
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 576379, 7 pages
http://dx.doi.org/10.1155/2013/576379

Research Article
𝐻
∞

Control for Linear Positive Discrete-Time Systems

Youmei Zhang,1,2 Qingling Zhang,1 and Tamaki Tanaka2

1 Institute of Systems Science, Northeastern University, Shenyang 110819, China
2Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

Correspondence should be addressed to Qingling Zhang; qlzhangneu1@163.com

Received 7 June 2013; Accepted 11 August 2013

Academic Editor: Wei-Shih Du

Copyright © 2013 Youmei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is concernedwith𝐻
∞
control for linear positive discrete-time systems. Positive systems are characterized by nonnegative

restriction on systems’ variables. This restriction results in some remarkable results which are available only for linear positive
systems. One of them is the celebrated diagonal positive definite matrix solutions to some existed well-known results for linear
systems without nonnegative restriction. We provide an alternative proof for criterion of𝐻

∞
norm by using separating hyperplane

theoremandPerron-Frobenius theorem for nonnegativematrices.We also consider𝐻
∞
control problem for linear positive discrete-

time systems via state feedback. Necessary and sufficient conditions for such problem are presented under controller gain with and
without nonnegative restriction, and then the desired controller gains can be obtained from the feasible solutions.

1. Introduction

Positive systems are widespread in many practical systems,
such as economic systems [1], biology systems [2], and
age-structured population models [3], whose variables are
required to be nonnegative and have no meaning with neg-
ative values. The explicit definition of a positive system is
that its state and output are always nonnegative for any
nonnegative initial state and any nonnegative input. Due to
the nonnegative restriction on systems’ variables, positive
systems are defined on cones rather than linear space. Hence,
there are excellent and remarkable outcomes which are avail-
able only for positive systems. One of them is the existence of
diagonal positive definite matrix solutions to some celebrated
results for linear systems without nonnegative restriction.
Therefore, the investigation of positive systems is interesting
and challenging and developed a new branch in systems
theory. Positive systems have been of great interest to many
researchers over several decades. A great number of results
have been reported in the literature; see, for instance, [3–16].

It is worth noting that convex optimization is a pow-
erful tool for analysis of positive systems. In [9–14], some
remarkable results for positive systems are studied using
convex optimization. On the other hand, the problem of
𝐻
∞

control has been a topic of recurring interest for several
decades. A great number of results on𝐻

∞
control have been

obtained, and different approaches have been proposed. In
recent years, increasing attention has been paid to𝐻

∞
norm

analysis for positive systems. In [12], the KYP lemma for
linear positive continuous-time systems is proved based on
the semidefinite programming duality.The alternative proofs
along the line of the rank-one separable property are given to
several remarkable and peculiar results for positive systems
in [13]. In [14], the KYP lemma for linear positive discrete-
time systems is studied using a theorem of alternatives on the
feasibility of linear matrix inequalities (LMIs).

This paper is organized as follows. Preliminaries are intro-
duced in Section 2. Main results on 𝐻

∞
control for linear

positive discrete-time systems are presented and proved in
Section 3. Section 4 is devoted to illustrate the effectiveness
of the obtained results by numerical examples. Section 5
concludes this paper.

2. Preliminaries

In this section, we introduce terminology, positive systems,
various other definitions, and lemmas, which will be essen-
tially used for proving our main results.

At first, the following notations will be used throughout
this paper.

Z
+
denotes the nonnegative integers. 𝑥 ≥ 0 denotes the

vector 𝑥 ∈ R𝑛 with nonnegative entries. 𝐴 ≥ 0 denotes
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the matrix 𝐴 ∈ R𝑛×𝑚 with nonnegative entries. R𝑛
+
denotes

the set of all vectors 𝑥 ∈ R𝑛 with 𝑥 ≥ 0. R𝑛×𝑚
+

denotes
the set of all matrices 𝐴 ∈ R𝑛×𝑚 with 𝐴 ≥ 0. 𝑆𝑛 denotes
the set of all symmetric matrices. 𝐷𝑛×𝑛

+
denotes the set of

all diagonal positive definite matrices. 𝐴 ⪰ 0, 𝐴 ≻ 0, and
𝐴 ≺ 0mean that𝐴 is a positive semidefinite, positive definite,
and negative definitematrix, respectively.𝐴

𝑖𝑗
denotes the 𝑖𝑗th

entry ofmatrix𝐴. 𝑥
𝑖
denotes the 𝑖th entry of vector 𝑥. For two

matrices 𝐴, 𝐵 ∈ R𝑛×𝑚, 𝐴 ≥ 𝐵means 𝐴
𝑖𝑗
≥ 𝐵
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑛,

𝑗 = 1, 2, . . . , 𝑚. For two vectors 𝑥, 𝑦 ∈ R𝑛, 𝑥 ≥ 𝑦 means
𝑥
𝑖
≥ 𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. 𝜌(𝐴) denotes the spectral radius of

matrix 𝐴 which is defined as 𝜌(𝐴) := max
1≤𝑖≤𝑛

|𝜆
𝑖
|, where

𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
are the eigenvalues of 𝐴. 𝐷(𝐴) denotes the

vector which is composed of the diagonal entries of𝐴 ∈ R𝑛×𝑛.
⟨𝑋, 𝑌⟩ = trace(𝑋𝑌) is the inner product on 𝑆𝑛.

Consider the following linear discrete-time system:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷𝑢 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the state, 𝑢(𝑘) ∈ R𝑚 is the input, and
𝑦(𝑘) ∈ R𝑝 is the output. 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, 𝐶 ∈ R𝑝×𝑛, and
𝐷 ∈ R𝑝×𝑚 are known matrices.

Definition 1 (see [3]). System (1) is said to be positive if and
only if 𝑥(𝑘) ≥ 0, 𝑦(𝑘) ≥ 0, 𝑘 ∈ Z

+
for any 𝑥(0) ≥ 0 and for

any 𝑢(𝑘) ≥ 0, 𝑘 ∈ Z
+
.

Definition 2 (see [3]). System (1) is said to be asymptotically
stable if 𝜌(𝐴) < 1.

Definition 3 (see [13]). For a givenmatrix𝐻 ∈ 𝑆𝑛 with𝐻 ⪰ 0,
we define ℎ ∈ R𝑛

+
by

ℎ
𝑖
:= √𝐻

𝑖𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (2)

Lemma 4 (see [3], Perron-Frobenius theorem for nonnega-
tive matrices). Let 𝐴 ∈ R𝑛×𝑛

+
; then 𝜌(𝐴) is an eigenvalue of 𝐴

and 𝐴 has a nonnegative eigenvector V corresponding to 𝜌(𝐴).

A matrix 𝐴 ∈ R𝑛×𝑛 is called a Metzler matrix if 𝐴
𝑖𝑗
≥ 0,

for all 𝑖, 𝑗 with 𝑖 ̸= 𝑗.

Lemma 5 (see [13]). For a givenMetzler matrix𝐴 ∈ R𝑛×𝑛 and
𝐻 ∈ 𝑆

𝑛 with𝐻 ⪰ 0, the following conditions hold:

(i) (ℎℎ𝑇)
𝑖𝑖
= 𝐻
𝑖𝑖
, (ℎℎ𝑇)

𝑖𝑗
≥ 𝐻
𝑖𝑗
, 𝑖 ̸= 𝑗,

(ii) 𝐷(ℎℎ𝑇𝐴) ≥ 𝐷(𝐻𝐴),

where ℎ ∈ R𝑛
+
is defined from𝐻 as in Definition 3.

Lemma 6 (see [3]). System (1) is positive if and only if 𝐴 ≥ 0,
𝐵 ≥ 0, 𝐶 ≥ 0, and𝐷 ≥ 0.

Lemma7 (see [17], separating hyperplane theorem). Suppose
that𝐶

1
and𝐶

2
are two convex sets that do not intersect; that is,

𝐶
1
∩ 𝐶
2
= ⌀. Then, there exist 𝑎 ̸= 0 and 𝑏 such that 𝑎𝑇𝑥 ≤ 𝑏

for all 𝑥 ∈ 𝐶
1
and 𝑎𝑇𝑥 ≥ 𝑏 for all 𝑥 ∈ 𝐶

2
.

For 𝐴 ∈ R𝑛×𝑛
+

, we consider 𝐵 := 𝑠𝐼 − 𝐴. If 𝑠 > 0 and
𝑠 ≥ 𝜌(𝐴), then 𝐵 is called an M-matrix. If 𝑠 > 𝜌(𝐴), then 𝐵 is
a nonsingular M-matrix.

Lemma 8 (see [4]). A nonsingular matrix 𝐴 ∈ R𝑛×𝑛 is an M-
matrix if and only if 𝐴−1 ≥ 0.

Lemma9 (see [18], Schur complement). Given any real matr-
ices 𝑄, 𝑆, and 𝑅 with 𝑄 = 𝑄

𝑇 and 𝑅 = 𝑅
𝑇, the following

statement holds:

[

𝑄 𝑆

𝑆
𝑇

𝑅

] ≺ 0 (3)

if and only if

𝑅 < 0, 𝑄 − 𝑆𝑅
−1

𝑆
𝑇

< 0, (4)

or, equivalently,

𝑄 < 0, 𝑅 − 𝑆
𝑇

𝑄
−1

𝑆 < 0. (5)

The transfer function matrix of system (1) is given by

𝐺 (𝑧) = 𝐶(𝑧𝐼 − 𝐴)
−1

𝐵 + 𝐷, (6)

and its𝐻
∞

norm is defined as

‖𝐺‖
∞
:= sup
𝜃∈(−𝜋,𝜋]

𝜎 (𝐺 (𝑒
𝑗𝜃

)) , (7)

where 𝜎(𝐺(𝑒𝑗𝜃)) denotes the maximum singular value of
𝐺(𝑒
𝑗𝜃

). In [14], it has been pointed out that ‖𝐺‖
∞
= ‖𝐺(1)‖,

where ‖𝐺(1)‖ = 𝜎(𝐺(1)), if system (1) is positive and
asymptotically stable.

3. 𝐻
∞

Control

In this section, we give an alternative proof for the existed
result of 𝐻

∞
norm for positive discrete-time systems and

investigate the𝐻
∞

control under state feedback.
At first, we propose the following theorem which is

helpful for the alternative proof.

Theorem 10. Suppose that system (1) is positive; the following
conditions are equivalent:

(i) There exists a nonzero ℎ ∈ R𝑛
+
such that (𝐴 − 𝐼)ℎ ≥ 0.

(ii) System (1) is not asymptotically stable.

Proof. (i)⇒(ii). Since𝐴 ≥ 0, fromPerron-Frobenius theorem
for nonnegative matrices, it follows that 𝐴𝑇V = 𝜌(𝐴)V ≥ 0,
where 𝜌(𝐴) ≥ 0 is the spectral radius of matrix 𝐴𝑇 and V ≥ 0
is an eigenvector corresponding to 𝜌(𝐴). Then it is obtained
from condition (i) that

(𝜌 (𝐴) − 1) V𝑇ℎ ≥ 0, (8)

which implies 𝜌(𝐴) ≥ 1; namely, system (1) is not asymptoti-
cally stable.
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(ii)⇒(i). System (1) is not asymptotically stable; that is,
𝜌(𝐴) ≥ 1. From Perron-Frobenius theorem, we immediately
obtain the following result:

𝜌 (𝐴) ℎ = 𝐴ℎ ≥ ℎ, (9)

where ℎ ≥ 0 is an eigenvector corresponding to 𝜌(𝐴). This
completes the proof.

The following theoremwas firstly presented andproved in
the light of alternatives on the feasibility of LMIs by Federico
Najson in the literature [14]. Now we will give another proof
using separating hyperplane theorem andTheorem 10.

Theorem 11. Suppose that system (1) is positive; the following
conditions are equivalent.

(i) System (1) is asymptotically stable and ‖𝐺‖
∞
< 1.

(ii) There exists a diagonal positive definite matrix 𝑃 such
that

[

𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝐶
𝑇

𝐶 𝐴
𝑇

𝑃𝐵 + 𝐶
𝑇

𝐷

𝐵
𝑇

𝑃𝐴 + 𝐷
𝑇

𝐶 𝐵
𝑇

𝑃𝐵 + 𝐷
𝑇

𝐷 − 𝐼

] ≺ 0. (10)

(iii) There exists a diagonal positive definite matrix 𝑃 such
that

[

[

[

[

−𝑃 0 𝐴
𝑇

𝑃 𝐶
𝑇

0 −𝐼 𝐵
𝑇

𝑃 𝐷
𝑇

𝑃𝐴 𝑃𝐵 −𝑃 0

𝐶 𝐷 0 −𝐼

]

]

]

]

≺ 0. (11)

Proof. We only prove (i)⇒(ii) since the implication (ii)⇒(i)
is obvious from the existed criterion for linear discrete-
time systems, and the equivalence between (ii) and (iii) is
immediately obtained using Schur complement.

To the contrary, suppose that condition (10) does not
hold for any diagonal positive definite matrix 𝑃. Define the
following two sets:

𝐶
1
:= ([

𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝐶
𝑇

𝐶 𝐴
𝑇

𝑃𝐵 + 𝐶
𝑇

𝐷

𝐵
𝑇

𝑃𝐴 + 𝐷
𝑇

𝐶 𝐵
𝑇

𝑃𝐵 + 𝐷
𝑇

𝐷 − 𝐼

] | 𝑃 ∈ 𝐷
𝑛×𝑛

+
) ,

𝐶
2
:= {𝑄 | 𝑄 ≺ 0, 𝑄 ∈ 𝑆

𝑛+𝑚

} ;

(12)

then it is easy to check that sets 𝐶
1
and 𝐶

2
are nonempty and

convex. By the assumption, we have 𝐶
1
∩𝐶
2
= ⌀. Then from

the separating hyperplane theorem, there exists a nonzero
𝐻 ∈ 𝑆

𝑛+𝑚 such that

⟨𝐻, 𝑆⟩ ≥ 0, ∀𝑆 ∈ 𝐶
1
, (13)

⟨𝐻, 𝑆⟩ ≤ 0, ∀𝑆 ∈ 𝐶
2
. (14)

By condition (14), we can conclude that ⟨𝐻, 𝑆⟩ = trace(𝐻𝑆) ≤
0, for all 𝑆 ≺ 0, from which it is easy to verify that 𝐻 ⪰ 0.
Thus it follows from condition (13) that there exists a nonzero
𝐻 ⪰ 0 such that

trace(𝐻[𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝐶
𝑇

𝐶 𝐴
𝑇

𝑃𝐵 + 𝐶
𝑇

𝐷

𝐵
𝑇

𝑃𝐴 + 𝐷
𝑇

𝐶 𝐵
𝑇

𝑃𝐵 + 𝐷
𝑇

𝐷 − 𝐼

]) ≥ 0,

∀𝑃 ∈ 𝐷
𝑛×𝑛

+
,

(15)

which is equivalent to

trace(𝐻[𝐴
𝑇

𝑃𝐴 − 𝑃 𝐴
𝑇

𝑃𝐵

𝐵
𝑇

𝑃𝐴 𝐵
𝑇

𝑃𝐵

])

+ trace(𝐻[𝐶
𝑇

𝐶 𝐶
𝑇

𝐷

𝐷
𝑇

𝐶 𝐷
𝑇

𝐷 − 𝐼

]) ≥ 0, ∀𝑃 ∈ 𝐷
𝑛×𝑛

+
.

(16)

Let 𝐻 := [

𝐻
11
𝐻
12

𝐻
𝑇

12
𝐻
22

], 𝐻
11
⪰ 0, 𝐻

22
⪰ 0; then the above con-

dition can be rewritten as

trace (𝐻
11
(𝐴
𝑇

𝑃𝐴 − 𝑃) + 𝐻
12
𝐵
𝑇

𝑃𝐴 + 𝐻
𝑇

12
𝐴
𝑇

𝑃𝐵 + 𝐻
22
𝐵
𝑇

𝑃𝐵)

+ trace(𝐻[𝐶
𝑇

𝐶 𝐶
𝑇

𝐷

𝐷
𝑇

𝐶 𝐷
𝑇

𝐷 − 𝐼

]) ≥ 0, ∀𝑃 ∈ 𝐷
𝑛×𝑛

+
,

(17)

or, equivalently,

trace (𝑃 (𝐴𝐻
11
𝐴
𝑇

− 𝐻
11
+ 𝐴𝐻

12
𝐵
𝑇

+ 𝐵𝐻
𝑇

12
𝐴
𝑇

+ 𝐵𝐻
22
𝐵
𝑇

))

+ trace(𝐻[𝐶
𝑇

𝐶 𝐶
𝑇

𝐷

𝐷
𝑇

𝐶 𝐷
𝑇

𝐷 − 𝐼

]) ≥ 0, ∀𝑃 ∈ 𝐷
𝑛×𝑛

+
,

(18)

which implies that

(a) 𝐷(𝐴𝐻
11
𝐴
𝑇

−𝐻
11
+𝐴𝐻
12
𝐵
𝑇

+𝐵𝐻
𝑇

12
𝐴
𝑇

+𝐵𝐻
22
𝐵
𝑇

) ≥ 0,

(b) trace(𝐻 [ 𝐶𝑇𝐶 𝐶𝑇𝐷
𝐷
𝑇
𝐶 𝐷
𝑇
𝐷−𝐼

]) ≥ 0.

From condition (a), it follows that

𝐷(𝐴𝐻
11
𝐴
𝑇

+ 𝐴𝐻
12
𝐵
𝑇

+ 𝐵𝐻
𝑇

12
𝐴
𝑇

+ 𝐵𝐻
22
𝐵
𝑇

)

= 𝐷([

𝐴 𝐵

0 0
] [

𝐻
11
𝐻
12

𝐻
𝑇

12
𝐻
22

] [

𝐴
𝑇

0

𝐵
𝑇

0

])

≥ 𝐷((

𝐻
11
0

0 0
)) .

(19)

Since system (1) is positive, then

[

𝐴 𝐵

0 0
] , [

𝐶
𝑇

𝐶 𝐶
𝑇

𝐷

𝐷
𝑇

𝐶 𝐷
𝑇

𝐷 − 𝐼

] (20)

are nonnegative matrix and Metzler matrix, respectively.
Define the nonzero ℎ ∈ R𝑛

+
from 𝐻 as in Definition 3 then

from Lemma 5, we obtain

𝐷([

𝐴 𝐵

0 0
] ℎℎ
𝑇

[

𝐴
𝑇

0

𝐵
𝑇

0

])

≥ 𝐷([

𝐴 𝐵

0 0
] [

𝐻
11
𝐻
12

𝐻
𝑇

12
𝐻
22

] [

𝐴
𝑇

0

𝐵
𝑇

0

])

≥ 𝐷((

𝐻
11
0

0 0
)) ,

(21)

trace(ℎℎ𝑇 [𝐶
𝑇

𝐶 𝐶
𝑇

𝐷

𝐷
𝑇

𝐶 𝐷
𝑇

𝐷 − 𝐼

])

≥ trace(𝐻[𝐶
𝑇

𝐶 𝐶
𝑇

𝐷

𝐷
𝑇

𝐶 𝐷
𝑇

𝐷 − 𝐼

]) ≥ 0.

(22)
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Set ℎ := [ℎ𝑇
1
ℎ
𝑇

2
]

𝑇

, ℎ
1
∈ R𝑛
+
, ℎ
2
∈ R𝑚
+
; conditions (21) and

(22) can be rewritten as

𝐷(𝐴ℎ
1
ℎ
𝑇

1
𝐴
𝑇

+ 𝐴ℎ
1
ℎ
𝑇

2
𝐵
𝑇

+ 𝐵ℎ
2
ℎ
𝑇

1
𝐴
𝑇

+ 𝐵ℎ
2
ℎ
𝑇

2
𝐵
𝑇

)

≥ 𝐷 (ℎ
1
ℎ
𝑇

1
) ,

(23)

ℎ
𝑇

1
𝐶
𝑇

𝐶ℎ
1
+ ℎ
𝑇

2
𝐷
𝑇

𝐶ℎ
1
+ ℎ
𝑇

1
𝐶
𝑇

𝐷ℎ
2
+ ℎ
𝑇

2
𝐷
𝑇

𝐷ℎ
2

= (𝐶ℎ
1
+ 𝐷ℎ
2
)
𝑇

(𝐶ℎ
1
+ 𝐷ℎ
2
) ≥ ℎ
𝑇

2
ℎ
2
.

(24)

Since𝐻 is nonzero, then we have the following three cases.
(1) Consider that ℎ

1
= 0, ℎ

2
̸= 0. By condition (24),

ℎ
𝑇

2
𝐷
𝑇

𝐷ℎ
2
≥ ℎ
𝑇

2
ℎ
2
, which contradicts ‖𝐺‖

∞
< 1.

(2) Consider that ℎ
1
̸= 0, ℎ
2
= 0. We observe from (23)

that 𝐷(𝐴ℎ
1
ℎ
𝑇

1
𝐴
𝑇

) ≥ 𝐷(ℎ
1
ℎ
𝑇

1
), which implies that

𝐴ℎ
1
≥ ℎ
1
.

FromTheorem 10, this is a contradiction.
(3) Consider that ℎ

1
̸= 0, ℎ
2
̸= 0. From condition (24), it

yields that 𝐶ℎ
1
+ 𝐷ℎ
2
̸= 0. Define matrix

Δ =

ℎ
2
(𝐶ℎ
1
+ 𝐷ℎ
2
)
𝑇

(𝐶ℎ
1
+ 𝐷ℎ
2
)
𝑇

(𝐶ℎ
1
+ 𝐷ℎ
2
)

, (25)

which is well-defined and satisfies 𝜎(Δ) ≤ 1. Note that ℎ
2
=

Δ(𝐶ℎ
1
+ 𝐷ℎ
2
). On the other hand, 𝜎(𝐷) < 1; otherwise, this

contradicts ‖𝐺‖
∞
< 1. It is known that formatrices𝑀 ∈ C𝑙×𝑚

and𝑁 ∈ C𝑚×𝑙 with 𝜎(𝑀) ≤ 1 and 𝜎(𝑁) < 1, det(𝐼−𝑀𝑁) ̸= 0.
Thus, 𝐼 − Δ𝐷 is invertible and (𝐼 − Δ𝐷)−1 ≥ 0 since 𝐼 − Δ𝐷
is a nonsingular𝑀-matrix. Therefore, ℎ

2
= (𝐼 − Δ𝐷)

−1

Δ𝐶ℎ
1

holds. Then from (23) we have

𝐷(𝐴ℎ
1
ℎ
𝑇

1
𝐴
𝑇

+ 𝐴ℎ
1
ℎ
𝑇

2
𝐵
𝑇

+ 𝐵ℎ
2
ℎ
𝑇

1
𝐴
𝑇

+ 𝐵ℎ
2
ℎ
𝑇

2
𝐵
𝑇

)

= 𝐷 (𝐴ℎ
1
ℎ
𝑇

1
𝐴
𝑇

+ 𝐴ℎ
1
ℎ
𝑇

1
𝐶
𝑇

Δ
𝑇

(𝐼 − Δ𝐷)
−𝑇

𝐵
𝑇

+ 𝐵(𝐼 − Δ𝐷)
−1

Δ𝐶ℎ
1
ℎ
𝑇

1
𝐴
𝑇

+𝐵(𝐼 − Δ𝐷)
−1

Δ𝐶ℎ
1
ℎ
𝑇

1
𝐶
𝑇

Δ
𝑇

(𝐼 − Δ𝐷)
−𝑇

𝐵
𝑇

)

= 𝐷((𝐴 + 𝐵(𝐼 − Δ𝐷)
−1

Δ𝐶) ℎ
1
ℎ
𝑇

1
(𝐴 + 𝐵(𝐼 − Δ𝐷)

−1

Δ𝐶)

𝑇

)

= 𝐷 (𝐴ℎ
1
ℎ
𝑇

1
𝐴
𝑇

)

≥ 𝐷 (ℎ
1
ℎ
𝑇

1
) ,

(26)

where𝐴 := 𝐴+𝐵(𝐼−Δ𝐷)−1Δ𝐶 ≥ 0. FromTheorem 10,𝜌(𝐴) ≥
1, which contradicts ‖𝐺‖

∞
< 1.

Corollary 12. Suppose that system (1) is positive; then the
following conditions are equivalent.

(i) System (1) is asymptotically stable and ‖𝐺‖
∞
< 𝛾.

(ii) There exists a diagonal positive definite matrix 𝑃 such
that

[

𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝐶
𝑇

𝐶 𝐴
𝑇

𝑃𝐵 + 𝐶
𝑇

𝐷

𝐵
𝑇

𝑃𝐴 + 𝐷
𝑇

𝐶 𝐵
𝑇

𝑃𝐵 + 𝐷
𝑇

𝐷 − 𝛾
2

𝐼

] ≺ 0. (27)

(iii) There exists a diagonal positive definite matrix 𝑃 such
that

[

[

[

[

−𝑃 0 𝐴
𝑇

𝑃 𝐶
𝑇

0 −𝛾
2

𝐼 𝐵
𝑇

𝑃 𝐷
𝑇

𝑃𝐴 𝑃𝐵 −𝑃 0

𝐶 𝐷 0 −𝐼

]

]

]

]

≺ 0. (28)

Now, our purpose is to design a state feedback controller
given by

𝑢 (𝑘) = 𝐾𝑥 (𝑘) + V (𝑘) , (29)

where 𝐾 ∈ R𝑚×𝑛 is the controller gain to be designed, and
V(𝑘) ∈ R𝑛

+
, such that the closed-loop system described as

𝑥 (𝑘 + 1) = (𝐴 + 𝐵𝐾) 𝑥 (𝑘) + 𝐵V (𝑘) ,

𝑦 (𝑘) = (𝐶 + 𝐷𝐾) 𝑥 (𝑘) + 𝐷V (𝑘) ,
(30)

is positive, asymptotically stable, and ‖𝐺‖
∞

< 1, where
𝐺(𝑧) = (𝐶 + 𝐷𝐾)(𝑧𝐼 − (𝐴 + 𝐵𝐾))

−1

+ 𝐷.
At first, we focus on nonnegative control gain, as it

has practical importance in many cases. For instance, for a
chemical system whose variables represent concentrations of
reactants and reaction speed is impacted by concentrations,
in order to improve the speed of reaction, it is natural to
consider such controller for increasing concentrations.

Theorem 13. For the given positive system (1), there exists a
nonnegative controller of the form in (29) such that the closed-
loop system (30) is asymptotically stable and ‖𝐺‖

∞
< 1 if and

only if there exist 𝑋 ∈ 𝐷𝑛×𝑛
+

and 𝑌 ≥ 0 satisfying

[

[

[

[

−𝑋 0 𝑋𝐴
𝑇

+ 𝑌
𝑇

𝐵
𝑇

𝑋𝐶
𝑇

+ 𝑌
𝑇

𝐷
𝑇

0 −𝐼 𝐵
𝑇

𝐷
𝑇

𝐴𝑋 + 𝐵𝑌 𝐵 −𝑋 0

𝐶𝑋 + 𝐷𝑌 𝐷 0 −𝐼

]

]

]

]

≺ 0. (31)

Under the above condition, the desired nonnegative controller
gain is obtained as

𝐾 = 𝑌𝑋
−1

. (32)

Proof. Necessity. From Theorem 11, there exists a diagonal
positive definite matrix 𝑃 such that

[

[

[

[

−𝑃 0 (𝐴 + 𝐵𝐾)
𝑇

𝑃 (𝐶 + 𝐷𝐾)
𝑇

0 −𝐼 𝐵
𝑇

𝑃 𝐷
𝑇

𝑃 (𝐴 + 𝐵𝐾) 𝑃𝐵 −𝑃 0

𝐶 + 𝐷𝐾 𝐷 0 −𝐼

]

]

]

]

≺ 0. (33)

Multiplying on both sides of inequality (33) by 𝑇 =

diag(𝑃−1, 𝐼, 𝑃−1, 𝐼), it follows that

[

[

[

−𝑃
−1

0 𝑃
−1

𝐴
𝑇

+ 𝑃
−1

𝐾
𝑇

𝐵
𝑇

𝑃
−1

𝐶
𝑇

+ 𝑃
−1

𝐾
𝑇

𝐷
𝑇

0 −𝐼 𝐵
𝑇

𝐷
𝑇

𝐴𝑃
−1

+ 𝐵𝐾𝑃
−1

𝐵 −𝑃
−1

0

𝐶𝑃
−1

+ 𝐷𝐾𝑃
−1

𝐷 0 −𝐼

]

]

]

≺ 0.

(34)
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By defining 𝑋 = 𝑃
−1, 𝑌 = 𝐾𝑃

−1, inequality (31) is imme-
diately obtained. On the other hand, since𝑋 ∈ 𝐷𝑛×𝑛

+
and 𝑌 ≥

0, it is easy to see that𝐾 ≥ 0.

Sufficiency. Positivity of the closed-loop system (30) is obvi-
ous. From (32), 𝑌 = 𝐾𝑋; substituting it into inequality (31)
leads to

[

[

[

[

−𝑋 0 𝑋𝐴
𝑇

+ 𝑋𝐾
𝑇

𝐵
𝑇

𝑋𝐶
𝑇

+ 𝑋𝐾
𝑇

𝐷
𝑇

0 −𝐼 𝐵
𝑇

𝐷
𝑇

𝐴𝑋 + 𝐵𝐾𝑋 𝐵 −𝑋 0

𝐶𝑋 + 𝐷𝐾𝑋 𝐷 0 −𝐼

]

]

]

]

≺ 0.

(35)

Multiplying on both sides of inequality (35) by 𝑇 = diag(𝑋−1,
𝐼, 𝑋
−1

, 𝐼), we have

[

[

[

[

−𝑋
−1

0 (𝐴 + 𝐵𝐾)
𝑇

𝑋
−1

(𝐶 + 𝐷𝐾)
𝑇

0 −𝐼 𝐵
𝑇

𝑋
−1

𝐷
𝑇

𝑋
−1

(𝐴 + 𝐵𝐾) 𝑋
−1

𝐵 −𝑋
−1

0

𝐶 + 𝐷𝐾 𝐷 0 −𝐼

]

]

]

]

≺ 0.

(36)

Therefore, from Theorem 11, the closed-loop system (30) is
asymptotically stable and ‖𝐺‖

∞
< 1.

Remark 14. Under the assumption that system (1) is positive,
it is worth noting that there does not exist any 𝑋 ∈ 𝐷𝑛×𝑛

+
or

𝑌 ≥ 0 satisfying condition (31) if there exists 𝐴
𝑖𝑖
> 1, 𝑖 =

1, 2, . . . , 𝑛. It is easy to verify in the light of the following facts.

(1) A linear positive discrete-time system is unstable if at
least one diagonal entry of matrix 𝐴 is greater than 1
which is presented in the literature [3].

(2) 𝜌(𝐵) ≤ 𝜌(𝐴) if 0 ≤ 𝐵 ≤ 𝐴 which has been pointed out
in the literature [19].

On the other hand, it is known that the maximal eigen-
value 𝜌(𝐴) of 𝐴 ≥ 0 belongs to the interval

max {min 𝑐
𝑖
,min 𝑟

𝑖
} ≤ 𝜌 (𝐴) ≤ min {max 𝑐

𝑖
max 𝑟

𝑖
} , (37)

where 𝑐
𝑖
and 𝑟

𝑖
denote the sum of the elements of the 𝑖th

column and the 𝑖th row of matrix 𝐴, respectively. Therefore,
there also does not exist 𝑋 ∈ 𝐷

𝑛×𝑛

+
or 𝑌 ≥ 0 satisfying

condition (31) if max{min 𝑐
𝑖
,min 𝑟

𝑖
} ≥ 1.

Remark 15. If 0 ≤ 𝐵 ≤ 𝐴, then 𝜎(𝐴) ≥ 𝜎(𝐵) which
is obtained immediately due to the fact (2) in Remark 14.
Suppose that system (1) is positive, ‖𝐺‖

∞
≥ 1, and there

exists a nonnegative controller (29) such that system (30)
is asymptotically stable; it is obvious that system (1) is also
asymptotically stable. Thus,

󵄩
󵄩
󵄩
󵄩
󵄩
𝐺

󵄩
󵄩
󵄩
󵄩
󵄩∞
=

󵄩
󵄩
󵄩
󵄩
󵄩
𝐺 (1)

󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐶 + 𝐷𝐾) (𝐼 − (𝐴 + 𝐵𝐾))

−1

𝐵 + 𝐷

󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝐶 + 𝐷𝐾)(

∞

∑

𝑖=0

(𝐴 + 𝐵𝐾)
𝑖

)𝐵 + 𝐷

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

= 𝜎((𝐶 + 𝐷𝐾)(

∞

∑

𝑖=0

(𝐴 + 𝐵𝐾)
𝑖

)𝐵 + 𝐷)

≥ 𝜎(𝐶(

∞

∑

𝑖=0

𝐴
𝑖

)𝐵 + 𝐷) = ‖𝐺‖
∞
≥ 1.

(38)

Therefore, if system (1) is positive, asymptotically stable,
but ‖𝐺‖

∞
≥ 1, there does not exist any nonnegative state

feedback (29) such that system (30) is asymptotically stable
and ‖𝐺‖

∞
< 1.

Corollary 16. For the given positive system (1), there exists a
nonnegative controller of the form in (29) such that the closed-
loop system (30) is asymptotically stable and ‖𝐺‖

∞
< 𝛾 if and

only if there exist 𝑋 ∈ 𝐷𝑛×𝑛
+

and 𝑌 ≥ 0 satisfying

[

[

[

[

−𝑋 0 𝑋𝐴
𝑇

+ 𝑌
𝑇

𝐵
𝑇

𝑋𝐶
𝑇

+ 𝑌
𝑇

𝐷
𝑇

0 −𝛾
2

𝐼 𝐵
𝑇

𝐷
𝑇

𝐴𝑋 + 𝐵𝑌 𝐵 −𝑋 0

𝐶𝑋 + 𝐷𝑌 𝐷 0 −𝐼

]

]

]

]

≺ 0.

(39)

Under the above condition, the desired controller gain is obtai-
ned as (32).

From Remarks 14 and 15, for some positive systems,
there is no nonnegative state feedback (29) such that system
(30) is asymptotically stable and ‖𝐺‖

∞
< 1. Hence, we are

obligated to pay attention to state feedback without nonne-
gative restriction. It is also natural to consider such controller.
For example, for an ecosystem whose variables represent
population of animals in a forest; population cannot exceed
the ecological capacity of the forest, otherwise, the ecosystem
may be destroyed.Therefore, wemust decrease the number of
animals by means of harvesting or other methods when pop-
ulation of certain animals exceeds their ecological capacity.

Now we are looking for a state feedback without nonneg-
ative restriction having form in (29) such that the closed-loop
system (30) is positive, asymptotically stable, and ‖𝐺‖

∞
< 1.

Theorem 17. For the given positive system (1), there exists a
controller of the form in (29) such that the closed-loop system
(30) is positive, asymptotically stable, and ‖𝐺‖

∞
< 1 if and only

if there exist 𝑋 ∈ 𝐷𝑛×𝑛
+

and 𝑌 ∈ R𝑚×𝑛 satisfying (39) and

𝐴𝑋 + 𝐵𝑌 ≥ 0, (40)

𝐶𝑋 + 𝐷𝑌 ≥ 0. (41)

Under the above conditions, the desired controller gain is given
by (32).
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Proof. We only prove conditions (40) and (41).

Necessity.The close-loop system (30) is positive then it follows
that

𝐴 + 𝐵𝐾 ≥ 0, 𝐶 + 𝐷𝐾 ≥ 0. (42)

Since 𝑋 is a diagonal positive definite matrix, then it is easy
to check that

𝐴𝑋 + 𝐵𝐾𝑋 ≥ 0, 𝐶𝑋 + 𝐷𝐾𝑋 ≥ 0. (43)

Conditions (40) and (41) are immediately obtained.

Sufficiency. The proof is similar to necessity.

Corollary 18. For the given positive system (1), there exists a
controller of the form in (29) such that the closed-loop system
(30) is positive, asymptotically stable, and ‖𝐺‖

∞
< 𝛾 if and

only if there exist 𝑋 ∈ 𝐷
𝑛×𝑛

+
and 𝑌 ∈ R𝑚×𝑛 satisfying condi-

tions (39), (40), and (41). Under these conditions, the desired
controller gain is obtained as (32).

4. Examples

In this section, we give some examples to illustrate the validity
of the obtained results.

Example 1. Consider a linear positive discrete-time system
with the following parameter matrices:

𝐴 = [

0.6048 0

0.0861 0.4187
] , 𝐵 = [

0.0952 0

0.0457 0.1813
] ,

𝐶 = [

1 0

0 1
] , 𝐷 = [

0.0921 0

0 0.1286
] .

(44)

Solving the conditions inTheorem 13, one feasible solution is
obtained as

𝑋 = [

0.3033 0

0 0.4477
] , 𝑌 = [

0.0854 0.1142

0.0743 0.1150
] . (45)

Then the desired controller gain is given by

𝐾 = [

0.2816 0.2551

0.2551 0.2551
] . (46)

Example 2. Consider a linear positive discrete-time system
with the following parameter matrices:

𝐴 = [

1.2148 0

0.0861 0.9187
] , 𝐵 = [

0.1702

0.0457
] ,

𝐶 = [0.816 0] , 𝐷 = 0.3157.

(47)

We observe that 𝐴
11
> 1 and check the condition in

Theorem 13; as pointed out in Remark 14, there is no feasible
solution.

Then solving the conditions in Theorem 17, one feasible
solution is obtained as

𝑋 = [

2.1747 0

0 810.9260
] , 𝑌 = [−4.0062 5.0132] .

(48)

The desired controller gain is

𝐾 = [−1.8421 0.0062] . (49)

Example 3. Consider a linear positive discrete-time system
with the following parameter matrices:

𝐴 = [

0.9187 0.1295

0.0861 0.9187
] , 𝐵 = [

0.1702

0.1570
] ,

𝐶 = [0.5700 0.3850] , 𝐷 = 0.2103.

(50)

By calculating, max{min 𝑐
𝑖
,min 𝑟

𝑖
} = 1.0048. We check

the condition inTheorem 13; there is no feasible solution.
Solving the conditions in Theorem 17, one feasible solu-

tion is obtained as

𝑋 = [

0.4315 0

0 1.6751
] , 𝑌 = [−0.2126 −1.2241] . (51)

Then the controller gain is given by

𝐾 = [−0.4926 −0.7308] . (52)

5. Conclusion

In this paper, we are interested in 𝐻
∞

control for linear
positive discrete-time systems. We present a necessary and
sufficient condition to check the stability of linear posi-
tive discrete-time systems using Perron-Frobenius theorem
for nonnegative matrices, which is the key point for the
alternative proof. We believe that it is useful for checking
the existence of diagonal positive definite matrices to some
other results given for linear discrete-time systems without
nonnegative restriction.The alternative proof is along the line
of separating hyperplane theorem and Theorem 10 given in
this paper. In addition, we investigate the 𝐻

∞
control for

such systems under state feedback. Necessary and sufficient
conditions for such problem are presented under controller
gain with and without nonnegative restriction, and then the
desired controller gains can be obtained from the feasible
solutions. However, in this paper, we have restricted our
attention to the case of state feedback, but in practice, it is
not always possible to have access to all of the state variables.
The case of static and dynamic output feedback is left for
future research. Robust𝐻

∞
analysis and synthesis for positive

uncertain systems are also open problems.
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