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The study presents an axisymmetric laminar boundary layer flow of a viscous incompressible fluid and heat transfer over a
stretching cylinder embedded in a porous medium. A suitable similarity transformation is employed to transform the partial
differential equations corresponding to the momentum and heat equations into nonlinear ordinary differential equations. The
resultant ordinary differential equations are then solved using a successive relaxation method (SRM). The effects of significant
parameters on the velocity and temperature profiles have been analyzed graphically. The obtained results are also compared with
previously published results in some special cases and were found to be in excellent agreement. The skin friction as well as the heat
transfer rate at the surface are increased as the values of the curvature parameter increase.

1. Introduction

The study of boundary layer flow and heat transfer due to
stretching flat plates or cylinders has gained considerable
attention due to its applications in fibre technology and
extrusion processes, as well as theoretical interest. Such appli-
cations include the cooling of metallic plates, the boundary
layer along a liquid film in condensation processes, boundary
layer along material handling conveyers, among others. The
rate of heat transfer at the stretching surfaces determines the
quality of the final product. Sakiadis [1, 2] pioneered the study
of boundary layer flow on amoving continuous solid surface.
Thereafter, Crane [3] extended this concept to a stretching
sheet with linear surface speed. The study presented an exact
solution for the steady two-dimensional flowover a stretching
surface in a quiescent fluid. Since then, considerable work has
been done by many authors who considered various aspects
of this important field (e.g., Laha et al. [4]; Afzal [5]; Prasad
et al. [6]; Abel and Mahesha [7]; Abel et al. [8]; Bataller [9]).

Flow over cylinders are of two types. They may be
considered to be two-dimensional if the body radius is large
compared to the boundary layer thickness. On the other
hand, if the cylinder is thin/slender, the radius of the cylinder
may be of the same order as that of the boundary layer
thickness. In such a scenario, the flow may be considered
as axisymmetric instead of two-dimensional (Elbarbary and
Elgazery [10], Datta et al. [11], among others).

Lin and Shih [12, 13] studied laminar boundary layer
and heat transfer along horizontally and vertically moving
cylinders with constant velocity. The studies found that
similarity solutions could not be obtained due to the cur-
vature effect of the cylinder. However, Ishak and Nazar [14]
showed that the similarity solutions may be obtained by
assuming that the cylinder is stretched with linear velocity
in the axial direction and ascertained that their study may
be regarded as the extension of the papers by Grubka and
Bobba [15] and Ali [16] from a stretching sheet to a stretching
cylinder.
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Mukhopadhyay [17] presented an axisymmetric laminar
boundary layer mixed convection flow of a viscous incom-
pressible fluid and heat transfer towards a stretching cylinder
embedded in a porous medium. Mukhopadhyay [18] ana-
lyzed the flow and thermal characteristics of boundary layer
axisymmetric flow and heat transfer along a stretching cylin-
der in a porous medium. Rangi and Ahmad [19] numerically
studied the boundary layer flow of viscous incompressible
fluid over a stretching cylinder with variable conductivity.
Elbashbeshy et al. [20] discussed laminar boundary layer
flow of an incompressible viscous fluid along a stretching
horizontal surface embedded in a porous medium in the
presence of a heat source or sink with suction/injection.
Varjravelu et al. [21] presented numerical solutions to the
unsteady convective boundary layer flow of a viscous fluid at
a vertical stretching surfacewith variable transport properties
and thermal radiation.

Sarkar et al. [22] investigated the buoyancy driven mixed
convective flow and heat transfer characteristics of water-
based nanofluid past a cylinder. Soid et al. [23] studied a
steady two-dimensional magnetohydrodynamics flow and
heat transfer over a stretching vertical sheet influenced by
radiation and porosity. Elbashbeshy et al. [24] discussed
laminar boundary layer flow of an incompressible viscous
fluid along a stretching horizontal cylinder in a porous
medium.More recently, Chatterjee and Raja [25] investigated
numerically the problem of fluid flow and heat transfer
subjected to superimposed thermal buoyancy around tandem
square cylinders. More recently, Mukhopadhyay and Gorla
[26] presented an axisymmetric laminar boundary layer flow
of a viscous incompressible fluid and heat transfer towards a
stretching cylinder.

The present study seeks to extend the work of Rangi
and Ahmad [19] to include porosity while also extending
the work of Mukhopadhyay [18] to include variable thermal
conductivity. The study will be carried out using a newly
developed numerical scheme known as the successive relax-
ation method. This method is based on simple iteration
schemes which are formed by reducing the order of the
momentum equation which is then followed by linearizing
the nonlinear equations. For more details, please see [27].
The rest of the paper is outlined as follows: in Section 2 we
give the model formulation of the problem; in Section 3, the
successive relaxation method is given in detail; in Section 4,
the results and discussion are given; and Section 5 gives the
conclusions based on the findings.

2. Mathematical Formulation

We consider the steady, axisymmetric boundary layer flow
of a viscous and incompressible fluid along a continuously
stretching horizontal cylinder of radius 𝑅 embedded in a
porous medium.We assume that the stretching velocity𝑈(𝑥)
and the surface temperature are of the forms 𝑈(𝑥) = 𝑈

0
(𝑥/𝑙)

and 𝑇
𝑤
(𝑥) = 𝑇

∞
+ 𝑇
∞
(𝑥/𝑙), respectively, where 𝑈

0
and

𝑇
0
are constants and 𝑇

∞
and 𝑙 are the ambient temperature

and characteristic length, respectively. Under these assump-
tions together with the boundary layer approximations,

the equations which model the current problem under
consideration are given as
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where 𝑢 and V are velocity components in the 𝑥- and 𝑟-
directions, respectively, 𝑇 is the fluid temperature, 𝛼 is the
thermal diffusivity, ] is the kinematic viscosity, and 𝐾

𝑝

is the permeability parameter. The appropriate boundary
conditions are

𝑢 = 𝑈
𝑤
(𝑥) , V = 0, 𝑇 = 𝑇

𝑤
(𝑥) , at 𝑟 = 𝑅,

𝑢 󳨀→ 0, 𝑇 󳨀→ 𝑇
∞

as 𝑟 󳨀→ ∞.

(4)

2.1. Similarity Transformation. We then transform the
momentum and energy equations into the corresponding
ordinary differential equations using the following (Ishak
and Nazar [14]):

𝜂 =
𝑟
2
− 𝑅
2

2𝑅
(
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𝑤
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1/2

,
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∞

𝑇
𝑤
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∞

,

(5)

where 𝑓(𝜂) is the dimensionless stream function, 𝜂 is the
similarity variable, and 𝜃 is the dimensionless temperature.
The continuity equation is automatically satisfied through
the variables. For liquid metals, it had been observed that
the thermal conductivity 𝛼 varies with temperature in an
approximately linear relationship in the range from 0∘F to
400∘F. To that end, we therefore assume 𝛼 = 𝛼

∞
(1 + 𝜖𝜃).

Upon introducing the relations (5) into (2)-(3), we obtain the
following nonlinear systemof ordinary differential equations:
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subject to the boundary conditions

𝑓 (0) = 0, 𝑓
󸀠
(0) = 1, 𝜃 (0) = 1, (8)

𝑓
󸀠
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where prime denotes the differentiation with respect to 𝜂, 𝛾 =
𝑅
−1
(]𝑙/𝑈
0
)
1/2 is the curvature parameter, 𝐾 = ]𝑙/𝐾

𝑝
𝑈
0
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the permeability parameter, and Pr = 𝜇𝑐
𝑝
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The physical quantities of interest in engineering are the

skin friction coefficient𝐶
𝑓
and the local Nusselt number Nu
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respectively, where 𝜏
𝑤

= 𝜇(𝜕𝑢/𝜕𝑟)
𝑟=𝑅

is the surface shear
stress and 𝑞

𝑤
= −𝜅(𝜕𝑇/𝜕𝑟)

𝑟=𝑅
is the surface heat flux. Upon

substituting the similarity transformations (5) into (10) we
obtain

1
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Nu
𝑥
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𝑥

= −𝜃
󸀠
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where Re
𝑥
= 𝑈𝑥/] is the local Reynolds number.

3. Solution Using the Successive
Relaxation Method

The Successive Relaxation Method has been used with great
success to solve boundary problems; see, for example, [27–
29]. For the current problem, the method begins by letting
𝑝 = 𝑓

󸀠 so that 𝑝󸀠 = 𝑓
󸀠󸀠, 𝑝󸀠󸀠 = 𝑓

󸀠󸀠󸀠, and (6) becomes
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2
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but (7) remains unchanged. Proceeding in a manner similar
to the Gauss-Seidel method, we replace both (6) and (12) with
the iterative scheme defined by
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where it follows from boundary conditions (8) and (9) that
𝑓
𝑟+1

(0) = 0, (16)
𝑝
𝑟+1

(0) = 1, 𝑝
𝑟+1

(∞) = 0, (17)
𝜃
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(∞) = 0. (18)
Equations (13)–(15) subject to conditions (16)–(18) will be
solved using the Chebyshev Spectral Collocation method.
Before we do this, we start by using the domain truncation
method to replace the semi-infinite interval [0,∞) with the
finite interval [0, 𝐿] on the 𝜂 axis, where 𝐿 is sufficiently large.
For the sake of convenience, we use the transformation

𝜂 (𝜉) =
𝐿

2
(𝜉 + 1) ; −1 ≤ 𝜉 ≤ 1 (19)

to map interval [0, 𝐿] on the 𝜂 axis to interval [−1, 1] on the
𝜉 axis. On the latter, we form a computational grid using the
Chebyshev collocation points generated by the formula

𝜂
𝑗
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𝑁
) ; 𝑗 = 0, 1, . . . , 𝑁. (20)

When Chebyshev differentiation [30] is applied on iterative
scheme defined by (13)–(18), we end upwith the discrete form
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As a consequence of the transformation (19), we have 𝐷 =

(2/𝐿)𝐷 where 𝐷 is the Chebyshev differentiation matrix.
Since (21)–(23) are decoupled, they may be solved seperately.
This is preceded by applying boundary conditions as illus-
trated below:
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In order to satisfy the boundary conditions (16), (17), and (18),
we choose initial approximations

𝑓
0
(𝜂) = 1 − 𝑒

−𝜂
,

𝑝
0
(𝜂) = 𝜃

0
(𝜂) = 𝑒

−𝜂
,

(28)

which if used with iterative scheme defined by (13)–(18)
generates subsequent approximations 𝑓

𝑟
, 𝑝
𝑟
, 𝜃
𝑟
for each 𝑟 =

1, 2, 3, . . ..

4. Results and Discussion

In this section, we give the SRM results for the main parame-
ters that have significant effects on the fluid flow velocity and
temperature. We remark that all the SRM results presented in
this work were obtained using𝑁 = 50 collocation points, and
also convergence was achieved after as few as five iterations.
Also the infinity value (𝜂

∞
) was taken to be 50. Unless

otherwise stated, the default values for the parameters are
taken as Pr = 0.71; 𝛾 = 0.1; 𝜖 = 0.2; 𝐾 = 1. In order
to validate the numerical method, it was compared with
the MATLAB routine 𝑏V𝑝4𝑐 which is an adaptive Lobatto
quadrature iterative scheme. Table 1 presents a comparison
between SRM approximate results, the 𝑏V𝑝4𝑐 results and
previous results for Pr = 1, and all other parameters being
equal to zero. From this table, we clearly observe that the SRM
results excellently agree with the 𝑏V𝑝4𝑐 results up to eight
significant figures; whereas previously obtained results are
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Table 1: Comparison of the SRM results of −𝜃󸀠(0) with those obtained by 𝑏V𝑝4𝑐 as well as previously obtained results.

Pr −𝜃
󸀠
(0)

[14] [15] [16] [18] SRM 𝑏V𝑝4𝑐

1.0 0.5820 0.5820 0.5801 0.5821 0.58197671 0.58197671

Table 2: Comparison of the SRM results of −𝑓󸀠󸀠(0), −𝜃󸀠(0) with
those obtained by 𝑏V𝑝4𝑐 for different values of the curvature
parameter.

𝛾
−𝑓
󸀠󸀠
(0) −𝜃

󸀠
(0)

𝑏V𝑝4𝑐 SRM 𝑏V𝑝4𝑐 SRM
0.0 1.41421356 1.41421356 0.33010615 0.33010615
0.25 1.52316810 1.52316810 0.37955209 0.37955209
0.5 1.62648794 1.62648794 0.42630480 0.42630480

correct only to four significant figures. It can also be remarked
that the cpu time for SRM is significantly less than that of
𝑏V𝑝4𝑐method. Convergence is achieved by SRM with as few
as ten iterations.

Table 2 displays the effect of the curvature parameter
on the skin friction and Nusselt number when all other
parameters are kept constant. Both the temperature and
velocity gradients at the surface are larger for larger values of
curvature parameter (𝛾), which produces larger skin friction
coefficient andNusselt number.The effect of the permeability
parameter 𝐾 and thermal conductivity parameter 𝜖, on the
skin friction and Nusselt number, are, respectively, depicted
on Table 3. We observe clearly from this table that the
absolute values of 𝑓󸀠󸀠(0) are increased by increasing the
permeability parameter. Hence, in order tominimize the skin
friction value which is usually looked for in an industrial
application, one needs to reduce the permeability of the
medium. The Nusselt number is reduced as the thermal
conductivity of the material increases.

The effects of the pertinent physical parameters in this
study on the velocity components and temperature distribu-
tions are depicted from Figures 1 to 7. Figure 1 displays the
effect of the curvature parameter 𝛾 on the horizontal velocity
profiles.We clearly observe in this figure that the effect of this
parameter on the horizontal component is very insignificant
within the dynamic region [0, 0.7] near the surface. Outside
this region, we observe that this velocity component increases
as 𝛾 increases.

The influence of the permeability parameter on the hor-
izontal velocity is depicted in Figure 2. From this figure, we
observe that when the permeability parameter is increased,
the velocity boundary layer is decreased. Thus, the fluid
velocity in the horizontal direction decreases. Figure 3 shows
the effect of the curvature of the cylinder on the transverse
velocity profiles. We observe that the transverse velocity
component is insignificantly affected by curvature parameter
within the dynamic region [0, 1.3]. Outside this dynamic
region, we see that as the curvature of the stretching cylinder
increases, this velocity component increases. Physically, as
𝛾 → 0, the outer surface of the cylinder behaves like a flat
surface. Thus, as 𝛾 increases, the viscosity effect is reduced
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Figure 1: Graph of the SRM solutions for the horizontal velocity for
different values of 𝛾.
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Figure 2: Effect of the 𝐾 on the horizontal velocity profiles.

due to that the contact area of the surface with fluid tends to
the tangential position.

In Figure 4, we display the effect of the permeability
parameter 𝐾 on the transverse velocity profiles. The trans-
verse velocity profiles are greatly reduced as the perme-
ability parameter increases. Figure 5 shows the effect of the
curvature parameter on the temperature profiles. It can be
clearly observed in this figure that there is no significant
effect within the dynamic region less than a unit. However,
after this region the temperature is enhanced by increasing
the values of the curvature parameter. Figure 6 displays
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Table 3: Comparison of the SRM results of −𝑓󸀠󸀠(0), −𝜃󸀠(0) with those obtained by 𝑏V𝑝4𝑐 for different values of the permeability parameter
and thermal conductivity parameter, respectively.

𝐾
−𝑓
󸀠󸀠
(0)

𝜖
−𝜃
󸀠
(0)

𝑏V𝑝4𝑐 SRM 𝑏V𝑝4𝑐 SRM
1.0 1.50188161 1.50188161 0.0 0.43791391 0.4379139
2.0 1.82359290 1.82359290 0.2 0.37955209 0.37955209
3.0 2.09341552 2.09341552 0.4 0.32962783 0.32962783
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Figure 3: Graph of the SRM solutions of the transverse velocity for
different values of 𝛾.
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Figure 4: Effect of the 𝐾 on the V-velocity profiles.

the effect of varying thermal conductivity on the temperature
distribution. As expected, increasing thermal conductivity
(or a higher viscosity) results in the thinning of the thermal
boundary layer and hence higher heat transfer rate at the
surface. This is clearly depicted in Figure 7.
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Figure 5: Graph of the SRM solutions of the temperature profiles
for different values of 𝛾.
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5. Conclusion

We have numerically analyzed the problem of laminar
boundary layer flow and heat transfer along a stretching
cylinder embedded in a porous medium with variable con-
ductivity applying a recently developed numerical method.
The system of partial differential equations governing
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Figure 7: Effect of the Pr on the temperature profiles.

the current problem was transformed into a set of ordinary
differential equations by using appropriate similarity trans-
formations. The investigation observed that the curvature of
the stretching cylinder has a very significant effect on both
the velocity and temperature fields. Both the skin friction
coefficient and localNusselt number increase as the curvature
increases. The flow properties were found to be significantly
influenced by the permeability parameter. The present study
also shows that the SRM is a very reliable, easy, and accurate
method which we trust that it can be used to solve even
more complex and complicated systems. It is hoped that the
current findings can be used as the basis for many scientific
and engineering applications.
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