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We introduce two new subclasses of the function class Σ of bi-univalent functions defined in the open unit disc. Furthermore, we
find estimates on the coefficients |𝑎

2
| and |𝑎

3
| for functions in these new subclasses. Also consequences of the results are pointed

out.

1. Introduction

Denote byA the class of functions of the form

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑎
𝑛
𝑧
𝑛 (1)

which are analytic in the open unit disc U = {𝑧 : 𝑧 ∈

C and |𝑧| < 1}. Further, denote byS the class of all functions
in A which are univalent and normalized by 𝑓(0) = 0 =

𝑓
󸀠
(0) in U. The well-investigated subclasses of the univalent

function class S are the class of starlike functions of order
𝛼 (0 ≤ 𝛼 < 1), denoted by S∗(𝛼) and the class of convex
functions of order 𝛼 denoted byK(𝛼) in U. It is well known
that every function 𝑓 ∈ S has an inverse 𝑓

−1, defined by

𝑓
−1

(𝑓 (𝑧)) = 𝑧, 𝑧 ∈ U,

𝑓 (𝑓
−1

(𝑤)) = 𝑤, |𝑤| < 𝑟
0
(𝑓) , 𝑟

0
(𝑓) ≥

1

4
,

(2)

where
𝑓
−1

(𝑤) = 𝑤 − 𝑎
2
𝑤
2
+ (2𝑎
2

2
− 𝑎
3
)𝑤
3

− (5𝑎
3

2
− 5𝑎
2
𝑎
3
+ 𝑎
4
)𝑤
4
+ ⋅ ⋅ ⋅ .

(3)

A function 𝑓 ∈ A is said to be bi-univalent in U if both
𝑓(𝑧) and 𝑓

−1
(𝑧) are univalent in U. Let Σ denote the class of

bi-univalent functions in U given by (1).

Analogous to the function class S, the bi-univalent
function class Σ include, for example, the class S∗

Σ
(𝛼) of bi-

starlike functions of order 𝛼 (0 ≤ 𝛼 < 1), the class K
Σ
(𝛼)

of biconvex functions of order 𝛼 (0 ≤ 𝛼 < 1), and the
class S𝛼

Σ
of strongly bi-starlike functions of order 𝛼 (0 <

𝛼 ≤ 1). For some intriguing examples of functions and
characterization of the class Σ, one could refer to Srivastava
et al. [1] and the references stated therein (see also [2]).
Recently there has been triggering, interest to study the bi-
univalent functions class Σ (see [2–5]) and obtain nonsharp
estimates on the first two Taylor-Maclaurin coefficients |𝑎

2
|

and |𝑎
3
|. The coefficient estimate problem for each of the

following Taylor-Maclaurin coefficients |𝑎
𝑛
| for 𝑛 ∈ N \ {1, 2},

N := {1, 2, 3, . . .} is presumably still an open problem.
Motivated by the earlier works of Srivastava et al. [1] and

Frasin and Aouf [3] in the present paper we introduce the
following two new subclasses of the function class Σ.

Definition 1. A function 𝑓(𝑧) given by (1) is said to be in the
classG

Σ
(𝛼, 𝜆) if the following conditions are satisfied:

𝑓 ∈ Σ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg(
𝑧𝑓
󸀠
(𝑧)

(1 − 𝜆) 𝑓 (𝑧) + 𝜆𝑧𝑓󸀠 (𝑧)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝛼𝜋

2
,

0 < 𝛼 ≤ 1, 0 ≤ 𝜆 < 1, 𝑧 ∈ U,
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󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg(
𝑤𝑔
󸀠
(𝑤)

(1 − 𝜆) 𝑔 (𝑤) + 𝜆𝑤𝑔󸀠 (𝑤)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝛼𝜋

2
,

0 < 𝛼 ≤ 1, 0 ≤ 𝜆 < 1, 𝑤 ∈ U,

(4)

where the function 𝑔 is given by

𝑔 (𝑤) = 𝑤 − 𝑎
2
𝑤
2
+ (2𝑎
2

2
− 𝑎
3
)𝑤
3

− (5𝑎
3

2
− 5𝑎
2
𝑎
3
+ 𝑎
4
)𝑤
4
+ ⋅ ⋅ ⋅ .

(5)

Definition 2. A function 𝑓(𝑧) given by (1) is said to be in the
classM

Σ
(𝛽, 𝜆) if the following conditions are satisfied:

𝑓 ∈ Σ, R(
𝑧𝑓
󸀠
(𝑧)

(1 − 𝜆) 𝑓 (𝑧) + 𝜆𝑧𝑓󸀠 (𝑧)
) > 𝛽,

0 ≤ 𝛽 < 1, 0 ≤ 𝜆 < 1, 𝑧 ∈ U,

R(
𝑤𝑔
󸀠
(𝑤)

(1 − 𝜆) 𝑔 (𝑤) + 𝜆𝑤𝑔󸀠 (𝑤)
) > 𝛽,

0 ≤ 𝛽 < 1, 0 ≤ 𝜆 < 1, 𝑤 ∈ U,

(6)

where the function 𝑔 is given by (5).
It is of interest to note that, for 𝜆 = 0, the class G

Σ
(𝛼, 𝜆)

reduces to S𝛼
Σ
of strongly bi-starlike functions of order 𝛼

and the class M
Σ
(𝛽, 𝜆) leads to S∗

Σ
(𝛽) bi-starlike functions

of order 𝛽.
The object of the present paper is to find estimates on the

coefficients |𝑎
2
| and |𝑎

3
| for functions in the above-defined

subclasses G
Σ
(𝛼, 𝜆) and M

Σ
(𝛽, 𝜆) of the function class Σ by

employing the techniques used earlier by Srivastava et al. [1].
In order to derive ourmain results, we recall the following

lemma.

Lemma3 (see [6]). Ifℎ ∈ P, then |𝑐
𝑘
| ≤ 2 for each 𝑘, whereP,

is the family of all functions ℎ analytic inU forwhichR{ℎ(𝑧)} >

0, where ℎ(𝑧) = 1 + 𝑐
1
𝑧 + 𝑐
2
𝑧
2
+ ⋅ ⋅ ⋅ for 𝑧 ∈ U.

2. Coefficient Bounds for the Function
Class G

Σ
(𝛼,𝜆)

We begin by finding the estimates on the coefficients |𝑎
2
| and

|𝑎
3
| for functions in the class 𝑓 ∈ G

Σ
(𝛼, 𝜆).

Theorem 4. Let 𝑓(𝑧) given by (1) be in the classG
Σ
(𝛼, 𝜆), 0 <

𝛼 ≤ 1, and 0 ≤ 𝜆 < 1. Then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

2𝛼

(1 − 𝜆)√1 + 𝛼
, (7)

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

4𝛼
2

(1 − 𝜆)
2
+

𝛼

1 − 𝜆
. (8)

Proof. It follows from (4) that

𝑧𝑓
󸀠
(𝑧)

(1 − 𝜆) 𝑓 (𝑧) + 𝜆𝑧𝑓󸀠 (𝑧)
= [𝑝 (𝑧)]

𝛼

,

𝑤𝑔
󸀠
(𝑤)

(1 − 𝜆) 𝑔 (𝑤) + 𝜆𝑤𝑔󸀠 (𝑤)
= [𝑞 (𝑤)]

𝛼

,

(9)

where 𝑝(𝑧) and 𝑞(𝑤) inP have the forms

𝑝 (𝑧) = 1 + 𝑝
1
𝑧 + 𝑝
2
𝑧
2
+ ⋅ ⋅ ⋅ , (10)

𝑞 (𝑧) = 1 + 𝑞
1
𝑤 + 𝑞
2
𝑤
2
+ ⋅ ⋅ ⋅ . (11)

Now, equating the coefficients in (9), we get

(1 − 𝜆) 𝑎
2
= 𝛼𝑝
1
, (12)

(𝜆
2
− 1) 𝑎

2

2
+ 2 (1 − 𝜆) 𝑎

3

=
1

2
[𝛼 (𝛼 − 1) 𝑝

2

1
+ 2𝛼𝑝

2
],

(13)

− (1 − 𝜆) 𝑎
2
= 𝛼𝑞
1
, (14)

(𝜆
2
− 4𝜆 + 3) 𝑎

2

2
− 2 (1 − 𝜆) 𝑎

3

=
1

2
[𝛼 (𝛼 − 1) 𝑞

2

1
+ 2𝛼𝑞

2
] .

(15)

From (12) and (14), we get

𝑝
1
= −𝑞
1
, (16)

2(1 − 𝜆)
2
𝑎
2

2
= 𝛼
2
(𝑝
2

1
+ 𝑞
2

1
) . (17)

From (13), (15), and (17), we obtain

𝑎
2

2
=

𝛼
2
(𝑝
2
+ 𝑞
2
)

(𝛼 + 1) (1 − 𝜆)
2
. (18)

Applying Lemma 3 for the coefficients 𝑝
2
and 𝑞

2
, we imme-

diately have

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

2𝛼

(1 − 𝜆)√(1 + 𝛼)

. (19)

This gives the bound on |𝑎
2
| as asserted in (7).

Next, in order to find the bound on |𝑎
3
|, by subtracting

(15) from (13), we get

4 (1 − 𝜆) 𝑎
3
− 4 (1 − 𝜆) 𝑎

2

2

= 𝛼 (𝑝
2
− 𝑞
2
) +

𝛼 (𝛼 − 1)

2
(𝑝
2

1
− 𝑞
2

1
) .

(20)

It follows from (16), (17), and (20) that

𝑎
3
=

𝛼 (𝑝
2
− 𝑞
2
)

4 (1 − 𝜆)
+

𝛼
2
(𝑝
2

1
+ 𝑞
2

1
)

2(1 − 𝜆)
2

. (21)
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Applying Lemma 3 once again for the coefficients 𝑝
1
, 𝑝
2
,

𝑞
1
, and 𝑞

2
, we readily get

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

4𝛼
2

(1 − 𝜆)
2
+

𝛼

1 − 𝜆
. (22)

This completes the proof of Theorem 4.

In the following section we find the estimates on the
coefficients |𝑎

2
| and |𝑎

3
| for functions in the classM

Σ
(𝛽, 𝜆).

3. Coefficient Bounds for the Function
Class M

Σ
(𝛽,𝜆)

Theorem5. Let𝑓(𝑧) given by (1) be in the classM
Σ
(𝛽, 𝜆), 0 ≤

𝛽 < 1, and 0 ≤ 𝜆 < 1. Then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

√2 (1 − 𝛽)

1 − 𝜆
,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

4(1 − 𝛽)
2

(1 − 𝜆)
2

+
(1 − 𝛽)

1 − 𝜆
.

(23)

Proof. It follows from (6) that there exists 𝑝, 𝑞 ∈ P such that

𝑧𝑓
󸀠
(𝑧)

(1 − 𝜆) 𝑓 (𝑧) + 𝜆𝑧𝑓󸀠 (𝑧)
= 𝛽 + (1 − 𝛽) 𝑝 (𝑧) ,

𝑤𝑔
󸀠
(𝑤)

(1 − 𝜆) 𝑔 (𝑤) + 𝜆𝑤𝑔󸀠 (𝑤)
= 𝛽 + (1 − 𝛽) 𝑞 (𝑤) ,

(24)

where 𝑝(𝑧) and 𝑞(𝑤) have the forms of (10) and (11),
respectively. Equating coefficients in (24) we get

(1 − 𝜆) 𝑎
2
= (1 − 𝛽) 𝑝

1
,

(𝜆
2
− 1) 𝑎

2

2
+ 2 (1 − 𝜆) 𝑎

3
= (1 − 𝛽) 𝑝

2
,

− (1 − 𝜆) 𝑎
2
= (1 − 𝛽) 𝑞

1
,

(𝜆
2
− 4𝜆 + 3) 𝑎

2

2
− 2 (1 − 𝜆) 𝑎

3
= (1 − 𝛽) 𝑞

2
.

(25)

The proof follows, by employing the techniques used in
the proof of Theorem 4.

Taking 𝜆 = 0 in Theorems 4 and 5 one can get the
following corollaries.

Corollary 6. Let 𝑓(𝑧) given by (1) be in the class S𝛼
Σ
and 0 <

𝛼 ≤ 1. Then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

2𝛼

√𝛼 + 1
,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤ 4𝛼

2
+ 𝛼. (26)

Corollary 7. Let 𝑓(𝑧) given by (1) be in the class S∗
Σ
(𝛽) and

0 ≤ 𝛽 < 1. Then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

√2 − 2𝛽,
󵄨󵄨󵄨󵄨𝑎3

󵄨󵄨󵄨󵄨 ≤ 4(1 − 𝛽)
2

+ (1 − 𝛽) . (27)
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