0

[

𝑃
𝑟

(𝛼, 𝛽) 𝐼

𝐼 𝑄
𝑟

(𝛼, 𝛽)
] > 0

(16)

𝑃
𝑟

(𝛼, 𝛽) ∈ 𝑅
(𝑚+𝑛+2)×(𝑚+𝑛+2)

,

𝑄
𝑟

(𝛼, 𝛽) ∈ 𝑅
(𝑚+𝑛+2)×(𝑚+𝑛+2)

,

𝛼 ∈ {0, 1, . . . , 𝑚} , 𝛽 ∈ {0, 1, . . . , 𝑛}

(17)

which is denoted by 𝐿(𝑃
𝑟
(𝛼, 𝛽), 𝑄

𝑟
(𝛼, 𝛽), ℎ) > 0. The

following is our design steps:

Step 1. Specify an enough small real number 𝜀 > 0 and an
enough large integer 𝑇. Set 𝑟 = 0. Find feasible 𝑃

0
(𝛼, 𝛽),

𝑄
0
(𝛼, 𝛽), and ℎ

0
, ∀𝛼 ∈ {0, 1, . . . , 𝑚} and ∀𝛽 ∈ {0, 1, . . . , 𝑛}

satisfy 𝐿(𝑃
0
(𝛼, 𝛽), 𝑄

0
(𝛼, 𝛽), ℎ

0
) > 0. If there is none, exit.

Step 2. Solve the LMI problem

𝜇
𝑟+1

= min trace
𝑚

∑

𝛼=0

𝑛

∑

𝛽=0

𝑃
𝑟+1

(𝛼, 𝛽) 𝑄
𝑟

(𝛼, 𝛽)

+ 𝑃
𝑟

(𝛼, 𝛽) 𝑄
𝑟+1

(𝛼, 𝛽)

s.t. 𝐿 (𝑃
𝑟+1

(𝛼, 𝛽) , 𝑄
𝑟+1

(𝛼, 𝛽) , ℎ
𝑟+1

)>0,

(18)

and obtain 𝑃
𝑟+1

(𝛼, 𝛽), 𝑄
𝑟+1

(𝛼, 𝛽) and ℎ
𝑟+1

.

Step 3. If |𝜇
𝑟+1

− 2(𝑚 + 1)(𝑛 + 1)(𝑚 + 𝑛 + 2)| < 𝜀, let ℎ = ℎ
𝑟+1

and terminate. Otherwise, 𝑟 ← 𝑟 + 1 and go to Step 4.

Step 4. If 𝑟 > 𝑇, exist. Otherwise, go to Step 2

It should be pointed out that the above method is easy to
be extended to 𝑞 agents when 𝑞 > 2. Among 𝑞 agents, there
are 𝑞(𝑞 − 1) communication channels. We utilize 𝑞(𝑞 − 1)

independent Markov chains to describe communication in
these channels and can arrive at a similar result asTheorem 3.
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Figure 1: State response of two agents.

4. Numerical Example

In the numerical example, we give 𝑚 = 3, 𝑛 = 3, 𝑏 = 0.8, and
transition probability of 𝛼

𝑘
and 𝛽

𝑘
is given as

Φ =

[

[

[

[

0.6 0.4 0 0

0.25 0.3 0.45 0

0.2 0.2 0.1 0.5

0.1 0.55 0.1 0.25

]

]

]

]

,

Ψ =

[

[

[

[

0.7 0.3 0 0

0.55 0.35 0.1 0

0.2 0.4 0.25 0.15

0.3 0.35 0.15 0.2

]

]

]

]

.

(19)

Using the design steps in Section 3, we get ℎ = −0.6215.
Figure 1 shows the state response of two agents with

𝑥
1

(0) = 18, 𝑥
2

(0) = 3,

𝑥
∗

= 100, 𝛼
0

= 0, 𝛽
0

= 0.

(20)

It can be seen that 𝑥
1
and 𝑥

2
converge at 𝑥

∗.

5. Conclusion

The consensus control problem of multiagent systems of
first-order integrator is studied under network-induced con-
straints. A new model is presented to describe the network
communication with package dropout, time delay, and pack-
age disorder. For the new model, the definition of mean
square consensus is given multiagent systems. Further, the
necessary and sufficient condition of mean square consensus
is proposed in the form of matrix inequalities. Based on
this condition and Cone Complementarity Linearisation
algorithm, a consensus control law can be designed to make
systems reach mean square consensus.
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