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We prove that any 𝑘-circulantmatrix and any even order skew 𝑘-circulantmatrix are diagonalizable for any 𝑘 ∈ C.Then, we propose
two algorithms for computing the square roots of the 𝑘-circulant matrix and the skew 𝑘-circulant matrix, respectively. In particular,
we show that the square roots of the 𝑘-circulant matrix are still 𝑘-circulant matrices. Both the theoretical analysis and the numerical
experiments show that our algorithms are faster than the standard Schur method.

1. Introduction

Given a matrix 𝐴, a matrix 𝑋 is called a square root of 𝐴 if
𝑋
2
= 𝐴. Matrix square roots appear in a variety of branches

of mathematics, such as Markov models of finance, the solu-
tion of differential equations, the computation of the polar
decomposition, and the matrix sign function [1]. A number
of methods have been proposed for computing the square
roots of a matrix [2–9]. Among them, the Schur method [7]
is the most popular and becomes the standard method for
computing the matrix square roots. However, Schur method
is not so efficient when the matrix order is relatively high.
Thus, it is very desirable to design fast computing methods
which can make full use of the particular properties of the
matrices when the matrices possess special structures.

Circulant matrices and their generalizations have a wide
range of applications in signal processing, coding theory,
digital image disposal, self-regress design, Toeplitz systems,
and so on [10–14]. A relatively comprehensive survey about
circulant matrices can be found in [15]. Recently, Lu and
Gu [16] presented two efficient algorithms to compute the
square roots of circulant matrices and quasi-skew circulant
matrices, respectively. As they are based on LL iteration [17]
and themodified Schulz iterativemethod, the two algorithms
are faster than the standard Schur method. Subsequently,
Mei generalized those methods and presented algorithms to
compute the square roots of 𝑘-circulant matrices and skew
𝑘-circulant matrices [18]. These algorithms are also faster
than the standard Schur algorithm, but the work is restricted

to the case in which the matrix is of even order and 𝑘 ∈ R

and can not be directly extended to compute the 𝑝th root.
In this paper, we first show that 𝑘-circulant matrices of

any order for any complex number 𝑘 are diagonalizable and
develop an algorithm to compute their principal square roots.
Then, we show that skew 𝑘-circulant matrices of even order
for any complex number 𝑘 are diagonalizable, and develop
an algorithm to compute their principle square roots. Both of
our algorithms are theoretically and experimentally proved
to be faster than the standard Schur method. Compared with
the work in [18], our methods are more general in that they
are valid for any 𝑘-circulant matrix and any even order skew
𝑘-circulant matrix, where 𝑘 can be any complex number.The
remainder of this paper is organized as follows. In Section
2, we compute the square roots of 𝑘-circulant matrices. In
Section 3, we compute the square roots of skew 𝑘-circulant
matrices. In Section 4, we present two numerical experiments
to exhibit the efficiency of the proposed algorithms in terms
of the CPU time.

2. Square Roots of 𝑘-Circulant Matrices

An 𝑛 × 𝑛 complex matrix

Circ
𝑘
(𝑎) :=

[
[
[
[
[
[

[

𝑎
0

𝑎
1

𝑎
2

⋅ ⋅ ⋅ 𝑎
𝑛−1

𝑘𝑎
𝑛−1

𝑎
0

𝑎
1

. . . 𝑎
𝑛−2

𝑘𝑎
𝑛−2

𝑘𝑎
𝑛−1

𝑎
0

⋅ ⋅ ⋅ 𝑎
𝑛−3

...
...

... d
...

𝑘𝑎
1

𝑘𝑎
2

𝑘𝑎
3
⋅ ⋅ ⋅ 𝑎

0

]
]
]
]
]
]

]

(1)
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is called a 𝑘-circulant matrix, where 𝑎 = (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛−1
) ∈

C𝑛 and 𝑘 ∈ C. In particular, 1-circulant matrices are circulant
matrices, and −1-circulant matrices are skew circulant matri-
ces [19].

Another equivalent definition of a 𝑘-circulantmatrix is as
follows [18]: let C𝑛×𝑛 be the set of all 𝑛 × 𝑛 complex matrices,
and then, 𝐴 ∈ C𝑛×𝑛 is a 𝑘-circulant matrix if and only if 𝐴 =

𝐺
−1
𝐴𝐺, where 𝐺 = Circ

𝑘
([0, 1, 0, . . . , 0]). In this section, we

show that 𝑘-circulant matrices are diagonalizable.

Lemma 1 (see [20]). If 𝐴 and 𝐵 are two 𝑘-circulant matrices
of the same order, then 𝐴 + 𝐵 is also a 𝑘-circulant matrix.

Lemma 2 (see [20]). If 𝐴 is a 𝑘-circulant matrix, then for any
𝑙 ∈ C, 𝑙𝐴 is also a 𝑘-circulant matrix.

Lemma 3 (see [20]). Let 𝐺 = Circ
𝑘
([0, 1, 0, . . . , 0]); then,

𝐺
𝑖
=

[
[
[
[
[
[
[
[
[
[
[

[

0 ⋅ ⋅ ⋅ 0 1 0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 0

... d
...

...
... d

...
0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 1

𝑘 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0

... d
...

...
... d

...
0 ⋅ ⋅ ⋅ 𝑘 0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]
]
]

]

(2)

is also a 𝑘-circulant matrix. In particular, 𝐺𝑛 = 𝑘𝐸, where 𝐸 is
the identity matrix.

Lemma 4 (see [20]). Let 𝐺 = Circ
𝑘
([0, 1, 0, . . . , 0]) and let

𝑘 = 𝑟𝑒
𝑖𝜃 (𝑟 ≥ 0, 0 ≤ 𝜃 ≤ 2𝜋); then, the eigenvalues of 𝐺 are

𝜃
𝑗
= 𝑟
1/𝑛
𝑒
𝑖(𝜃+2𝜋(𝑗−1)/𝑛)

, (𝑗 = 1, . . . , 𝑛) , (3)

where 𝑖 is the imaginary unit.

Theorem 5 (see [20]). The matrix 𝐶 = Circ
𝑘
(𝑎) is a 𝑘-

circulant matrix of the form (1) if and only if 𝐶 can be
represented by

𝐶 =

𝑛−1

∑

𝑗=0

𝑎
𝑗
𝐺
𝑗
, (4)

where 𝑎 = (𝑎
0
, . . . , 𝑎

𝑛−1
), 𝐺 = Circ

𝑘
([0, 1, 0, . . . , 0]), and 𝐺0 =

𝐸.

Theorem 6 (see [20]). Let 𝐶 = Circ
𝑘
(𝑎) be a 𝑘-circulant

matrix; then, the eigenvalues of𝐶 are 𝜆
𝑗
= 𝜙(𝜃

𝑗
) (𝑗 = 1, . . . , 𝑛),

where 𝑎 = (𝑎
0
, . . . , 𝑎

𝑛−1
), 𝜙(𝑥) = 𝑎

0
+𝑎
1
𝑥+𝑎
2
𝑥
2
+⋅ ⋅ ⋅+𝑎

𝑛−1
𝑥
𝑛−1,

and 𝜃
𝑗
is defined by (3).

Theorem 7 (see [20]). Any 𝑘-circulant matrix Circ
𝑘
(𝑎) can be

diagonalized as follows:

𝑉
−1
⋅ Circ
𝑘
(𝑎) ⋅ 𝑉 = diag [𝜙 (𝜃

1
) , 𝜙 (𝜃

2
) , . . . , 𝜙 (𝜃

𝑛
)] (5)

with the matrix

𝑉 =

[
[
[
[
[
[

[

1 1 1 ⋅ ⋅ ⋅ 1

𝜃
1

𝜃
2

𝜃
3

⋅ ⋅ ⋅ 𝜃
𝑛

𝜃
2

1
𝜃
2

2
𝜃
2

3
⋅ ⋅ ⋅ 𝜃

2

𝑛

...
...

... d
...

𝜃
𝑛−1

1
𝜃
𝑛−1

2
𝜃
𝑛−1

3
⋅ ⋅ ⋅ 𝜃
𝑛−1

𝑛

]
]
]
]
]
]

]

, (6)

where 𝜃
𝑗
(𝑗 = 1, . . . , 𝑛) is defined as (3).

By (5), we can easily obtain the following result.

Corollary 8. The square roots of 𝑘-circulant matrix Circ
𝑘
(𝑎)

are as follows:

𝑉 diag [𝜙(𝜃
1
)
1/2

, 𝜙(𝜃
2
)
1/2

, . . . , 𝜙(𝜃
𝑛
)
1/2

]𝑉
−1
. (7)

Remark 9. We mention that the diagonalization methods
[19–22] were used to compute the square roots of 𝑘-circulant
matrices, where 𝑘 is restricted to 1 or −1. However, our
diagonalization method is valid for any 𝑘 ∈ C.

Next, we show that the square roots of a 𝑘-circulant
matrix are still 𝑘-circulant matrices.

Theorem 10. Let 𝑘 = 𝑟𝑒
𝑖𝜃 (𝑟 ≥ 0, 0 ≤ 𝜃 ≤ 2𝜋), let 𝜃

𝑗
=

𝑟
1/𝑛
𝑒
𝑖(𝜃+2𝜋(𝑗−1)/𝑛) (𝑗 = 1, . . . , 𝑛), and let𝑉 be defined as (6). For

any diagonal matrixΛ = diag(𝜆
1
, . . . , 𝜆

𝑛
) ∈ C𝑛×𝑛,𝑉Λ𝑉−1 is a

𝑘-circulant matrix Circ
𝑘
([𝑏
0
, . . . , 𝑏

𝑛−1
]), where (𝑏

0
, . . . , 𝑏

𝑛−1
) =

(𝜆
1
, . . . , 𝜆

𝑛
)𝑉
−1.

Proof. ByTheorem 7, whether𝑉Λ𝑉−1 is a 𝑘-circulant matrix
depends on whether the following system of linear equations
with unknown vector (𝑏

0
, . . . , 𝑏

𝑛−1
)

𝑏
0
+ 𝑏
1
𝜃
1
+ 𝑏
2
𝜃
2

1
+ ⋅ ⋅ ⋅ + 𝑏

𝑛−1
𝜃
𝑛−1

1
= 𝜆
1
,

𝑏
0
+ 𝑏
1
𝜃
2
+ 𝑏
2
𝜃
2

2
+ ⋅ ⋅ ⋅ + 𝑏

𝑛−1
𝜃
𝑛−1

2
= 𝜆
2

...

𝑏
0
+ 𝑏
1
𝜃
𝑛
+ 𝑏
2
𝜃
2

𝑛
+ ⋅ ⋅ ⋅ + 𝑏

𝑛−1
𝜃
𝑛−1

𝑛
= 𝜆
𝑛

(8)

is consistent. Obviously the coefficient matrix of (8) is
invertible. Thus, we have

(𝑏
0
, . . . , 𝑏

𝑛−1
) = (𝜆

1
, . . . , 𝜆

𝑛
) 𝑉
−1
. (9)

That is to say, 𝑉Λ𝑉−1 is a 𝑘-circulant matrix with the form of
Circ
𝑘
([𝑏
0
, . . . , 𝑏

𝑛−1
]).

Remark 11. Theorem 10 provides a method to construct
𝑘-circulant matrix with given eigenvalues. Obviously, the
square roots with the form of (7) are 𝑘-circulant matrices
Circ
𝑘
(𝑏), where 𝑏 = (𝜙(𝜃

1
)
1/2
, . . . , 𝜙(𝜃

𝑛
)
1/2
)𝑉
−1.

Based onTheorem 7 and Corollary 8, we give the follow-
ing algorithm for computing the principal square root of a
𝑘-circulant matrix.
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Algorithm 12. Compute a principal square root of a 𝑘-
circulant matrix 𝐴 ∈ C𝑛×𝑛.

Step 1. Compute the eigenvalues 𝜙(𝜃
𝑗
) = ∑

𝑛−1

𝑠=0
𝑎
𝑠
(𝜃
𝑗
)
𝑠 (𝑗 =

1, . . . , 𝑛) of 𝐴.

Step 2. Compute 𝜙(𝜃
𝑗
)
1/2 (𝑗 = 1, . . . , 𝑛) such that

arg(𝜙(𝜃
𝑗
)
1/2
) (𝑗 = 1, . . . , 𝑛) ∈ (−𝜋/2, 𝜋/2).

Step 3. Compute the inverse of 𝑉.

Step 4. Compute diag[𝜙(𝜃
1
)
1/2
, 𝜙(𝜃
2
)
1/2
, . . . , 𝜙(𝜃

𝑛
)
1/2
]𝑉
−1.

Step 5. Compute the square root 𝑉 diag[𝜙(𝜃
1
)
1/2
, 𝜙(𝜃
2
)
1/2
,

. . . , 𝜙(𝜃
𝑛
)
1/2
]𝑉
−1 of 𝐴.

Then, we obtain 𝐵 = √𝐴 = Circ
𝑘
([𝑏
0
, . . . , 𝑏

𝑛−1
]).

The cost of Step 1 is about 𝑂(𝑛 log 𝑛) flops by discrete
Fourier transform [18]. The cost of Step 2 is 𝑂(𝑛) flops.
The cost of Step 3 is about 𝑂(𝑛 log2𝑛) flops [23]. The cost
of Step 4 is about 𝑂(𝑛2) flops. The cost of Step 5 is about
𝑂(𝑛
2log2𝑛) flops [24]. So, it needs about 𝑂(𝑛2log2𝑛) flops

in total. The algorithm has the same complexity as the
diagonalization methods in [19–21]. But the methods therein
are only concerned with the case that 𝑘 = 1 and 𝑘 = −1.
If we use the Schur method, it needs about 𝑂(𝑛3) flops in
total [7]. We also mention a related work in [18], which only
needs about 𝑂(𝑛 log 𝑛) flops to compute the primary square
root of a 𝑘-circulant matrix. However, that work restricts the
matrix to be of even order and 𝑘 to be of real number. Those
restrictions are not needed in our algorithm.

3. Square Roots of Skew 𝑘-Circulant Matrices

Let 𝑛 be an even number; then,𝐴 ∈ C𝑛×𝑛 is a skew 𝑘-circulant
matrix if 𝐴 = −𝐺

−1
𝐴𝐺, where 𝐺 = Circ

𝑘
([0, 1, 0, . . . , 0]) (see

[18]). Let 𝑘 = 𝑟𝑒
𝑖𝜃 (𝑟 ≥ 0, 0 ≤ 𝜃 ≤ 2𝜋) and let

𝐽 =

[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 ⋅ ⋅ ⋅ 0 0

0 −1 0 0 ⋅ ⋅ ⋅ 0 0

0 0 1 0 ⋅ ⋅ ⋅ 0 0

0 0 0 −1 ⋅ ⋅ ⋅ 0 0

...
...

...
... d

...
...

0 0 0 0 ⋅ ⋅ ⋅ 1 0

0 0 0 0 ⋅ ⋅ ⋅ 0 −1

]
]
]
]
]
]
]
]
]
]

]

. (10)

Lemma 13. Let 𝐺 = Circ
𝑘
([0, 1, 0, . . . , 0]). Then,

(i) 𝐽𝐺𝐽 = −𝐺;
(ii) 𝐽𝐺𝑗 = −𝐺

𝑗
𝐽 for odd number 𝑗; 𝐽𝐺𝑗 = 𝐺

𝑗
𝐽 for even

number 𝑗.

Lemma 14. Let

𝑉 = [V
1
, V
2
, . . . , V

2𝑚
] =

[
[
[
[
[
[

[

1 1 ⋅ ⋅ ⋅ 1

𝜃
1

𝜃
2

⋅ ⋅ ⋅ 𝜃
2𝑚

𝜃
2

1
𝜃
2

2
⋅ ⋅ ⋅ 𝜃

2

2𝑚

...
... d

...
𝜃
2𝑚−1

1
𝜃
2𝑚−1

2
⋅ ⋅ ⋅ 𝜃
2𝑚−1

2𝑚

]
]
]
]
]
]

]

, (11)

where 𝜃
𝑗
= 𝑟
1/2𝑚

𝑒
𝑖(𝜃+2𝜋(𝑗−1)/2𝑚) (𝑗 = 1, . . . , 2𝑚); then, 𝐽V

𝑡
=

V
𝑚+𝑡

(𝑡 = 1, . . . , 𝑚).

Proof. Theproof is obvious by paying attention to the fact that
𝜃
𝑚+𝑡

= 𝜃
𝑡
𝑒
𝑖𝜋.

Lemma 15. A skew 𝑘-circulant matrix 𝐴 of order 2𝑚 can be
written in the form of

𝐽Circ
𝑘
([𝑎
0
, 𝑎
1
, . . . , 𝑎

2𝑚−1
]) . (12)

Proof. Write 𝑛 = 2𝑚 and𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

. Since𝐴 = −𝐺
−1
𝐴𝐺 we

have 𝐺𝐴 = −𝐴𝐺; that is,

[
[
[
[
[
[

[

𝑎
21

𝑎
22

𝑎
23

⋅ ⋅ ⋅ 𝑎
2𝑛

𝑎
31

𝑎
32

𝑎
33

⋅ ⋅ ⋅ 𝑎
3𝑛

...
...

... d
...

𝑎
𝑛1

𝑎
𝑛2

𝑎
𝑛3

⋅ ⋅ ⋅ 𝑎
𝑛𝑛

𝑘𝑎
11

𝑘𝑎
12

𝑘𝑎
13

⋅ ⋅ ⋅ 𝑘𝑎
1𝑛

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

−𝑘𝑎
1𝑛

−𝑎
11

−𝑎
12

⋅ ⋅ ⋅ −𝑎
1(𝑛−1)

−𝑘𝑎
2𝑛

−𝑎
21

−𝑎
22

⋅ ⋅ ⋅ −𝑎
2(𝑛−1)

...
...

... d
...

−𝑘𝑎
(𝑛−1)𝑛

−𝑎
(𝑛−1)1

−𝑎
(𝑛−1)2

⋅ ⋅ ⋅ −𝑎
(𝑛−1)(𝑛−1)

−𝑘𝑎
𝑛𝑛

−𝑎
𝑛1

−𝑎
𝑛2

⋅ ⋅ ⋅ −𝑎
𝑛(𝑛−1)

]
]
]
]
]
]

]

.

(13)

Then,

𝐴 =

[
[
[
[
[
[

[

𝑎
11

𝑎
12

𝑎
13

⋅ ⋅ ⋅ 𝑎
1𝑛

−𝑘𝑎
1𝑛

−𝑎
11

−𝑎
12

⋅ ⋅ ⋅ −𝑎
1(𝑛−1)

−𝑘𝑎
2𝑛

−𝑎
21

−𝑎
22

⋅ ⋅ ⋅ −𝑎
2(𝑛−1)

...
...

... d
...

−𝑘𝑎
(𝑛−1)𝑛

−𝑎
(𝑛−1)1

−𝑎
(𝑛−1)2

⋅ ⋅ ⋅ −𝑎
(𝑛−1)(𝑛−1)

]
]
]
]
]
]

]

(𝑘𝑎
11
, 𝑘𝑎
12
, 𝑘𝑎
13
, . . . , 𝑘𝑎

1𝑛
)

= (−𝑘𝑎
𝑛𝑛
, −𝑎
𝑛1
, −𝑎
𝑛2
, . . . , −𝑎

𝑛(𝑛−1)
) .

(14)

Thus, we have that

𝐴 =

[
[
[
[
[
[

[

𝑎
11

𝑎
12

𝑎
13

⋅ ⋅ ⋅ 𝑎
1𝑛

−𝑘𝑎
1𝑛

−𝑎
11

−𝑎
12

⋅ ⋅ ⋅ −𝑎
1(𝑛−1)

𝑘𝑎
1(𝑛−1)

𝑘𝑎
1𝑛

𝑎
11

⋅ ⋅ ⋅ 𝑎
1(𝑛−2)

...
...

... d
...

−𝑘𝑎
12

−𝑘𝑎
13

−𝑘𝑎
14

⋅ ⋅ ⋅ −𝑎
11

]
]
]
]
]
]

]

= 𝐽Circ
𝑘
([𝑎
11
, 𝑎
12
, . . . , 𝑎

1𝑛
]) .

(15)

Theorem 16. A skew 𝑘-circulant matrix 𝐽Circ
𝑘
([𝑎
0
, . . . ,

𝑎
2𝑚−1

]) of order 𝑛 = 2𝑚 is diagonalizable.

Proof. Write 𝐶 = Circ
𝑘
([𝑎
0
, . . . , 𝑎

2𝑚−1
]); then 𝐶 = 𝑎

0
𝐺
0
+

𝑎
1
𝐺 + 𝑎
2
𝐺
2
+ ⋅ ⋅ ⋅ + 𝑎

2𝑚−1
𝐺
2𝑚−1. By Lemma 13,

𝐽𝐶 = (𝑎
0
𝐺
0
− 𝑎
1
𝐺 + 𝑎
2
𝐺
2
− ⋅ ⋅ ⋅ − 𝑎

2𝑚−1
𝐺
2𝑚−1

) 𝐽. (16)

Thus, we have

𝐶 = 𝐽 (𝑎
0
𝐺
0
− 𝑎
1
𝐺 + 𝑎
2
𝐺
2
− ⋅ ⋅ ⋅ − 𝑎

2𝑚−1
𝐺
2𝑚−1

) 𝐽. (17)
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Figure 1: Comparison of the CPU time for Algorithm 12 and the
standard Schur method in logarithmic scale.
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Figure 2: Comparison of the CPU time for Algorithm 18 and the
standard Schur method in logarithmic scale.

By Theorem 7, there exists an invertible matrix 𝑉 defined in
Lemma 14 such that

𝑉
−1
𝐽 (𝑎
0
𝐺
0
− 𝑎
1
𝐺 + 𝑎
2
𝐺
2
− ⋅ ⋅ ⋅ − 𝑎

2𝑚−1
𝐺
2𝑚−1

) 𝐽𝑉

= diag [𝜙 (𝜃
1
) , 𝜙 (𝜃

2
) , . . . , 𝜙 (𝜃

2𝑚
)] ,

(18)

where 𝜙(𝑥) = 𝑎
0
+ 𝑎
1
𝑥 + 𝑎
2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

2𝑚−1
𝑥
2𝑚−1. Then,

(𝑎
0
𝐺
0
− 𝑎
1
𝐺 + 𝑎
2
𝐺
2
− ⋅ ⋅ ⋅ − 𝑎

2𝑚−1
𝐺
2𝑚−1

) 𝐽𝑉

= 𝐽𝑉 diag [𝜙 (𝜃
1
) , 𝜙 (𝜃

2
) , . . . , 𝜙 (𝜃

2𝑚
)] .

(19)

By (16), we have

𝐽𝐶 [V
1
, V
2
, . . . , V

2𝑚
]

= [𝐽V
1
, 𝐽V
2
, . . . , 𝐽V

2𝑚
] diag [𝜙 (𝜃

1
) , 𝜙 (𝜃

2
) , . . . , 𝜙 (𝜃

2𝑚
)] .

(20)

In order to obtain the eigenvalues and eigenvectors of 𝐽𝐶, for
𝑡 = 1, . . . , 𝑚, we assume that there exist 𝑘

𝑡
, 𝑘
𝑚+𝑡

, and 𝑙 ∈ C,
such that

𝐽𝐶 (𝑘
𝑡
V
𝑡
+ 𝑘
𝑚+𝑡

V
𝑚+𝑡

) = 𝑙 (𝑘
𝑡
V
𝑡
+ 𝑘
𝑚+𝑡

V
𝑚+𝑡

) . (21)

Combining this with (20) gives

𝑘
𝑡
𝜙 (𝜃
𝑡
) 𝐽V
𝑡
+ 𝑘
𝑚+𝑡

𝜙 (𝜃
𝑚+𝑡

) 𝐽V
𝑚+𝑡

= 𝑙𝑘
𝑡
V
𝑡
+ 𝑙𝑘
𝑚+𝑡

V
𝑚+𝑡

. (22)

Now, we use Lemma 14 to get

𝑘
𝑡
𝜙 (𝜃
𝑡
) V
𝑚+𝑡

+ 𝑘
𝑚+𝑡

𝜙 (𝜃
𝑚+𝑡

) V
𝑡
= 𝑙𝑘
𝑚+𝑡

V
𝑚+𝑡

+ 𝑙𝑘
𝑡
V
𝑡
. (23)

Since V
𝑡
and V
𝑚+𝑡

are linearly independent, we have

𝑘
𝑡
𝜙 (𝜃
𝑡
) = 𝑙𝑘

𝑚+𝑡
,

𝑘
𝑚+𝑡

𝜙 (𝜃
𝑚+𝑡

) = 𝑙𝑘
𝑡
.

(24)

So, 𝑙 = ±√𝜙(𝜃
𝑡
)𝜙(𝜃
𝑚+𝑡

), 𝑘
𝑚+𝑡

/𝑘
𝑡
= ±√𝜙(𝜃

𝑡
)/𝜙(𝜃
𝑚+𝑡

). Namely,

𝐽𝐶(√𝜙 (𝜃
𝑚+𝑡

)V
𝑡
+ √𝜙 (𝜃

𝑡
)V
𝑚+𝑡

)

= √𝜙 (𝜃
𝑡
) 𝜙 (𝜃
𝑚+𝑡

) (√𝜙 (𝜃
𝑚+𝑡

)V
𝑡
+ √𝜙 (𝜃

𝑡
)V
𝑚+𝑡

) ,

𝐽𝐶 (√𝜙 (𝜃
𝑚+𝑡

)V
𝑡
− √𝜙 (𝜃

𝑡
)V
𝑚+𝑡

)

= −√𝜙 (𝜃
𝑡
) 𝜙 (𝜃
𝑚+𝑡

) (√𝜙 (𝜃
𝑚+𝑡

)V
𝑡
− √𝜙 (𝜃

𝑡
)V
𝑚+𝑡

) .

(25)

Let

𝑊 = [√𝜙 (𝜃
𝑚+1

)V
1
+ √𝜙 (𝜃

1
)V
𝑚+1

,

√𝜙 (𝜃
𝑚+1

)V
1
− √𝜙 (𝜃

1
)V
𝑚+1

, . . . ,

√𝜙 (𝜃
2𝑚
)V
𝑚
+ √𝜙 (𝜃

𝑚
)V
2𝑚
,

√𝜙 (𝜃
2𝑚
)V
𝑚
− √𝜙 (𝜃

𝑚
)V
2𝑚
] .

(26)
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Then

𝐽𝐶𝑊 = 𝑊

[
[
[
[
[
[
[
[
[

[

√𝜙 (𝜃
1
) 𝜙 (𝜃
𝑚+1

)

−√𝜙 (𝜃
1
) 𝜙 (𝜃
𝑚+1

)

d

√𝜙 (𝜃
𝑚
) 𝜙 (𝜃
2𝑚
)

−√𝜙 (𝜃
𝑚
) 𝜙 (𝜃
2𝑚
)

]
]
]
]
]
]
]
]
]

]

. (27)

So,

𝑊
−1
𝐽𝐶𝑊 =

[
[
[
[
[
[
[
[
[

[

√𝜙 (𝜃
1
) 𝜙 (𝜃
𝑚+1

)

−√𝜙 (𝜃
1
) 𝜙 (𝜃
𝑚+1

)

d

√𝜙 (𝜃
𝑚
) 𝜙 (𝜃
2𝑚
)

−√𝜙 (𝜃
𝑚
) 𝜙 (𝜃
2𝑚
)

]
]
]
]
]
]
]
]
]

]

. (28)

Corollary 17. The square roots of an even order skew 𝑘-
circulant matrix 𝐽Circ

𝑘
(𝑎) are as follows:

𝑊

[
[
[
[
[

[

√𝜙(𝜃
1
)𝜙(𝜃
𝑚+1

)

−√𝜙(𝜃
1
)𝜙(𝜃
𝑚+1

)

d
√𝜙(𝜃
𝑚
)𝜙(𝜃
2𝑚
)

−√𝜙(𝜃
𝑚
)𝜙(𝜃
2𝑚
)

]
]
]
]
]

]

1/2

𝑊
−1
. (29)

Proof. This is a direct result from (28).

Based on Theorem 16 and Corollary 17, we give the
following algorithm for computing the principal square root
of a skew 𝑘-circulant matrix.

Algorithm 18. Compute a principal square root of a skew 𝑘-
circulant matrix 𝐴 ∈ C2𝑚×2𝑚.

Step 1. Compute 𝜙(𝜃
𝑗
) = ∑

2𝑚−1

𝑠=0
𝑎
𝑠
(𝜃
𝑗
)
𝑠 (𝑗 = 1, . . . , 2𝑚).

Step 2. Compute the eigenvalues of 𝐴: √𝜙(𝜃
1
)𝜙(𝜃
𝑚+1

),

−√𝜙(𝜃
1
)𝜙(𝜃
𝑚+1

), . . . , √𝜙(𝜃
𝑚
)𝜙(𝜃
2𝑚
), −√𝜙(𝜃

𝑚
)𝜙(𝜃
2𝑚
).

Step 3. Compute the square roots of √𝜙(𝜃
1
)𝜙(𝜃
𝑚+1

),

−√𝜙(𝜃
1
)𝜙(𝜃
𝑚+1

), . . . , √𝜙(𝜃
𝑚
)𝜙(𝜃
2𝑚
), −√𝜙(𝜃

𝑚
)𝜙(𝜃
2𝑚
) whose

arguments should be in (−𝜋/2, 𝜋/2).

Step 4. Compute (29).

Let 𝑛 = 2𝑚. The cost of Step 1 is about 𝑂(𝑛 log 𝑛) flops
by discrete Fourier transform [18]. The cost of Step 2 is 𝑂(𝑛).
The cost of Step 3 is𝑂(𝑛). Since thematrix multiplication and
inversion are equivalent in computational complexity [25],
the cost of Step 4 is about 𝑂(𝑛2.4) [26]. So, it needs about
𝑂(𝑛
2.4
) flops in total. If we use the Schur method [7] or the

method in [18], it needs about𝑂(𝑛3) flops in total. Moreover,
our method allows 𝑘 to be a complex number, whereas the
method in [18] only permits 𝑘 to be a real number.

4. Numerical Experiments

We present numerical experiments to compare the algo-
rithms presented in this paper and the standard Schur
method with respect to the execution time. The code was
implemented in MATLAB 7.0 and run on a Windows-based
machine with 2GB of RAM and Intel Pentium Core Duo
CPU running at 2.8GHz.

We gradually increase the order of thematrix by 100 from
100 to 1100 and record the corresponding CPU time. Figure 1
shows the execution time for Algorithm 12 and the standard
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Schur method. Figure 2 compares the execution time for
Algorithm 18 and the standard Schur method. From those
results, we can confirm that our algorithms are clearly faster
than the standard Schur method for computing the square
roots of 𝑘-circulant matrices and skew 𝑘-circulant mat-
rices.
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