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An improved Susceptible-Infected-Susceptible (SIS) epidemic diffusion model with population migration between two cities is
modeled. Global stability conditions for both the disease-free equilibrium and the endemic equilibrium are analyzed and proved.
The main contribution of this paper is reflected in epidemic modeling and analysis which considers unequal migration rates, and
only susceptible individuals can migrate between the two cities. Numerical simulation shows when the epidemic diffusion system
is stable, number of infected individuals in one city can reach zero, while the number of infected individuals in the other city is still
positive. On the other hand, decreasing population migration in only one city seems not as effective as improving the recovery rate
for controlling the epidemic diffusion.

1. Introduction

As mentioned in Rachaniotis et al. [1], a serious epidemic
is a problem that tests the ability of a nation to effectively
protect its population, to reduce human loss, and to rapidly
recover. Sometime such a problem may acquire worldwide
dimensions. For example, during the period from November
2002 to August 2003, 8422 people in 29 countries were
infected with SARS; 916 of them were dead at last for the
effective medical resources appeared late. Other diseases,
such as HIV and H1N1, can also cause significant numbers
of direct infectious disease deaths. Epidemic diffusion is a
typical complex dynamic system problem in Gao et al. [2],
for we do not knowwhat kind of epidemic outbreaks, when it
outbreaks, and how it diffuses. Generally, after an epidemic
outbreaks, public officials are faced with many critical and
complex issues, the most important of which is to make
certain how the epidemic diffuses so that the rescue operation
efficiency is maximized.

Traditionally, analytical works on epidemic diffusion are
concentrated on the compartmental epidemic models of
ordinary differential equations (Mishra and Saini [3]; Sun
and Hsieh [4]; Li et al. [5]; Zhang et al. [6]; Zhang and Ma
[7]). In these models, the total population is divided into
several independence classes, and each class of individuals is

closed into a compartment.The sizes of the compartments are
large enough, and themixing ofmembers is homogeneous. In
other words, the models based on the differential equations
are always under the assumption of both homogeneous
infectivity and homogeneous connectivity of each individual.
Recently, Kim et al. [8] described the transmission of avian
influenza among birds and humans. The behavior of positive
solutions to a reaction diffusion system with homogeneous
Neumann boundary conditions was investigated in their
work. Liu and Zhang [9] presented an SEIRS epidemic model
on the scale-free networks, where the active contact number
of each vertex was assumed to be either constant or propor-
tional to its degree in their model. Samsuzzoha et al. [10] used
a diffusive epidemic model to describe the transmission of
influenza. The equations were solved numerically by using
the splitting method under different initial distribution of
population density. Further, Samsuzzoha et al. [11] presented
a vaccinated diffusive compartmental epidemic model to
explore the impact of vaccination as well as diffusion on the
transmission dynamics of influenza. A very recent research
by Shi and Dong [12] formulates and discusses models for the
spread of infectious diseases with variable population sizes
and vaccinations on the susceptible individuals.

The other stream of related research to our work is on the
epidemic diffusion with population migration. For instance,
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Hethcote [13] proposed that deterministic communicable
disease models were initial value problems for a system of
ordinary differential equations, and thus he considered the
asymptotic stability for the equilibrium points for models
involving temporary immunity, disease-related fatalities, car-
riers, migration, dissimilar interacting groups, and transmis-
sion by vectors. In his work, both susceptible individuals
and infected individuals in each population could migrate
(only equal rates were considered), which led to different
equilibriums. Another model that considers two interact-
ing populations undergoing SIS dynamics was presented
in Kribs-Zaleta and Velasco-Hernández [14]. The authors
considered that the two groups may have different values for
model parameters especially those dealing with vaccination.
Liebovitch and Schwartz [15] proposed that classical disease
models always use a mass action term as the interaction
between infected and susceptible people in separate patches,
and they derived the equations when this interaction is a
migration of people between patches. Sani and Kroese [16]
formulated various mathematical control problems for HIV
spread in mobile heterosexual populations. They applied
the cross-entropy method to solve these highly multimodal
and nonlinear optimization problems, and demonstrated the
effectiveness of the method via a range of experiments and
illustrated how the form of the optimal control function
depends on themathematicalmodel used for theHIV spread.
Yang et al. [17] considered SIR and SIS epidemic models
with bilinear incidence and migration between two patches,
where infected individuals cannot migrate from one patch to
another due to medical screening.They found the thresholds
classifying the global dynamics of the models in terms of
the model parameters, and they obtained the global asymp-
totical stability of the disease free and the disease-endemic
equilibrium. Wolkewitz and Schumacher [18] pointed out
that the main limitation of the compartmental models is that
several parameters are based on uncertain expert guesses
(default values) and are not estimated from the study data. Lee
et al. [19] extended the SEIRmodel to incorporate population
migration between cities and investigated the effectiveness of
travel restrictions as a control against the spread of influenza.

It is worthmentioning thatmajority of the existing studies
relies ondifferent kinds of differential equations. For instance,
first-order partial differential equations are used to integrate
the age structures; second-order partial differential equations
are suitable when a diffusion term exists; integral differential
equations or differential equations are often used when time
delay or delay factors are considered. These are the typical
methods to model and analyze the complex dynamic system
of epidemic diffusion. As a continued work of our previous
paper in [20], this paper presents an SIS epidemic model
with population migration between two cities. We consider
unequal migration rates for these two populations, and only
susceptible individuals can migrate, which is different from
the whole existing works. The remainder of the paper is
organized as follows. Section 2 proposes the SIS epidemic
diffusion model, which considers susceptible individuals
migration between two cities. In Section 3, the dynamic char-
acteristics of the proposed SISmodel are analyzed. Numerical
simulation and key parameters analysis are presented in
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Figure 1: The transfer diagram of SIS model with population mi-
gration.

Section 4. Finally, Section 5 discusses the conclusions and
suggests for the future research.

2. Epidemic Diffusion Model (SIS)

Since the compartment model of epidemic diffusion is a
mature theory, herein we omit the verbose introduction of
the framework process. In this paper, we divide people in epi-
demic areas into two groups: susceptible individuals (𝑆) and
infected individuals (𝐼). The transfer diagram of individuals
in the epidemic areas can be illustrated as Figure 1.

To smooth the formulation progress of the SIS epidemic
diffusion model in the following subsections, some assump-
tions and parameters are specified as follows.

(1) The susceptible individuals and the infected individ-
uals in city 𝑖 at time 𝑡 are denoted as 𝑆

𝑖
(𝑡) and 𝐼

𝑖
(𝑡),

respectively. Thus, the total individuals in city 𝑖 are
𝑁
𝑖
(𝑡) = 𝑆

𝑖
(𝑡) + 𝐼

𝑖
(𝑡), 𝑖 = 1, 2.

(2) 𝑏 and 𝑑 are the natural birth rate and the natural
death rate, respectively. 𝛾 is the recovery rate. 𝛽 is the
propagation coefficient. To facilitate the process in the
following sections, we assume that 𝑏 = 𝑑. Moreover,
disease-related death rate is not considered in this
work.

(3) Only the susceptible individuals can migrate in this
paper. 𝑎

𝑖
represents themigrating-out rate of suscepti-

ble individuals in city 𝑖 (𝑎
𝑖
> 0 for 𝑖 = 1, 2 and 𝑎

1
̸= 𝑎
2
).

(4) Using the notation𝑁 to represent the total number of
the population in these two cities,𝑁 = 𝑁

1
+𝑁
2
. Note

that𝑁 is a constant.

Hence, the ordinary differential equations for the SIS ep-
idemic diffusion model can be formulated as

𝑑𝑆
1

𝑑𝑡
= 𝑏𝑁
1
− 𝑎
1
𝑆
1
+ 𝑎
2
𝑆
2
− 𝑑𝑆
1
− 𝛽𝑆
1
𝐼
1
+ 𝛾𝐼
1
,

𝑑𝐼
1

𝑑𝑡
= 𝛽𝑆
1
𝐼
1
− 𝛾𝐼
1
− 𝑑𝐼
1
,

𝑑𝑆
2

𝑑𝑡
= 𝑏𝑁
2
+ 𝑎
1
𝑆
1
− 𝑎
2
𝑆
2
− 𝑑𝑆
2
− 𝛽𝑆
2
𝐼
2
+ 𝛾𝐼
2
,

𝑑𝐼
2

𝑑𝑡
= 𝛽𝑆
2
𝐼
2
− 𝛾𝐼
2
− 𝑑𝐼
2
.

(1)

ODE (1) describes the following dynamics of epidemic
diffusion among the population groups. (1)The change rate
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of the susceptible population in both city 1 and city 2 is
determined by the entry population, the exiting population,
and the losing population who actually gets exposed to the
disease and thus is counted towards the class of infected
population. The last one is in proportion to the propagation
coefficient 𝛽 and both of the current mass of the susceptible
individuals and the current mass of the infected individuals.
(2)The change rate of the infected population is determined
by the difference between the entering population, those of
the susceptible population who get sick, the exiting popula-
tion, and the losing population. All parameters 𝛽, 𝑏, 𝛾, 𝑎

1
,

and 𝑎
2
are positive, and initial conditions for the model are

demonstrated as follows:

𝐼
1 (0) = 𝑖

0

1
≪ 𝑁, 𝐼

2 (0) = 𝑖
0

2
≪ 𝑁,

𝑆
1 (0) = 𝑠

0

1
, 𝑆

2 (0) = 𝑁 − 𝑠
0

1
− 𝑖
0

1
− 𝑖
0

2
.

(2)

3. Model Analysis

3.1. Condition of the Epidemic Diffusion. As shown above,
𝐼
1
(0) = 𝑖0

1
≪ 𝑁, 𝐼

2
(0) = 𝑖0

2
≪ 𝑁, 𝑆

1
(0) = 𝑠0

1
, and

𝑆
2
(0) = 𝑁− 𝑠0

1
− 𝑖0
1
− 𝑖0
2
are initial conditions for the proposed

model, which symbolize the initial number of susceptible
and infected individuals. Then, it is easy to obtain the initial
condition for epidemic diffusion, which should satisfy the
following premise:

𝑑𝐼
1

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0
> 0 or 𝑑𝐼

2

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0
> 0. (3)

Taking it into (1), we can obtain the initial condition of
the susceptible individuals in city 1 and city 2:

𝑠
0

1
>
𝑏 + 𝛾

𝛽
or 𝑠

0

2
< 𝑁 − 𝑖

0

1
− 𝑖
0

2
−
𝑏 + 𝛾

𝛽
. (4)

Equation (4) shows that the spread of epidemic happens
only when 𝑠0

1
and 𝑠0
2
meet the previous initial conditions.

3.2. Existence of the System Equilibrium Solution. Generally,
it is difficult to obtain the analytic solution of (1). To analyze
the epidemic diffusion, we consider the stable state of (1).
Considering that 𝑏 = 𝑑 and expunging 𝑆

2
, (1) can be rewritten

as

𝑑𝑆
1

𝑑𝑡
= −𝑎
1
𝑆
1
+ 𝑎
2
(𝑁 − 𝑆

1
− 𝐼
1
− 𝐼
2
) − 𝛽𝑆

1
𝐼
1
+ (𝑏 + 𝛾) 𝐼

1
,

𝑑𝐼
1

𝑑𝑡
= 𝛽𝑆
1
𝐼
1
− (𝑏 + 𝛾) 𝐼

1
,

𝑑𝐼
2

𝑑𝑡
= 𝛽 (𝑁 − 𝑆

1
− 𝐼
1
− 𝐼
2
) 𝐼
2
− (𝑏 + 𝛾) 𝐼

2
.

(5)

Letting 𝑑𝐼
1
/𝑑𝑡 = 0, we can get 𝐼

1
= 0 or 𝑆

1
= (𝑏 + 𝛾)/𝛽.

Similarly, letting 𝑑𝐼
2
/𝑑𝑡 = 0, we can obtain 𝐼

2
= 0 or 𝑆

1
+ 𝐼
1
+

𝐼
2
= 𝑁− ((𝑏 + 𝛾)/𝛽). With the partial derivatives 𝑑𝑆

1
/𝑑𝑡 = 0,

𝑑𝐼
1
/𝑑𝑡 = 0, and 𝑑𝐼

2
/𝑑𝑡 = 0, we can obtain one equilibrium

point of the SIS epidemic diffusion system intuitively when
𝐼
1
= 0 and 𝐼

2
= 0:

𝑃
1
= (𝑆
1
, 𝐼
1
, 𝐼
2
) = (

𝑎
2

𝑎
1
+ 𝑎
2

𝑁, 0, 0) . (6)

From (6) we can see that both numbers of infected
individuals in city 1 and city 2 are zero, which indicate that
epidemic diffusion in these two cities does not happen, and all
the individuals in these two cities are susceptible individuals
at last. Herein, we call it disease-free equilibrium point.

When 𝐼
1
= 0 and 𝑆

1
+ 𝐼
1
+ 𝐼
2
= 𝑁 − ((𝑏 + 𝛾)/𝛽), we

can obtain the second equilibrium point of the SIS epidemic
diffusion system:

𝑃
2
= (𝑆
1
, 𝐼
1
, 𝐼
2
) = (

𝑎
2

𝑎
1

⋅
𝑏 + 𝛾

𝛽
, 0,𝑁 −

𝑎
1
+ 𝑎
2

𝑎
1

⋅
𝑏 + 𝛾

𝛽
) .

(7)

From (7), when the SIS epidemic diffusion system is
stable, the number of infected individuals in city 1 is zero, and
some infected individuals in city 2 still exist. In this condition,
we call it the endemic equilibrium point.

Likewise, when 𝑆
1
= (𝑏 + 𝛾)/𝛽 and 𝐼

2
= 0, we can obtain

the third equilibrium point of the SIS epidemic diffusion
system:

𝑃
3
= (𝑆
1
, 𝐼
1
, 𝐼
2
) = (

𝑏 + 𝛾

𝛽
,𝑁 −

𝑎
1
+ 𝑎
2

𝑎
2

⋅
𝑏 + 𝛾

𝛽
, 0) . (8)

In line with the above work, when the SIS epidemic
diffusion system is stable, the number of infected individuals
in city 2 is zero, and some infected individuals in city 1 still
exist. So it is called endemic equilibrium point as well.

It is worth mentioning that, when 𝑆
1
= (𝑏 + 𝛾)/𝛽 and

𝑆
1
+ 𝐼
1
+ 𝐼
2
= 𝑁− ((𝑏 + 𝛾)/𝛽), there is 𝑑𝑆

1
/𝑑𝑡 = (𝑎

2
−𝑎
1
) ⋅ (𝑏 +

𝛾)/𝛽 ̸= 0 for that 𝑎
1
̸= 𝑎
2
. That means, under the conditions of

𝑆
1
= (𝑏 + 𝛾)/𝛽 and 𝑆

1
+ 𝐼
1
+ 𝐼
2
= 𝑁 − ((𝑏 + 𝛾)/𝛽), there is no

solution for the simultaneous equations 𝑑𝑆
1
/𝑑𝑡 = 0, 𝑑𝐼

1
/𝑑𝑡 =

0, and 𝑑𝐼
2
/𝑑𝑡 = 0.

3.3. Stability of the System Equilibrium Solution

Lemma 1. Disease-free equilibrium point 𝑃
1
in the SIS epi-

demic diffusion system is stable onlywhen𝛽 < min{(𝑎
1
+𝑎
2
)(𝑏+

𝛾)/𝑎
1
𝑁, (𝑎
1
+ 𝑎
2
)(𝑏 + 𝛾)/𝑎

2
𝑁}.

Proof. Letting 𝑃 = 𝑑𝑆
1
/𝑑𝑡, 𝑄 = 𝑑𝐼

1
/𝑑𝑡, and 𝑅 = 𝑑𝐼

2
/𝑑𝑡, the

Jacobi matrix of (5) can be obtained as follows:
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𝐽 =
(
(
(

(

𝜕𝑃

𝜕𝑆
1

𝜕𝑃

𝜕𝐼
1

𝜕𝑃

𝜕𝐼
2

𝜕𝑄

𝜕𝑆
1

𝜕𝑄

𝜕𝐼
1

𝜕𝑄

𝜕𝐼
2

𝜕𝑅

𝜕𝑆
1

𝜕𝑅

𝜕𝐼
1

𝜕𝑅

𝜕𝐼
2

)
)
)

)

=(

−𝑎
1
− 𝑎
2
− 𝛽𝐼
1
𝑏 + 𝛾 − 𝑎

2
− 𝛽𝑆
1

−𝑎
2

𝛽𝐼
1

𝛽𝑆
1
− (𝑏 + 𝛾) 0

−𝛽𝐼
2

−𝛽𝐼
2

𝛽 (𝑁 − 𝑆
1
− 𝐼
1
− 2𝐼
2
) − (𝑏 + 𝛾)

) . (9)

For 𝑃
1
= (𝑆
1
, 𝐼
1
, 𝐼
2
) = (𝑎

2
/(𝑎
1
+ 𝑎
2
)𝑁, 0, 0), the Jacobi matrix

𝐽 can be rewritten as follows:

𝐽
𝑃
1

=
(
(

(

−𝑎
1
− 𝑎
2
𝑏 + 𝛾 − 𝑎

2
−
𝑎
2
𝑁

𝑎
1
+ 𝑎
2

𝛽 −𝑎
2

0
𝑎
2
𝑁

𝑎
1
+ 𝑎
2

𝛽 − (𝑏 + 𝛾) 0

0 0
𝑎
1
𝑁

𝑎
1
+ 𝑎
2

𝛽 − (𝑏 + 𝛾)

)
)

)

(10)

According to the Jacobi matrix 𝐽
𝑃
1

, it is easy to obtain the
secular equation of (5):

(𝜆 + 𝑎
1
+ 𝑎
2
) (𝜆 + 𝑏 + 𝛾 −

𝑎
2
𝑁

𝑎
1
+ 𝑎
2

𝛽)

× (𝜆 + 𝑏 + 𝛾 −
𝑎
1
𝑁

𝑎
1
+ 𝑎
2

𝛽) = 0.

(11)

The three latent roots of this secular equation are −𝑎
1
−

𝑎
2
, 𝑎
2
𝑁/(𝑎
1
+ 𝑎
2
)𝛽 − 𝑏 − 𝛾, and 𝑎

1
𝑁/(𝑎
1
+ 𝑎
2
)𝛽 − 𝑏 −

𝛾. Based on Routh-Hurwitz stability criterion, only when
𝛽 < (𝑎

1
+ 𝑎
2
)(𝑏 + 𝛾)/𝑎

1
𝑁 and 𝛽 < (𝑎

1
+ 𝑎
2
)(𝑏 + 𝛾)/𝑎

2
𝑁,

three latent roots of the secular equation would have negative

real parts, simultaneously, and then 𝑃
1
= (𝑆

1
, 𝐼
1
, 𝐼
2
) =

(𝑎
2
/(𝑎
1
+ 𝑎
2
)𝑁, 0, 0) is the stable solution of the differential

equations.

Lemma 2. Endemic equilibrium point 𝑃
2
in the SIS epidemic

diffusion system is stable only when 𝑎
2
< 𝑎
1
and 𝛽 > (𝑎

1
+

𝑎
2
)(𝑏 + 𝛾)/𝑎

1
𝑁.

Proof. As far as we are concerned, if the endemic equilibrium
point𝑃

2
= (𝑆
1
, 𝐼
1
, 𝐼
2
) = (𝑎

2
/𝑎
1
⋅(𝑏+𝛾)/𝛽, 0,𝑁−(𝑎

1
+𝑎
2
)/𝑎
1
⋅(𝑏+

𝛾)/𝛽) exists, it should satisfy condition 𝐼
2
> 0 firstly. Namely,

the propagation coefficient 𝛽 should satisfy 𝛽 > (𝑎
1
+ 𝑎
2
)(𝑏 +

𝛾)/𝑎
1
𝑁. Then, similar to Lemma 1, we can obtain the Jacobi

matrix for 𝑃
2
as follows:

𝐽
𝑃
2

=(

(

−𝑎
1
− 𝑎
2

𝑏 + 𝛾 − 𝑎
2
−
𝑎
2

𝑎
1

(𝑏 + 𝛾) −𝑎
2

0
𝑎
2

𝑎
1

(𝑏 + 𝛾) − (𝑏 + 𝛾) 0

𝑎
1
+ 𝑎
2

𝑎
1

(𝑏 + 𝛾) − 𝛽𝑁
𝑎
1
+ 𝑎
2

𝑎
1

(𝑏 + 𝛾) − 𝛽𝑁
𝑎
1
+ 𝑎
2

𝑎
1

(𝑏 + 𝛾) − 𝛽𝑁

)

)

. (12)

According to the Jacobi matrix 𝐽
𝑃
2

, we can obtain the
secular equation of (5) again:

[𝜆 + 𝑏 + 𝛾 −
𝑎
2

𝑎
1

(𝑏 + 𝛾)] (𝜆
2
+ 𝐴
1
𝜆 + 𝐴

0
) = 0, (13)

where 𝐴
0
= 𝑎
1
[𝛽𝑁 − ((𝑎

1
+ 𝑎
2
)/𝑎
1
)(𝑏 + 𝛾)] and 𝐴

1
= 𝑎
1
+

𝑎
2
+ 𝛽𝑁 − ((𝑎

1
+ 𝑎
2
)/𝑎
1
)(𝑏 + 𝛾). Obviously, one of the latent

roots of (13) is 𝜆∗
1
= ((𝑎
2
− 𝑎
1
)/𝑎
1
)(𝑏 + 𝛾). Only when 𝑎

2
< 𝑎
1
,

the latent root 𝜆∗
1
is negative. On the other hand, when 𝛽 >

(𝑎
1
+ 𝑎
2
)(𝑏 + 𝛾)/𝑎

1
𝑁, there is 𝐴

0
> 0 and 𝐴

1
> 0. Based on

Routh-Hurwitz stability criterion, the other two latent roots
of (13) will be with negative real parts. Therefore, 𝑃

2
is the

stable solution of the simultaneous differential equations only
when 𝑎

2
< 𝑎
1
and 𝛽 > (𝑎

1
+ 𝑎
2
)(𝑏 + 𝛾)/𝑎

1
𝑁.

Lemma 3. Endemic equilibrium point 𝑃
3
in the SIS epidemic

diffusion system is stable only when 𝑎
1
< 𝑎
2
and 𝛽 > ((𝑎

1
+

𝑎
2
)(𝑏 + 𝛾))/𝑎

2
𝑁.
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Proof. Similar to Lemma 2, if the endemic equilibrium point
𝑃
3
= (𝑆
1
, 𝐼
1
, 𝐼
2
) = ((𝑏+𝛾)/𝛽,𝑁−(𝑎

1
+𝑎
2
)/𝑎
2
⋅(𝑏+𝛾)/𝛽, 0) exists,

it should satisfy condition 𝐼
1
> 0. That is, the propagation

coefficient 𝛽 should satisfy 𝛽 > (𝑎
1
+ 𝑎
2
)(𝑏 + 𝛾)/𝑎

2
𝑁. Then,

we can obtain the Jacobi matrix for 𝑃
3
as follows:

𝐽
𝑃
3

=(

(

−𝑎
1
− 𝑎
2
− 𝛽𝑁 +

𝑎
1
+ 𝑎
2

𝑎
2

(𝑏 + 𝛾) −𝑎
2

−𝑎
2

𝛽𝑁 −
𝑎
1
+ 𝑎
2

𝑎
2

(𝑏 + 𝛾) 0 0

0 0
𝑎
1
− 𝑎
2

𝑎
2

(𝑏 + 𝛾)

)

)

. (14)

Again, according to the Jacobi matrix 𝐽
𝑃
3

, we can obtain
the secular equation of (5):

[𝜆 −
𝑎
1
− 𝑎
2

𝑎
2

(𝑏 + 𝛾)] (𝜆
2
+ 𝐵
1
𝜆 + 𝐵
0
) = 0, (15)

where 𝐵
0
= 𝑎
2
[𝛽𝑁 − ((𝑎

1
+ 𝑎
2
)/𝑎
2
)(𝑏 + 𝛾)] and 𝐵

1
= 𝑎
1
+

𝑎
2
+ 𝛽𝑁 − ((𝑎

1
+ 𝑎
2
)/𝑎
2
)(𝑏 + 𝛾). Obviously, one of the latent

roots of (15) is 𝜆∗
1
= ((𝑎
1
− 𝑎
2
)/𝑎
2
)(𝑏 + 𝛾). Only when 𝑎

1
< 𝑎
2
,

the latent root 𝜆∗
1
is negative. On the other hand, when 𝛽 >

(𝑎
1
+ 𝑎
2
)(𝑏 + 𝛾)/𝑎

2
𝑁, there is 𝐵

0
> 0 and 𝐵

1
> 0. Based on

Routh-Hurwitz stability criterion, the other two latent roots
of (15) will be with negative real parts. Therefore, 𝑃

3
is the

stable solution of the simultaneous differential equations only
when 𝑎

1
< 𝑎
2
and 𝛽 > (𝑎

1
+ 𝑎
2
)(𝑏 + 𝛾)/𝑎

2
𝑁.

Remark 4. From Lemmas 1, 2, and 3, we can draw a conclu-
sion that the diffusion threshold of the SIS epidemic diffusion
model relies on the migrating-out coefficients of susceptible
individuals of the two cities 𝑎

𝑖
(𝑖 = 1, 2); it also depends on

the three key parameters: the total individuals of the two cities
𝑁, the birth rate 𝑏, and the recovery rate 𝛾.

4. Numerical Simulation and Key
Parameters Discussion

In this section, we take a numerical simulation to test
how well the proposed model may be applied in practice.
The initial values of parameters in the proposed epidemic
diffusion model are acquired from Liu and Zhao [21] and by
interviews with public health care administrative personnel,
which are given as follows: 𝛽 = 8 × 10−6, 𝑏 = 2 × 10−4,
𝛾 = 0.4, 𝑎

1
= 0.02, 𝑎

2
= 0.01, 𝑁 = 105, 𝑆

1
(0) = 0.7 ×

10
5, 𝐼
1
(0) = 600, and 𝐼

2
(0) = 400. We use MATLAB 7.0

mathematical solver together with Runge-Kutta method to
simulate the epidemic model. The test is performed on an
Intel (R) Core (TM) i3 CPU 2.4GHz with 2GB RAM under
Microsoft Windows XP. Figure 2 is the evolution trajectories
of the epidemicmodel.The curves, respectively, represent the
different groups of people over time in these two cities.

From Figure 2, one can see that the evolution trajec-
tories of the SIS epidemic model with population migra-
tion between two cities are complicated. The number of
susceptible individuals in city 1 decreases gradually with
time increasing, while the number of susceptible individuals

in city 2 increases at first and then decreases. On the
other hand, the number of infected individuals in city 1
increases at first and then decreases, while the number
of infected individuals in city 2 increases gradually with
time increasing. However, all the susceptible individuals
and infected individuals in city 1 and city 2 tend to the
fixed values when time is long enough (𝑡 > 300). Mean-
while, the limit value of the SIS epidemic diffusion model
with population migration between two cities is 𝑄

1
=

(𝑆
1
, 𝑆
2
, 𝐼
1
, 𝐼
2
) = (2.5013 × 104, 5.0025 × 104, 0, 2.4961 ×

104).
In line with the initial values we defined previously, we

have 𝑎
2
< 𝑎
1
and 𝛽 > (𝑎

1
+ 𝑎
2
)(𝑏 + 𝛾)/𝑎

1
𝑁. According

to Lemma 2 in Section 3, one can get that the number of
susceptible and infected individuals will be converged at𝑄

2
=

(𝑆∗
1
, 𝑆∗
2
, 𝐼∗
1
, 𝐼∗
2
) = (2.50125 × 104, 5.00245 × 104, 0, 2.4963 ×

104). One can see that 𝑄
1
is very close to 𝑄

2
, which is not

a surprise, as it is consistent with the analytical conclusion
in the last section. Once an epidemic outbreak occurs,
we are more concerned with the change regularity of the
infected individuals in practice. Therefore, in the following
subsections, we will discuss the relationship between the key
parameters and the number of the infected individuals.

Figure 3 demonstrates the change of the number of the
infected individuals in both cities with different propagation
coefficients. It is easy to know that the evolution trajectories of
infected individuals in city 1 are different from those in city 2
for any certain propagation coefficient 𝛽. From Figure 3(a),
we can see that, in the first some days, the larger 𝛽 is, the
faster spread of the epidemic in city 1 is. However, from
Figure 3(b), we cannot get the similar conclusion. Number
of infected individuals in city 2 is not in direct proportion
to the propagation coefficient 𝛽. It is worth mentioning that,
when the number of infected individuals in city 1 reaches zero,
the number of infected individuals in the other city is still
positive when the epidemic diffusion system is stable. This is
consistent with Lemma 2 in Section 3. Similarly, if the initial
conditions changed, we can also test and verify the other
lemmas.

Figure 4 demonstrates the change of the number of the
infected individualss in both citieswith different recovery rate
𝛾. As shown in Figure 4(a), when 𝛾 = 0.2, the maximum
number of infected individuals in city 1 is about 3.3× 104.
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Figure 2: Evolution trajectories of the SIS epidemic model.

When 𝛾 = 0.3, the number is about 1.5 × 104. When 𝛾 = 0.4,
the maximum number of infected individual in city 1 is less
than 0.5 × 104. It informs us that the larger the recovery
rate constant is, the smaller of the maximum number of
infected individuals in city 1 is. Similar phenomenon can also
be observed from Figure 4(b) in city 2. Such figure informs
us that it is important to improve the recovery rate as much
as possible when controlling an epidemic spread.

Figure 5 shows the change of the number of infected indi-
viduals in both cities with differentmigrating-out coefficients
𝑎
1
and 𝑎

2
. According to Figure 5, one can observe that no

matter in city 1 or in city 2, the evolution trajectories of the
infected individuals may generate a serious change when the
migrating-out coefficient of susceptible individuals changed.
For example, in city 1, when 𝑎

2
< 𝑎
1
(𝑎
1
= 0.02, 𝑎

2
= 0.01 and

𝑎
1
= 0.02, 𝑎

2
= 0.015), the number of infected individuals

tends to be zero. However, when 𝑎
1
< 𝑎
2
(𝑎
1
= 0.02, 𝑎

2
=

0.025 and 𝑎
1
= 0.02, 𝑎

2
= 0.03), the number of infected

individuals tends to be a positive constant above 1 × 104. In
other words, with the increment of migrating-out coefficient
in city 2, the limit number of infected individuals in city 1
may become positive from zero. The larger the migrating-
out coefficient in city 2 is, the larger the limit number of
infected individuals in city 1 is. Opposite to city 1, when
𝑎
2
< 𝑎
1
(𝑎
1
= 0.02, 𝑎

2
= 0.01 and 𝑎

1
= 0.02, 𝑎

2
= 0.015),

the number of infected individuals in city 2 tends to be a
positive constant above 1 × 104. When 𝑎

1
< 𝑎
2
(𝑎
1
= 0.02,

𝑎
2
= 0.025 and 𝑎

1
= 0.02, 𝑎

2
= 0.03), the number of

infected individuals is very small and tends to be zero at
last. It informs us that with the increment of migrating-out
coefficient in city 2, the limit number of infected individuals
in city 2 may become zero from a positive value. The larger
the migrating-out coefficient in city 2 is, the smaller the limit
number of infected individuals in city 2 is. To summarize,
decreasing the migration population in only one city is not
as effective as improving the recovery rate for controlling the
epidemic diffusion. However, we can find a trade-off between
the migrating-out coefficients in these two cities and hence
can control the infected individuals in both cities at last.
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Figure 3: Number of the infected individuals versus different 𝛽.

5. Conclusions

In this paper, we considered an SIS epidemic diffusion
model with population migration between two cities, and
proved that the model has one disease-free equilibrium point
and two endemic equilibrium points. To summarize, our
model differs from past researches in at least two aspects.
Firstly, unequal migration rates between the two cities are
considered; secondly, only the susceptible individuals can
migrate between the two cities. Numerical simulation shows
that number of infected individuals in one city can reach zero,
while the number of infected individuals in the other city is
still positive when the epidemic diffusion system is stable.
One the other hand, decreasing populationmigration in only
one city is not as effective as improving the recovery rate for
controlling the epidemic diffusion.

As a limitation of the model, disease-related death rate
of infected individuals in both cities was not considered.
Actually, some epidemics would cause death, and thus con-
sideration of a disease-related death rate would make it more
accurate. On the other hand, epidemic diffusion model with
populationmigration amongmore than two cities should also
be taken into account. A discussion of possible extension to
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Figure 4: Number of the infected individuals versus different 𝛾.
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Figure 5: Number of the infected individuals versus different 𝑎
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and 𝑎
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.

more than two cities would bemore realistic and the research
would be more practical.

Acknowledgments

This work has been partially supported by the National Nat-
ural Science Foundation of China (no. 71301076), the MOE
(Ministry of Education in China) Project of Humanities and
Social Sciences (no. 11YJCZH109), the Fundamental Research
Funds for the Central Universities (nos. 30920130121006,
30920130132011), and the Zijin Intelligent Program inNanjing
University of Science and Technology (no. 2013-ZJ0211).

References

[1] N. P. Rachaniotis, T. K. Dasaklis, and C. P. Pappis, “A deter-
ministic resource scheduling model in epidemic control: a case
study,” European Journal of Operational Research, vol. 216, no. 1,
pp. 225–231, 2012.

[2] Z. Gao, D. Kong, and C. Gao, “Modeling and control of complex
dynamic systems: applied mathematical aspects,” Journal of
AppliedMathematics, vol. 2012, Article ID 869792, 5 pages, 2012.

[3] B. K.Mishra andD. K. Saini, “SEIRS epidemicmodel with delay
for transmission of malicious objects in computer network,”



8 Journal of Applied Mathematics

AppliedMathematics and Computation, vol. 188, no. 2, pp. 1476–
1482, 2007.

[4] C. J. Sun and Y.-H. Hsieh, “Global analysis of an SEIR model
with varying population size and vaccination,” Applied Mathe-
matical Modelling, vol. 34, no. 10, pp. 2685–2697, 2010.

[5] M. Y. Li, J. R. Graef, L. C. Wang, and J. Karsai, “Global dy-
namics of a SEIR model with varying total population size,”
Mathematical Biosciences, vol. 160, no. 2, pp. 191–213, 1999.

[6] J. Zhang, J. Q. Li, and Z. Ma, “Global dynamics of an SEIR
epidemic model with immigration of different compartments,”
Acta Mathematica Scientia B, vol. 26, no. 3, pp. 551–567, 2006.

[7] J. Zhang and Z. Ma, “Global dynamics of an SEIR epidemic
model with saturating contact rate,” Mathematical Biosciences,
vol. 185, no. 1, pp. 15–32, 2003.

[8] K. I. Kim, Z. G. Lin, and L. Zhang, “Avian-human influenza
epidemic model with diffusion,”Nonlinear Analysis: Real World
Applications, vol. 11, no. 1, pp. 313–322, 2010.

[9] J. L. Liu and T. L. Zhang, “Epidemic spreading of an SEIRS
model in scale-free networks,” Communications in Nonlinear
Science and Numerical Simulation, vol. 16, no. 8, pp. 3375–3384,
2011.

[10] M. Samsuzzoha, M. Singh, and D. Lucy, “Numerical study of an
influenza epidemic model with diffusion,” Applied Mathematics
and Computation, vol. 217, no. 7, pp. 3461–3479, 2010.

[11] M. Samsuzzoha, M. Singh, and D. Lucy, “A numerical study on
an influenza epidemic model with vaccination and diffusion,”
Applied Mathematics and Computation, vol. 219, no. 1, pp. 122–
141, 2012.

[12] P. L. Shi and L. Z. Dong, “Dynamical models for infectious
diseases with varying population size and vaccinations,” Journal
of Applied Mathematics, vol. 2012, Article ID 824192, 20 pages,
2012.

[13] H. W. Hethcote, “Qualitative analyses of communicable disease
models,”Mathematical Biosciences, vol. 28, no. 3-4, pp. 335–356,
1976.

[14] C. M. Kribs-Zaleta and J. X. Velasco-Hernández, “A simple
vaccination model with multiple endemic states,”Mathematical
Biosciences, vol. 164, no. 2, pp. 183–201, 2000.

[15] L. S. Liebovitch and I. B. Schwartz, “Migration induced epi-
demics: dynamics of flux-based multipatch models,” Physics
Letters A, vol. 332, no. 3-4, pp. 256–267, 2004.

[16] A. Sani and D. P. Kroese, “Controlling the number of HIV
infectives in a mobile population,” Mathematical Biosciences,
vol. 213, no. 2, pp. 103–112, 2008.

[17] Y. Yang, J.Wu, J. Li, and Z.Ma, “Global dynamics—convergence
to equilibria—of epidemic patch models with immigration,”
Mathematical and ComputerModelling, vol. 51, no. 5-6, pp. 329–
337, 2010.

[18] M. Wolkewitz and M. Schumacher, “Simulating and analysing
infectious disease data in a heterogeneous population with
migration,” Computer Methods and Programs in Biomedicine,
vol. 104, no. 2, pp. 29–36, 2011.

[19] J. M. Lee, D. Choi, G. Cho, and Y. Kim, “The effect of public
health interventions on the spread of influenza among cities,”
Journal of Theoretical Biology, vol. 293, pp. 131–142, 2012.

[20] M. Liu and Y. Xiao, “Modeling and analysis of epidemic
diffusionwithin small-world network,” Journal of AppliedMath-
ematics, vol. 2012, Article ID 841531, 14 pages, 2012.

[21] M. Liu and L. Zhao, “Analysis for epidemic diffusion and emer-
gency demand in an anti-bioterrorism system,” International
Journal ofMathematicalModelling andNumerical Optimisation,
vol. 2, no. 1, pp. 51–68, 2011.


