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This paper deals with financial modeling to describe the behavior of asset returns, through consideration of economic cycles
together with the stylized empirical features of asset returns such as fat tails. We propose that asset returns are modeled by a
stochastic volatility Lévy process incorporating a regime switching model. Based on the risk-neutral approach, there exists a large
set of candidates of martingale measures due to the driving of a stochastic volatility Lévy process in the proposed model which
renders the market incomplete in general. We first establish an equivalent martingale measure for the proposed model introduced
in risk-neutral version. Regime switching of stochastic volatility Lévy process is employed in an approximation mode for model
calibration and the calibration of parameters model done based on EM algorithm. Finally, some empirical results are illustrated via
applications to the Bangkok Stock Exchange of Thailand index.

1. Introduction

The market of stock products is one of the fastest growing
main segments in the finance market industry today.
Although the financial credit derivative industry has
increased in market size, particular stock market sector
investments are still attractive for all investors.We can see that
in the Stock Exchange of Thailand, between 2011 to 2013, the
Bangkok Stock Exchange of Thailand (SET) index, a major
stock market index tracking the performance of all common
stocks listed on the SET market, showed high volatility in
movement behavior. The SET index average went up about
36%: from 1,025 index points in 2011 to 1,392 index points in
2012, with fluctuations in its movement in 2013. Historically,
the SET averaged 727 index points from 1987 to 2013, with
an all time record high of 1754 index points in January of
1994 and a record low of 207 index points in September of
1998. Figure 1 displays historical value of SET index with the
sample period from January 2011 to February 2013.

A pricing of SET index movement that takes into account
fluctuation and high volatility has become necessary. We
need models that can capture the behavior of asset prices

more accurately in order to handle trade risks. Recently,
continuous-time financial models have been intensively
investigated in explorations to capture the stylized empirical
features of asset prices or returns such as long memory, fat
tails, high kurtosis, volatility clustering, and leverage. On
the other hand, a new generation of financial models are
able to reproduce the different phase of the business cycles
and capture the cyclical behavior of the economic growth.
Known as regime switching models, they were first proposed
by Hamilton [1]. Succeeding Hamilton’s regime switching
models, quite a few number of researchers have utilized the
regime switching approach to help theirmodels becomemore
realistic in parameter estimation and forecasting accuracy.
Thus the class of regime switching models has extended in
many directions.

In their development of a continuous framework, Elliott
et al. [2] proposed the use of the exponential of a pure jump
process with finite states of aMarkov-switching compensator.
On the other hand, Siu et al. [3] generalized a jump diffusion
model with a Markov-switching compensator and used it
to value participating life insurance products. Combining
stochastic volatility models together with regime switching
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Figure 1: Historical value of SET index with sample period from January 2011 to February 2013 (a) and empirical distribution of daily log
returns for the SET index and fitted normal distribution (b).

has been modeled for short-term interest rates, for example,
Kalimipalli and Susmel [4] and Smith [5]. Janczura and
Weron [6] discussed the calibration models based on the
EM algorithm built on the mean-reverting process combined
with Markov regime switching.

It is know that Lévy processes are a class of stochastic
processes that help us capture a financial asset aspect of
a more realistic model such as the phenomenon of jump
in asset prices or the implied volatility smile in option
markets, showing that the risk-neutral returns are non-
Gaussian and leptokurtic. Although this recent modeling of
asset returns by jump diffusion allows for regime switching,
few studies have exploredmodels of diffusionwith Lévy jump
incorporating stochastic volatility and switching in regimes
for modeling an asset return. Motivated by this fact, we
propose a jump diffusion process including its variance as
a stochastic volatility and the asset return considered on
Markov’s regime switching models to facilitate the matching
of the empirical distribution with the asset return founded in
real economic data. Under the risk-neutral approach, we con-
struct and study our proposed model in a risk-neutral world.
Approximation of proposed model with special structures is
presented to avoid complexity of numerical computation and
to suggest a suitable consistent approximation model of the
proposed model.

The rest of paper is organized as follows. In Section 2,
we introduce the dynamic of asset return described by the
stochastic volatility Lévy process. In fact, the model is a
bivariate-stochastic differential equation, whose solution of
proposed dynamics is obtained by using the Itô formula for
Lévy processes. Using the approach of martingale modeling,
we construct a martingale measure and introduce the risk-
neutral model of proposed model in Section 3. In Section 4

model specification for implementation is introduced and
its approximation is considered in Section 5. We state our
proposedmodel incorporating regime switching in Section 6.
Finally, we present some empirical results from applying our
model to real market financial data.

2. Modeling Asset Price Dynamics

In order to model financial asset prices in the market, we
introduce Lévy jumpdiffusion (LJD)with stochastic volatility
(SV), a bivariate-stochastic differential equation (SDE) type,
as follows.

Let 𝑊 = (𝑊
1
,𝑊

2
) be a two-dimensional standard

Brownian motion on a filtered probability space (Ω,F, 𝑃, 𝐹)

with filtration 𝐹 = (F
𝑡
)
0≤𝑡≤𝑇

, the 𝑃-augmentation of the
filtration generated by 𝑊. We consider two financial assets
(𝐵, 𝑆) with a risk-free asset (such as a bank account or bond)
with price dynamics described by

𝑑𝐵
𝑡
= 𝑟

𝑡
𝐵
𝑡
𝑑𝑡, 𝐵

0
= 1, (1)

where the interest-rate process 𝑟 : R → R is continuous.
The return process of the risky asset 𝑆 is described by a
diffusion model to incorporate the Lévy jump; its variance is
an SV process as in the following general form:

𝑑𝑆
𝑡
= (𝜇

𝑡
− 𝑞

𝑡
) 𝑆
𝑡−
𝑑𝑡 + 𝜎 (V

𝑡
) 𝑆
𝑡−
𝑑𝑊

1,𝑡
+ 𝑆

𝑡−
𝑑𝑍

𝑡
, (2)

𝑑V
𝑡
= 𝑎 (𝑡, 𝑆

𝑡
, V
𝑡
) 𝑑𝑡 + 𝑏 (𝑡, 𝑆

𝑡
, V
𝑡
) 𝑑𝑊

2,𝑡
, (3)

where the stock-drift process 𝜇 : [0, 𝑇] → R and the
dividend-yield process 𝑞 : [0, 𝑇] → R are continuous
processes, and 𝜎(⋅) is an SV process. The notation 𝑆

𝑡−
is

defined by
𝑆
𝑡−
:= lim

𝑠↑𝑡

𝑆
𝑠
, (4)
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which means that whenever there is a jump, the value of
the process before the jump is used on the left-hand side of
(2). The last term of (2), the differential form of the jump
derived by the Lévy process, is defined in the formof Lévy-Itô
decomposition as

𝑍
𝑡
:= ∫

𝑡

0

∫
R

𝑧𝑁 (𝑑𝑠, 𝑑𝑧) , (5)

where

𝑁(𝑑𝑡, 𝑑𝑧) = {
𝑁 (𝑑𝑡, 𝑑𝑧) − ] (𝑑𝑧) 𝑑𝑡 =: �̃� if |𝑧| < 1,

𝑁 (𝑑𝑡, 𝑑𝑧) if |𝑧| ≥ 1.
(6)

Let B
0
be the family of Borel sets 𝐴 ⊂ R whose closure 𝐴

does not contain 0. Let 𝜒
𝐴
denote the indicator function of

the set𝐴. Let𝐴 ∈ B
0
and the process𝑁 be a Poisson random

measure of 𝑆(⋅) inR
+
×R

0
(R

0
:= R \ {0}) defined by

𝑁((𝑠, 𝑡] × 𝐴) := ∑

𝑢∈(𝑠,𝑡]:Δ𝑆 ̸= 0

𝜒
𝐴
(Δ𝑆

𝑢
) (7)

with Lévy measure ] of the price process 𝑆 given by

] (𝐴) := 𝐸 [𝑁 (1, 𝐴)] = 𝐸[ ∑

𝑢∈(𝑠,𝑡]:Δ𝑆 ̸= 0

𝜒
𝐴
(Δ𝑆

𝑢
(𝜔))] . (8)

Here 𝐸 = 𝐸
𝑃
denotes the expectation with respect to measure

𝑃. The jump process Δ𝑆 := (Δ𝑆
𝑡
)
0≤𝑡≤𝑇

associated with the
price process 𝑆 is defined, for each 0 ≤ 𝑡 ≤ 𝑇, via Δ𝑆

𝑡
:=

𝑆
𝑡
−𝑆

𝑡−
where 𝑆

𝑡−
is defined as (4).The process �̃� is called the

compensated Poisson random measure.
Given a correlation process 𝜌 between 𝑑𝑊

1,𝑡
and 𝑑𝑊

2,𝑡
we

introduce the Brownian motion 𝑑�̃�
2,𝑡

independent of 𝑑𝑊
1,𝑡

and write the usual Cholesky factorization:

𝑑𝑊
2,𝑡

= 𝜌𝑑𝑊
1,𝑡
+ √1 − 𝜌2𝑑�̃�

2,𝑡
(9)

with correlation 𝜌 ∈ (−1, 1).
Furthermore we assume that all processes are bounded

and sufficiently smooth to guarantee unique strong solu-
tions of the various stochastic differential equations that we
encounter.

The following proposition provides an explicit solution of
SDE (2).

Proposition 1. Suppose that some risky assets have a dynamics
of return given by SDE (2) with an initial value 𝑆

0
= 𝑆(0)

almost everywhere (a.s.). Under the historical measure 𝑃, the
asset price 𝑆

𝑡
at time 𝑡 is then given by

𝑆
𝑡
= 𝑆 (0) exp{∫

𝑡

0

(𝜇
𝑠
− 𝑞

𝑠
−
1

2
𝜎
2
(V
𝑠
)) 𝑑𝑠 + ∫

𝑡

0

𝜎 (V
𝑠
) 𝑑𝑊

1,𝑠

+ ∫

𝑡

0

∫
|𝑧|<1

{ln (1 + 𝑧) − 𝑧} ] (𝑑𝑧) 𝑑𝑠

+∫

𝑡

0

∫
R

ln (1 + 𝑧)𝑁 (𝑑𝑠, 𝑑𝑧)} .

(10)

Proof. If we define the process 𝑋
𝑡

= ln 𝑆
𝑡
, such that 𝑆

𝑡

corresponds to SDE (2), then it follows from the Itô’s formula
(see [7, Theorem 1.14]) with 𝑆

0
= 𝑆(0) a.s. that the process

(10) is the explicit solution of SDE (2).

The process 𝑆
𝑡
of (10) is called the stochastic volatility of

geometric Lévy model (SVGL) which is used to model the
process of risky asset pricing in this paper.

3. Risk-Neutral Dynamics of Asset Price

Incorporating a Lévy jump and/or stochastic volatility in
a diffusion model of asset returns leads to a market being
incomplete. As a result there are different choices of equiv-
alent martingale measure. By risk-neutral modeling, we
should determine the dynamic price of asset return in the
risk-neutral version and choose a pricing measure form
various equivalent martingale measures.

Wewrite as usual 𝑆
𝑡
= 𝑆

𝑡
/𝐵
𝑡
for the discounted stock price

process with the bank account being the natural numéraire
and get from Itô’s formula again

𝑑𝑆
𝑡
= (𝜇

𝑡
− 𝑞

𝑡
− 𝑟

𝑡
) 𝑆
𝑡−
𝑑𝑡 + 𝜎 (V

𝑡
) 𝑆
𝑡−
𝑑𝑊

1,𝑡
+ 𝑆

𝑡−
𝑑𝑍

𝑡
, (11)

where the Lévy jump martingale 𝑍
𝑡
is defined by

𝑍
𝑡
= ∫

𝑡

0

∫
R

𝑧�̃� (𝑑𝑠, 𝑑𝑧) , (12)

and the process V
𝑡
is given by SDE (3). The process �̃� is the

compensated Poisson random measure as defined in (6).
To determine the equivalent martingale measure 𝑄

under which discounted price processes 𝑆
𝑡
are (local) F

𝑡
-

martingales, we rely on Girsanov’s theorem for semimartin-
gales (see, e.g., [8, Theorem 7.4.1]). In our model, this follows
from the special structure of the Girsanov density used to
perform a change of measure in setting of both Brownian
motion and Lévy jump. Define the market price process of
risk 𝜃

1,𝑡
:= 𝜇

𝑡
− 𝑞

𝑡
− 𝑟

𝑡
. For 𝜀 > 0 define the approximation

process of the process 𝜃
1,𝑡

by

𝜃
𝜀,𝑡
:=

𝜇
𝜀,𝑡
− 𝑞

𝜀,𝑡
− 𝑟

𝜀,𝑡

𝜎 (V
𝑡
)

, (13)

where 𝜇
𝜀
, 𝑞
𝜀
, and 𝑟

𝜀
are continuous functions from [0, 𝑇] to

R, which are the approximation functions of 𝜇, 𝑞, and 𝑟,
respectively. Assume in addition that the total mass of the
Lévy jump measure ] exceeds 𝜃

1,𝑡
− 𝜃

𝜀,𝑡
so that

∫
R

] (𝑑𝑧) >
𝜃
1,𝑡
− 𝜎 (V

𝑡
) 𝜃
𝜀,𝑡

𝑧
. (14)

By this assumption, we define

𝜃
3,𝑧

:=
(𝜃
1,𝑡
− 𝜎 (V

𝑡
) 𝜃
𝜀,𝑡
)

𝑧] (𝐴)
𝜒
𝐴
(𝑧) , (15)

where 𝐴 ⊂ R with 𝜃
1,𝑡

− 𝜎(V
𝑡
)𝜃
𝜀,𝑡

< ](𝐴) < ∞. For 𝜀 > 0,
fix 𝜃

𝜀,𝑡
, 𝜃
1,𝑡
, and 𝜃

3,𝑧
< 1 such that a martingale condition

satisfies

𝜃
1,𝑡
− 𝜃

𝜀,𝑡
𝜎 (V

𝑡
) − ∫

R

𝑧𝜃
3,𝑧
] (𝑑𝑧) = 0, (16)
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setting

𝜃
2,𝑡

= −
1

√1 − 𝜌2
(𝜌𝜃

𝜀,𝑡
+

𝜃
1,𝑡

𝑏 (𝑡, 𝑆
𝑡
, V
𝑡
)
) , (17)

so that the process 𝐿
𝑡
defined by

log 𝐿
𝑡
= − ∫

𝑡

0

𝜃
1,𝑠
𝑑𝑊

1,𝑠
− ∫

𝑡

0

𝜃
2,𝑠
𝑑𝑊

2,𝑠
−
1

2
∫

𝑡

0

(𝜃
2

1,𝑠
+ 𝜃

2

2,𝑠
) 𝑑𝑠

+ ∫

𝑡

0

∫
R

ln (1 − 𝜃
3,𝑧
) �̃� (𝑑𝑠, 𝑑𝑧)

+ ∫

𝑡

0

∫
R

[ln (1 − 𝜃
3,𝑧
) + 𝜃

3,𝑧
] ] (𝑑𝑧) 𝑑𝑠

(18)

exists for 0 ≤ 𝑡 ≤ 𝑇. Define a probability measure 𝑄 on F
𝑇

by

𝑑𝑄 (𝜔) = 𝐿 (𝑇) 𝑑𝑃 (𝜔) . (19)

Assume that

𝐸
𝑃 [𝐿 (𝑇)] = 1. (20)

Then 𝑄 is an equivalent local martingale measure for 𝑆
𝑡
.

Under𝑄, let us assume that the Novikov condition holds;
that is,

𝐸
𝑃
[exp(1

2
∫

𝑇

0

𝜃
2

𝑖,𝑠
𝑑𝑠)] < ∞, (21)

where 𝑖 = 1, 2. The notation 𝐸
𝑃
then denotes the expectation

with respect to the measure 𝑃. Then the processes

𝑊
𝑄

1,𝑡
= 𝑊

1,𝑡
+ ∫

𝑡

0

𝜃
𝜀,𝑠
𝑑𝑠,

�̃�
𝑄

2,𝑡
= �̃�

2,𝑡
+ ∫

𝑡

0

𝜃
2,𝑠
𝑑𝑠

(22)

are Brownian motions with respect to𝑄 so that we define the
random measure �̃�

𝑄
(⋅, ⋅) by

�̃�
𝑄
(𝑑𝑡, 𝑑𝑧) := 𝑁 (𝑑𝑡, 𝑑𝑧) − ]

𝑄
(𝑑𝑡, 𝑑𝑧) , (23)

where the Lévy measure ]
𝑄
is given by

]
𝑄
(𝑑𝑡, 𝑑𝑧) = (1 − 𝜃

3,𝑧
) ] (𝑑𝑧) 𝑑𝑡, (24)

with a 𝑃-intensity measure ](𝑑𝑧)𝑑𝑡 and function 𝜃
3,𝑧

defined
as above and satisfying the martingale condition (16). Then

∫

𝑡

0

∫
R

�̃�
𝑄
(𝑑𝑠, 𝑑𝑧) = ∫

𝑡

0

∫
R

𝑁(𝑑𝑠, 𝑑𝑧)

− ∫

𝑡

0

∫
R

(1 − 𝜃
3,𝑧
) ] (𝑑𝑧) 𝑑𝑠

(25)

is a 𝑄 local martingale.

Under the risk-neutral measure𝑄, we rewrite the process
of discounted stock price (11) in terms of these processes:

𝑑𝑆
𝑡

𝑆
𝑡−

= (𝜇
𝑡
− 𝑞

𝑡
− 𝑟

𝑡
) 𝑑𝑡 + 𝜎 (V

𝑡
) 𝑑𝑊

1,𝑡
+ ∫

R

𝑧�̃� (𝑑𝑡, 𝑑𝑧)

= (𝜇
𝑡
− 𝑞

𝑡
− 𝑟

𝑡
− 𝜃

𝜀,𝑡
𝜎 (V

𝑡
)) 𝑑𝑡 + 𝜎 (V

𝑡
) 𝑑𝑊

𝑄

1,𝑡

+ ∫
R

𝑧𝑁 (𝑑𝑠, 𝑑𝑧) − ∫
R

𝑧] (𝑑𝑧) 𝑑𝑡

= (𝜃
1,𝑡
− 𝜃

𝜀,𝑡
𝜎 (V

𝑡
)) 𝑑𝑡 + 𝜎 (V

𝑡
) 𝑑𝑊

𝑄

1,𝑡
− ∫

R

𝑧] (𝑑𝑧) 𝑑𝑡

+ ∫
R

𝑧 {�̃�
𝑄
(𝑑𝑠, 𝑑𝑧) + (1 − 𝜃

3,𝑠
(𝑧)) ] (𝑑𝑧) 𝑑𝑡}

(26)

so that the process of discounted price follows

𝑑𝑆
𝑡
= 𝑆

𝑡−
{(𝜃

1,𝑡
− 𝜃

𝜀,𝑡
𝜎 (V

𝑡
) − ∫

R

𝑧𝜃
3,𝑠
] (𝑑𝑧)) 𝑑𝑡

+𝜎 (V
𝑡
) 𝑑𝑊

𝑄

1,𝑡
+ ∫

R

𝑧�̃�
𝑄
(𝑑𝑠, 𝑑𝑧) } .

(27)

Using the martingale condition (16), the process 𝑆
𝑡
is a local

martingale under 𝑄 and

𝑑𝑆
𝑡
= 𝑆

𝑡−
(𝜎 (V

𝑡
) 𝑑𝑊

𝑄

1,𝑡
+ ∫

R

𝑧�̃�
𝑄
(𝑑𝑠, 𝑑𝑧)) , (28)

or equivalently,

𝑑𝑆
𝑡
= 𝑆

𝑡−
(𝑟
𝑡
𝑑𝑡 + 𝜎 (V

𝑡
) 𝑑𝑊

𝑄

1,𝑡
+ ∫

R

𝑧�̃�
𝑄
(𝑑𝑠, 𝑑𝑧)) . (29)

Therefore the dynamic of the (𝑆, V) under the risk-neutral
martingale measure 𝑄 is

𝑑𝑆
𝑡
= 𝑆

𝑡−
(𝑟
𝑡
𝑑𝑡 + 𝜎 (V

𝑡
) 𝑑𝑊

𝑄

1,𝑡
+ ∫

R

�̃�
𝑄
(𝑑𝑠, 𝑑𝑧)) (30)

𝑑V
𝑡
= (𝑎 (𝑡, 𝑆

𝑡
, V
𝑡
) + 𝜃

1,𝑡
) 𝑑𝑡

+ 𝑏 (𝑡, 𝑆
𝑡
, V
𝑡
) (𝜌

𝑡
𝑑𝑊

𝑄

1,𝑡
+ √1 − 𝜌

2

𝑡
𝑑�̃�

𝑄

2,𝑡
) .

(31)

Proposition 2. Suppose that the asset return process 𝑆
𝑡
is

governed by SED (30). Define 𝑋
𝑡
= ln 𝑆

𝑡
; then under the risk-

neutral measure 𝑄,

𝑑𝑋
𝑡
= ∫

𝑡

0

(𝑟
𝑠
−
1

2
𝜎
2
(V
𝑠
)) 𝑑𝑡

+ ∫
|𝑧|<1

{ln(1 + 𝑧) − 𝑧} ]
𝑄
(𝑑𝑡, 𝑑𝑧) + ∫

𝑡

0

𝜎 (V
𝑠
) 𝑑𝑊

𝑄

1,𝑠

+ ∫
R

ln(1 + 𝑧) �̃�
𝑄
(𝑑𝑡, 𝑑𝑧) .

(32)

Proof. In a similar way to that of Proposition 1, the proof
follows from the Itô formula applied to 𝑋

𝑡
= ln(𝑆

𝑡
). We omit

the details.
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4. Model Specification for Implementation

Both of the SDEs (2) or (30) together with (3) or (31),
respectively, are expressed in an abstract form in a very
general setting enabling many different processes of asset
price to be used. Here, we will use a jump diffusion process
with variance following a square root of a stochastic process
as an example. The full model is

𝑑𝑆
𝑡
= 𝑆

𝑡−
((𝜇 − 𝑞) 𝑑𝑡 + √V

𝑡
𝑑𝑊

1,𝑡
+ ∫

R

𝑧𝑁 (𝑑𝑠, 𝑑𝑧)) , (33)

𝑑V
𝑡
= 𝛽 (𝑚 − V

𝑡
) 𝑑𝑡 + 𝜎√V

𝑡
𝑑𝑊

2,𝑡
, (34)

where 𝑚 is the rate of reversion computed by the long run
mean of the process V := (V

𝑡
)
𝑡≥0

and 𝛽 is the log rate at which
V tends to𝑚.The risk-neutral counterparts to these equations
are, respectively,

𝑑𝑆
𝑡
= 𝑆

𝑡−
(𝑟𝑑𝑡 + √V

𝑡
𝑑𝑊

𝑄

1,𝑡
+ ∫

R

𝑧�̃�
𝑄
(𝑑𝑠, 𝑑𝑧)) , (35)

𝑑V
𝑡
= ((𝜇 − 𝑞 − 𝑟) + 𝛽 (𝑚 − V

𝑡
)) 𝑑𝑡 + 𝜎√V

𝑡
𝑑𝑊

𝑄

2,𝑡
, (36)

where 𝑑𝑊𝑄

2,𝑡
is defined in a similar way to (9) on a martingale

measure 𝑄. All subscripted variables with risk-neutral mea-
sure 𝑄 represent risk-neutral versions of the actual variables.
By Proposition 1 and definition (6) of 𝑁, the SDE (33) has
solution:

𝑆
𝑡
= 𝑆 (0) exp{∫

𝑡

0

(𝜇 − 𝑞 −
1

2
V
𝑠
)𝑑𝑠 + ∫

𝑡

0

√V
𝑠
𝑑𝑊

1,𝑠

+ ∫

𝑡

0

∫
|𝑧|<1

{ln (1 + 𝑧) − 𝑧} ] (𝑑𝑧) 𝑑𝑠

+ ∫

𝑡

0

∫
|𝑧|<1

ln (1 + 𝑧) �̃� (𝑑𝑠, 𝑑𝑧)

+∫

𝑡

0

∫
|𝑧|≥1

ln (1 + 𝑧)𝑁 (𝑑𝑠, 𝑑𝑧)} .

(37)

The process𝑁 is a Poisson randommeasure inR
+
×R

0
with

Lévy measure ](𝑑𝑡, 𝑑𝑥) = ](𝑑𝑥)𝑑𝑡, for a measure ] satisfying
∫
R0

min(1, 𝑧2)](𝑑𝑧) < ∞. The last term of (37),

∫

𝑡

0

∫
|𝑧|≥1

ln (1 + 𝑧)𝑁 (𝑑𝑠, 𝑑𝑧) , (38)

representing the sum of the big jumps, is a compound
Poisson process with intensity of jumps ](|𝑧| > 1) and jump
distribution 𝜒(|𝑧| ≥ 1)](𝑑𝑥)/](|𝑧| ≥ 1). Over finite intervals
[0, 𝑡] this sum is finite since any cádlág path of Lévy process
𝑆 has only finite number of big jumps with absolute jump
size larger than 1. The third term of (37) is the limit of
compensated Poisson processes as follows: for 𝜀 > 0,

∫

𝑡

0

∫
|𝑧|<1

ln (1 + 𝑧) �̃� (𝑑𝑠, 𝑑𝑧)

= lim
𝜀↓0

∫

𝑡

0

∫
𝜀<|𝑧|<1

ln (1 + 𝑧) �̃� (𝑑𝑠, 𝑑𝑧)

(39)

represents the sumof the small jumps. In general there are too
many jumps to get convergence but this sum can converge by
compensating. Moreover, the sum of the small jumps of the
solution of SDE (35) converges due to the jump part of SED
(35) driven by the compensated risk-neutral measure 𝑄.

Here we use the approximation theorem for the distri-
bution of Lévy process developed in [9] but modify it in
accordancewith ourmodel (37). Let 𝜀 > 0 be given and define
the following processes:

𝑆
‡

𝑡,𝜀
= 𝑆 (0) exp{∫

𝑡

0

𝑏
𝑠,𝜀
𝑑𝑠 + ∫

𝑡

0

√V
𝑠
𝑑𝑊

1,𝑠

+∫

𝑡

0

∫
|𝑧|≥𝜀

ln (1 + 𝑧)𝑁 (𝑑𝑠, 𝑑𝑧)} ,

(40)

where 𝑏
𝑠,𝜀

:= 𝜇 − 𝑞 − (1/2)(V
𝑠
) − ∫

𝜀<|𝑧|≤1
{ln(1 + 𝑧) − 𝑧}](𝑑𝑧),

and

𝑆
𝑡,𝜀
:= 𝑆

𝑡
− 𝑆

‡

𝑡,𝜀
= ∫

𝑡

0

∫
|𝑧|<1

{ln (1 + 𝑧) − 𝑧} ] (𝑑𝑧) 𝑑𝑠

+ ∫

𝑡

0

∫
|𝑧|<𝜀

ln (1 + 𝑧) �̃� (𝑑𝑠, 𝑑𝑧) .

(41)

Define 𝜎2
𝜀
:= ∫

|𝑧|≤𝜀
𝑧
2](𝑑𝑧) and suppose the ] has no atoms

in a neighborhood of the origin. Introduce a candidate
approximation of SDE (37) in distribution sense:

𝑆
†

𝑡,𝜀
= 𝑆 (0) exp{∫

𝑡

0

𝑏
𝑠,𝜀
𝑑𝑠 + ∫

𝑡

0

√V2
𝑠
+ 𝜎2

𝜀
𝑑𝑊

1,𝑠

+∫

𝑡

0

∫
|𝑧|≥𝜀

ln (1 + 𝑧)𝑁 (𝑑𝑠, 𝑑𝑧)} .

(42)

If

lim
𝜀→0

1

𝜀
𝜎
𝜀
= ∞, (43)

then the process (V−1
𝜀
𝑆
𝑡,𝜀
)
𝑡≥0

converges in distribution to a
standard Brownian motion (𝐵

𝑡
)
𝑡≥0

, and by (43), it holds that

sup
𝑥∈R


𝑃 (𝑆

𝑡
≤ 𝑥) − 𝑃 (𝑆

†

𝑡,𝜀
≤ 𝑥)


≤ 𝑐

𝜀

𝜎
𝜀

. (44)

Therefore, the distribution of 𝑆
𝑡
(37) (with infinite jump

activity) can be approximated closely to 𝑆†
𝑡,𝜀
, the combination

of a Wiener process with drift and a compound Poisson
process.

An approximation to the solution of SED (35) may be
obtained in the same way.

5. Approximation of Asset Price Dynamics

We begin by finding an explicit formula of the stochastic
process V = (V

𝑡
)
0≤𝑡≤𝑇

, where V
𝑡
satisfies the SED (36) for sim-

ulation purposes. The process V
𝑡
is obtained using stochastic

calculus transformation techniques [10, Theorem 1]. Let 𝑉
𝑡
=

𝐹(𝑡, V
𝑡
) ∈ 𝐶

1,2
(R). Applying Itô’s lemma to the process 𝑉, we

obtain the following equation:

𝑑𝑉
𝑡
= 𝐹

𝑡
(𝑡, V

𝑡
) 𝑑𝑡 + 𝐹V (𝑡, V𝑡) 𝑑V𝑡 +

1

2
𝐹VV (𝑡, V𝑡) 𝜎

2

V V𝑡𝑑𝑡. (45)
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Then the solution of the stochastic process V is

V
𝑡
= 𝑒

−𝛽
(
𝑉
𝑡

2
)

2

, (46)

where
𝑉
𝑡
= 2√V

0
+ 2𝐼

𝑔
(𝑡) ,

𝐼
𝑔
(𝑡) =

1

2
∫

𝑡

0

𝑒
𝛽/2

((
𝛽𝑚 − 𝜎

2
/4

√V
𝑠

)𝑑𝑠 + 𝜎 𝑑𝑊
𝑄

2,𝑠
) .

(47)

Calibration and simulation are done in a discrete time
framework. For simulation purposes using the forward Euler
discretization scheme, we divide the time horizon [0, 𝑇] of
𝑇 years into 𝑁

0
𝑇 subintervals of equal length Δ := 𝑇/𝑁

0
,

where 𝑇 is a positive integer. For each 𝑛 = 1, . . . , 𝑁
0
, the

𝑛th subinterval is represented by [𝑡
𝑛
, 𝑡
𝑛−1

] where 𝑡
𝑛
= 𝑛Δ.

Let V
𝑛
denote V

𝑡𝑛
. The following proposition shows that the

simulation of the volatility process V is best performed by
using (46).

Proposition 3. The exact value of the realization of the
solution V at time 𝑡

𝑛+1
is generated by the following reclusive

formula:

V
𝑛+1

= V
0
+ 2√V

𝑛
𝐼
𝑔
(𝑡
𝑛
) + 𝐼

2

𝑔
(𝑡
𝑛
) , (48)

where

𝐼
𝑔
(𝑡
𝑛
) =

1

2
𝑒
𝛽/2

(

(𝛽𝑚 − 𝜎
2
/4) Δ

𝑛

√V
𝑛

+ Δ𝑊
𝑄

2,𝑛
) ,

Δ𝑊
𝑄

2,𝑛
= ∫

𝑡𝑛+1

𝑡𝑛

𝑑𝑊
𝑄

2,𝑡
= 𝑊

𝑄

2,𝑡𝑛+1
− 𝑑𝑊

𝑄

2,𝑡𝑛

(49)

is theN(0, Δ
𝑛
) distributed increment of the Brownian motion

𝑊 on [𝑡
𝑛
, 𝑡
𝑛+1

] and

Δ
𝑛
= ∫

𝑡𝑛+1

𝑡𝑛

𝑑𝑡 = 𝑡
𝑛+1

− 𝑡
𝑛 (50)

is the length of the time discretization subinterval [𝑡
𝑛
, 𝑡
𝑛+1

].

For numerical experiments, we simplified implementa-
tion to generate processes V that only apply explicit schemes
to (48).

The discretized version of the risk-neutral log return
process 𝑆

†

𝑡,𝜀
is deduced from the approximation of each

component as follows: letΔ > 0 be given and let𝑋†
𝑡
:= log 𝑆†

𝑡,𝜀
.

Rewrite the 𝑆†
𝑡,𝜀
for log returns:

𝑋
†

𝑡+Δ
= 𝑋

†

𝑡
+ ∫

𝑡+Δ

𝑡

𝑏
𝑠,𝜀
𝑑𝑠 + ∫

𝑡+Δ

𝑡

√V2
𝑠
+ V2

𝜀
𝑑𝑊

1,𝑠

+ ∫

𝑡+Δ

𝑡

∫
|𝑧|≥𝜀

ln (1 + 𝑧)𝑁 (𝑑𝑠, 𝑑𝑧) .

(51)

As in the Euler scheme, an integrand over [𝑡, 𝑡 + Δ], is
approximated by its value at 𝑡. We now approximate the first
integral term using

∫

𝑡+Δ

𝑡

𝑏
𝑠,𝜀
𝑑𝑠 ≈ 𝑏

𝑡,𝜀
Δ. (52)

Following the first integral term, we get

∫

𝑡+Δ

𝑡

√V2
𝑠
+ V2

𝜀
𝑑𝑊

1,𝑠
≈ (√V2

𝑡
+ V2

𝜀
)Δ𝑊

1,𝑡
, (53)

with Δ𝑊
1,𝑡

:= 𝑊
1,𝑡+Δ

− 𝑊
1,𝑡
. From the remaining integral in

(51), we get

∫

𝑡+Δ

𝑡

∫
|𝑧|≥𝜀

ln (1 + 𝑧) Δ𝑁 (𝑑𝑠, 𝑑𝑧) ≈ (Δ
𝑁
𝑆
†

𝑡,𝜀
) Δ, (54)

where Δ
𝑁
𝑆
†

𝑡,𝜀
is the jump process of 𝑆†

𝑡,𝜀
caused by the jump

of𝑁(𝑡, 𝑧), as denoted by

Δ
𝑁
𝑆
†

𝑡,𝜀
= ∫

|𝑧|≥𝜀

ln (1 + 𝑧)𝑁 (𝑡, 𝑑𝑧) . (55)

Note that this process consists of the (possible) jumps in𝑋 at
𝑡 arising from the jump in𝑁(𝑡, ⋅).

With these approximations, the discretized version of the
risk-neutral log return process𝑋

𝑡
is displayed in the following

proposition.

Proposition 4. Based on Euler approximation, the discretiza-
tion scheme for 𝑆†

𝑡,𝜀
is as follows:

𝑆
†

𝑛+1,𝜀
= 𝑆

†

𝑛,𝜀
exp{𝑏

𝑛,𝜀
Δ
𝑛
+ √V2

𝑛
+ V2

𝜀
(√Δ

𝑛
𝑍
𝑛+1

)

+ (Δ
𝑁
𝑆
†

𝑛,𝜀
) Δ

𝑛
}

(56)

with V
𝑛
following from the scheme (48).

Proof. We use the approximation of (52), (53), and (54) to
approximate 𝑆†

𝑡+Δ,𝜀
. With the transformation 𝑆

†
= exp(𝑋†),

the discretized version of the risk-neutral 𝑆†
𝑡+Δ,𝜀

is

𝑆
†

𝑡+Δ,𝜀
≈ 𝑆

†

𝑡,𝜀
exp{𝑏

𝑡,𝜀
Δ + √V2

𝑡
+ V2

𝜀
Δ𝑊

1,𝑡
+ (Δ

𝑁
𝑆
†

𝑡,𝜀
) Δ} .

(57)

We apply this recursively at any Δ = Δ
𝑛
:= 𝑡

𝑛+1
− 𝑡

𝑛
> 0 and

replace the increment of Brownianmotion𝑊with√Δ𝑍, 𝑍 ∼

N(0, 1). More explicitly, we have (56).

From (56) and setting𝑋†
𝑡,𝜀
:= log 𝑆†

𝑡+Δ,𝜀
, we have

𝑋
†

𝑡+Δ,𝜀
≈ 𝑋

†

𝑡
+ 𝑏

𝑡,𝜀
Δ + √V2

𝑡
+ V2

𝜀
Δ𝑊

1,𝑡
+ (Δ

𝑁
𝑆
†

𝑡,𝜀
) Δ. (58)

We can now calibrate the model parameters in this equation.
Let us consider the parameter set for 𝑋

†, given by Θ =

(𝑟, 𝜇, 𝛽,𝑚, 𝜎, 𝜆, 𝜎
𝑌
). The remaining parameters 𝑞 are fixed

that calibrate the parameter based on historical data.
The conditionals of the process 𝑋

† are normal and
independent, due to the locally constancy of the SV V on small
Δ𝑡.The log-likelihood function for the asset return𝑋†

𝑛
and V

𝑛

is then given by

L (Θ) =

𝑁0

∑

𝑛=1

log𝑓 (𝑋
†

𝑛
, V
𝑛
; Θ) . (59)
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The probability density function (pdf) of process 𝑋
𝑛
given

𝑋
𝑛−1

together with the volatility V
𝑛
given V

𝑛−1
has a condi-

tional Gaussian distribution

𝑓 (𝑥
†

𝑛+1
, V
𝑛+1

| Θ) =

+∞

∑

𝑗=0

Q (𝑛
𝑡
= 𝑗)

× 𝑓N (𝑥
†

𝑛+1
, V
𝑛+1

; 𝑏
𝑛,𝜀
Δ
𝑛
+𝑥

†

𝑛

+𝑗𝜇
𝑌
, V̂2
𝑛
Δ
𝑛
+ 𝑗𝜎

2

𝑌
) ,

(60)

where V̂
𝑛
:= √V2

𝑛
+ V2

𝜀
and

𝑓N (𝑥
†

𝑛+1
, V
𝑛+1

; Θ)

=
1

√2𝜋 (V̂2
𝑛
+ 𝑗𝜎

2

𝑌
)

exp(−

(𝑥
†

𝑛+1
− 𝑏

𝑛,𝜀
− 𝑥

†

𝑛
− 𝑗𝜇

𝑌
)
2

2 (V̂2
𝑛
+ 𝑗𝜎

2

𝑌
)

) .

(61)

This pdf is the sum of the conditional probability densities
weighted by the probability of the conditioning variables of
the number of jumps 𝑛

𝑡
= 𝑁

𝑡
−𝑁

𝑡−Δ𝑡
which counts the jumps

between time 𝑡−Δ𝑡 and 𝑡. Observe that ifΔ𝑡 is small, typically
the Poisson process jumps at most one as a result of a mixture
of twoGaussian randomvariablesweighted by the probability
of zero or one jump in Δ𝑡. Then

𝑓 (𝑥
†

𝑛+1
; Θ)

= (1 − 𝜆𝑡
𝑛+1

) 𝑓N (𝑥
†

𝑛+1
, V
𝑛+1

; 𝑏
𝑛,𝜀
Δ
𝑛
+ 𝑥

†
, V̂2
𝑛
Δ
𝑛
)

+ 𝜆𝑡
𝑛+1

𝑓N (𝑥
†

𝑛+1
, V
𝑛+1

; 𝑏
𝑛,𝜀
Δ
𝑛
+𝑥

†

𝑛
+𝜇

𝑌
, V̂2
𝑛
Δ
𝑛
+𝜎

2

𝑌
) .

(62)

6. The Switching-Regime Model of
Asset Price Dynamics

We described our proposed model whose parameter values
depend on the value of a continuous-time Markov chain.

Let (𝛼
𝑡
)
𝑡∈[0,𝑇]

be a continuous-time Markov chain on
finite space S := {1, 2, . . . , 𝐾} and the transition rate matrix
𝑄 = [𝑞

𝑖𝑗
] where the transition rate 𝑞

𝑖𝑗
is calculated with

respect to the natural filtration generated by continuous-time
Markov chain 𝛼,F𝛼

𝑡
:= {𝜎(𝛼

𝑠
) : 0 ≤ 𝑠 ≤ 𝑡} and given by

𝑞
𝑖𝑗
≥ 0 if 𝑖 ̸= 𝑗 ∀𝑖, 𝑗 ∈ S,

𝑞
𝑖𝑖
= −

𝐾

∑

𝑗=0,𝑗 ̸= 𝑖

𝑞
𝑖𝑗

otherwise.
(63)

By definition, the Markov chains 𝛼
𝑡
have the probability of a

transition from state 𝑖 to state 𝑗 not depending on the global
time and depending only on the time interval available for the
transition; that is,

P (𝛼
𝑡+𝑠

= 𝑗 | 𝛼
𝑠
= 𝑖) = 𝑞

𝑖𝑗
= P (𝛼

𝑡
= 𝑗 | 𝛼

0
= 𝑖) (64)

for all 𝑠, 𝑡 ≥ 0. The regime switching (RS) of SVL model (35)-
(36) is defined by the following SDE:

𝑑𝑆
𝑡
= 𝑆

𝑡−
(𝑟 (𝛼

𝑡
) 𝑑𝑡 + √V

𝑡
𝑑𝑊

𝑄

1,𝑡
+ ∫

R

𝑧�̃�
𝑄
(𝑑𝑠, 𝑑𝑧)) , (65)

𝑑V
𝑡
= (𝜇 (𝛼

𝑡
) − 𝑞 (𝛼

𝑡
) − 𝑟 (𝛼

𝑡
) + 𝛽 (𝛼

𝑡
) (𝑚 (𝛼

𝑡
) − V

𝑡
)) 𝑑𝑡

+ 𝜎 (𝛼
𝑡
)√V

𝑡
𝑑𝑊

𝑄

2,𝑡
.

(66)

The processes 𝑟(𝛼
𝑡
), 𝜇(𝛼

𝑡
), 𝑞(𝛼

𝑡
), 𝛽(𝛼

𝑡
), 𝑚(𝛼

𝑡
), and 𝜎(𝛼

𝑡
) are

constants taking values, respectively, in 𝑟(S), 𝜇(S), 𝑞(S),
𝛽(S),𝑚(S), and 𝜎(S) such that

𝑟 (S) := {𝑟
1
, . . . , 𝑟

𝐾
} , 𝜇 (S) := {𝜇

1
, . . . , 𝜇

𝐾
} ,

𝑞 (S) := {𝑞
1
, . . . , 𝑞

𝐾
} , 𝛽 (S) := {𝛽

1
, . . . , 𝛽

𝐾
} ,

𝑚 (S) := {𝑚
1
, . . . , 𝑚

𝐾
} , 𝜎 (S) := {𝜎

1
, . . . , 𝜎

𝐾
} .

(67)

The solution 𝑆
𝑡
(𝛼
𝑡
) of (65) with SV (66) is called an RS of

SVGLmodel. LetF𝑆

𝑛
be the filtration of historical value of the

process 𝑆
𝑛
untial time 𝑡

𝑛
. By Proposition 4, its approximation

of the solution 𝑆
𝑡
(𝛼
𝑡
) in discrete version is given by

𝑆
†

𝑛+1,𝜀
= 𝑆

†

𝑛,𝜀
exp {𝑏

𝑛,𝜀
(𝛼
𝑛
) Δ

𝑛
+ √V2

𝑛
(𝛼
𝑛
) + V2

𝜀
(√Δ

𝑛
𝑍
𝑛+1

)

+ (Δ
𝑁
𝑆
†

𝑛,𝜀
) Δ

𝑛
} .

(68)

The regime switching version of model (33) with (34) and
its solution are defined by in similar manner.

In the case that the future regime of the economy has only
2 states 𝛼

𝑘
= 𝑘, 𝑘 = 1, 2, the conditional distribution density

of 𝑋†
𝑛+1,𝜀

, the log price of 𝑆†
𝑛+1,𝜀

, has associated parameters
across regimes given by

𝑓 (𝑋
†

𝑛+1,𝜀
| F

𝛼

𝑛
; Θ) = 𝑓 (𝑋

†

𝑛+1,𝜀
| F

𝛼

𝑛
, 𝛼
𝑛
= 1;Θ

1
) 𝑞
1,𝑛

+𝑓 (𝑋
†

𝑛+1,𝜀
| F

𝛼

𝑛−1
, 𝛼
𝑛
=2;Θ

2
) (1 − 𝑞

1,𝑛
)

(69)

up to the conditional probability 𝑞
1,𝑛

= 𝑄{𝛼
𝑛
= 1 | F𝛼

𝑛
}.

Assume that a Markov switching or jump process is
independent of Brownian motion𝑊𝑄

1
,𝑊

𝑄

2
. Combining both

regime switching and jumps with the locally constant of the
SV process V, with conditional density of 𝑋†

𝑛,𝜀
, from (62), we

get

𝑓(𝑋
†

𝑛+1,𝜀
| F

𝑋
†

𝑛+1
, 𝛼
𝑛
= 𝑘;Θ

𝑘
)

= (1 − 𝜆𝑡
𝑛+1

) 𝑓 (𝑆
†

𝑛,𝜀
| F

𝑋
†

𝑛
, 𝛼
𝑛
= 𝑗, no jump; Θ

𝑘
)

+ 𝜆𝑡
𝑛+1

𝑓(𝑋
†

𝑛,𝜀
| F

𝑋
†

𝑛−1
, 𝛼
𝑛
= 𝑖, jump; Θ

𝑘
)
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= (1 − 𝜆𝑡
𝑛+1

) 𝑓N (𝑥
†

𝑛
, V
𝑛
; 𝑏
𝑛,𝜀
Δ
𝑛
+ 𝑥

𝑛
, V̂2
𝑛
Δ
𝑛
)

+ 𝜆𝑡
𝑛+1

𝑓N (𝑥
†

𝑛
, V
𝑛
; 𝑏
𝑛,𝜀
Δ
𝑛
+ 𝑥

𝑛
+ 𝑗𝜇

𝑌
, V̂2
𝑛
Δ
𝑛
+ 𝜎

2

𝑌
) .

(70)

Substituting (70) into (69) gives the conditional density of
𝑋
†

𝑛,𝜀
used in constructing the likelihood function for the data.
The set of the parameters Θ is estimated by the EM

algorithm (for more details see [6]). The procedure for
implementation to real historical data is as follows.

Algorithm 5. Consider the following.

(1) Estimate initial parameters of regime processes from
historical data using a numerical scheme of model
(58) with (48) to maximize the likelihood function
(62) through a solver.

(2) Set an initial vector, Θ(0) := (𝑟
0

𝑘
, 𝜎
0

𝑘
, 𝑚

0

𝑘
, 𝛽
0

𝑘
, 𝜇
0

𝑌,𝑘
, 𝜎
0

𝑌,𝑘
)

for all 𝑘 ∈ S. Fix the maximum number of iterations
𝑁 and approximation level 𝜀 > 0. Apply the EM
algorithm to find filtered probability with density
function of (70) and smoothed probability using data
generated by SV V

𝑛
of (48) as a variance process of

discretization for approximation process𝑋
𝑛,𝜀
.

(3) Generate the process𝑋
𝑛,𝜀
.

7. Application Example of Thailand SET Index

In this section we provide numerical results from the pro-
posed model. We consider a stock index for the Bangkok
Stock Exchange of Thailand (SET) index from January 1,
2011, to February 2013. We fix 𝑟 and 𝑞 at 0.025 and 0.125,
respectively. The estimates for the proposed model (58) with
SV (48) using daily data on continuously compounded SET
index returns are 𝜎 = 0.7500,𝑚 = 0.055, 𝛽 = 0.4500 with
𝜇
𝑌
= 0.2250 and 𝜎

𝑌
= 0.1250 and being fixed. The data cover

the sample period, January 1, 2011, through February 15, 2012.
In estimating the (58), we fix 𝜀, somewhat arbitrarily, at 0.5.

Implementation of the Matlab program following
Algorithm 5. The log prices 𝑋

†

𝑡,𝜀
in the case of proposed

model (58) are the base regime and the second regime
representing the jump prices is given by i.i.d. log-normal
distribution log(𝑋

𝑡
, 𝛼
2
) ∼ N(0.3250, 0.485). Calibration

results for model (58) with two independent regimes fitted
to the SET index log prices are displayed in Figure 2.
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