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We discuss blowup phenomena for a modified two-component Dullin-Gottwald-Holm shallow water system. In this paper, some
new blowup criteria of strong solutions involving the density and suitable integral form of the momentum are established.

1. Introduction

We consider the following two-component DGH type sys-
tem:

𝑦
𝑡
+ 2𝜔𝑢

𝑥
+ 𝑢𝑦
𝑥
+ 2𝑦𝑢

𝑥
+ 𝛾𝑢
𝑥𝑥𝑥

+ 𝑔𝜌𝜌
𝑥
= 0,

𝑦 = 𝑢 − 𝛼
2
𝑢
𝑥𝑥
,

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0,

(1)

where 𝑢 = 𝑢(𝑥, 𝑡), (𝑥, 𝑡) ∈ (R,R+) denotes the velocity
field, 𝑔 is the downward constant acceleration of gravity in
applications to shallow water waves, and 𝜌 = (1 − 𝜕

2

𝑥
)(𝜌 −

𝜌
0
), where 𝜌

0
is taken to be a constant. It is obvious that if

𝜌 ≡ 0, then (1) reduces to the well-known Dullin-Gottwald-
Holm equation [1] (DGH equation for short). There are
some contributions to DGH equation concerning the well-
posedness, scattering problem, blowup phenomenon, and so
forth; see, for example, [2–5] and references therein. We find
that (1) is expressed in terms of an averaged filtered density
component 𝜌 in analogy to the relation between momentum
and velocity by setting 𝜌 = (1 − 𝜕

2

𝑥
)(𝜌 − 𝜌

0
) and the

velocity component 𝑢. The idea is actually from the recent
work [6]. Our modification breaks the structure of DGH2
system derived by following Ivanov’s approach [7] by the
authors in [8]. The motivation of current research is stated
as follows. From geometric point of view, (1) is the model
for geodesic motion on the semidirect product Lie group of

diffeomorphisms acting on densities, with respect to the𝐻1-
norm of velocity 𝑢 and the𝐻1-norm on filtered density. From
a physical point of view, (1) admits wave breaking phenomena
in finite time which attracts researchers’ interest. We also
find that the 𝐻1-norm of (𝑢, 𝜌) is conserved with respect
to time variable. This makes further different discussions
on the singularities, unlike those for the DGH2 system
or two-component Camassa-Holm system, possible. In the
previous works [9–11] on the two-component Camassa-
Holm equation and its modified version, blowup conditions
were established in view of the negativity of initial velocity
slope at some point; basically, the initial integral form of
momentum is never involved. That is why we consider this
kind of blowup condition in this paper. Precisely, we show
the solutions blowup in finite time provided that the initial
density and momentum satisfy certain sign conditions. To
our knowledge, less results exist yet for the formation of
singularities of (1) although the approaches we applied here
are standard. The methods in previous works cannot be
moved to thismodel parallelly. For convenience, let V = 𝜌−𝜌

0

and Λ = (1 − 𝛼
2
𝜕
2

𝑥
)
−1; then the operator Λ can be expressed

by its associated Green’s function 𝐺(𝑥) = (1/2𝛼)𝑒−|𝑥/𝛼| with

Λ𝑓 (𝑥) = 𝐺 ∗ 𝑓 (𝑥) = ∫
R

𝐺 (𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦. (2)

Using this identity, system (1) takes an equivalent form of a
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quasilinear evolution equation of hyperbolic type as follows:

𝑢
𝑡
+ 𝑢
𝑥
(𝑢 −

𝛾

𝛼2
)

= −𝜕
𝑥
𝐺 ∗ (𝑢

2
+
𝛼
2

2
𝑢
2

𝑥
+ (2𝜔 +

𝛾

𝛼2
) 𝑢 +

𝑔

2
V2 −

𝑔

2
V2
𝑥
) ,

V
𝑡
+ 𝑢V
𝑥
= −𝐺 ∗ ((𝑢

𝑥
V
𝑥
)
𝑥
+ 𝑢
𝑥
V) .

(3)

The current paper is based on some results on the
Camassa-Holm equation [12–19] and its two-component
generalizations [20–27]. We investigate further formation of
singularities of solutions to (3) with the case of 𝑔 = 1 and 𝛼 >
0, just for simplicity mathematically. This paper is organized
as follows. In Section 2, we recall some preliminary results
on the well-posedness and blowup scenario. In Section 3, the
detailed blowup conditions are presented.

2. Preliminaries

In this section, for completeness, we recall some elementary
results and skip their proofs since they are not the main
concern of this work. For convenience, in what follows, we
let 𝜆 = −𝛾/𝛼2 and 2𝜅 = 2𝜔 + 𝛾/𝛼2.

We can apply Kato’s theory [28] to establish the following
local well-posedness theorem for (3).

Theorem 1. Assume an initial data (𝑢
0
, V
0
) ∈ 𝐻

𝑠
× 𝐻
𝑠−1
, 𝑠 ≥

5/2. Then there exists a maximal 𝑇 = 𝑇(‖𝑢
0
, V
0
‖
𝐻
𝑠
×𝐻
𝑠−1) > 0

and a unique solution

(𝑢, V) ∈ 𝐶 ([0, 𝑇) ;𝐻𝑠 × 𝐻𝑠−1) ∩ 𝐶1 ([0, 𝑇) ;𝐻𝑠−1 × 𝐻𝑠−2)

(4)

of system (3). Moreover, the solution (𝑢, V) depends continu-
ously on the initial value (𝑢

0
, V
0
), and the maximal time of

existence 𝑇 > 0 is independent of 𝑠.

The proof of Theorem 1 is similar to the one in [11].
Moreover, using the techniques in [11], one can get the
criterion for finite time wave breaking to (3) as follows.

Theorem 2. Let (𝑢
0
, V
0
) ∈ 𝐻

𝑠
× 𝐻
𝑠−1 with 𝑠 ≥ 5/2, and let

𝑇 > 0 be the maximal time of existence of the solution (𝑢, V) to
(3) with initial data (𝑢

0
, V
0
). Then the corresponding solution

(𝑢, V) blowsup in finite time if and only if

lim
𝑡↑𝑇

{inf
𝑥∈R

𝑢
𝑥
(𝑡, 𝑥)} = −∞. (5)

Lemma 3 (see [29]). Assume that a differentiable function
𝑦(𝑡) satisfies

𝑦
󸀠
(𝑡) ≤ −𝐶𝑦

2
(𝑡) + 𝐾 (6)

with constants 𝐶,𝐾 > 0. If the initial datum 𝑦(0) = 𝑦
0
<

−√𝐾/𝐶, then the solution to (9) goes to −∞ before 𝑡 tends to
1/(−𝐶𝑦

0
+ 𝐾/𝑦

0
).

Lemma 4 (see [19]). Suppose that Ψ(𝑡) is twice continuously
differential satisfying

Ψ
󸀠󸀠
(𝑡) ≥ 𝐶

0
Ψ
󸀠
(𝑡) Ψ (𝑡) , 𝑡 > 0, 𝐶

0
> 0,

Ψ (𝑡) > 0, Ψ
󸀠
(𝑡) > 0.

(7)

Then Ψ blowsup in finite time. Moreover the blowup time can
be estimated in terms of the initial datum as

𝑇 ≤ max{ 2

𝐶
0
Ψ (0)

,
Ψ (0)

Ψ󸀠 (0)
} . (8)

We also need to introduce the standard particle trajectory
method for later use. Consider now the following two initial
value problems:

𝑞
1,𝑡
= 𝑢 (𝑡, 𝑞

1
) + 𝜆, 𝑡 ∈ [0, 𝑇) ,

𝑞
1
(0, 𝑥) = 𝑥, 𝑥 ∈ R,

(9)

𝑞
2,𝑡
= 𝑢 (𝑡, 𝑞

2
) , 𝑡 ∈ [0, 𝑇) ,

𝑞
2
(0, 𝑥) = 𝑥, 𝑥 ∈ R,

(10)

where 𝑢 ∈ 𝐶
1
([0, 𝑇),𝐻

𝑠−1
) is the first component of the

solution (𝑢, V) to system (3) with initial data (𝑢
0
, V
0
) ∈ 𝐻

𝑠
×

𝐻
𝑠−1

(𝑠 ≥ 5/2), and 𝑇 > 0 is the maximal time of existence.
By direct computation, we have

𝑞
𝑖,𝑡𝑥
(𝑡, 𝑥) = 𝑢

𝑥
(𝑡, 𝑞
𝑖
(𝑡, 𝑥)) 𝑞

𝑖,𝑥
(𝑡, 𝑥) , 𝑖 = 1, 2. (11)

Then,

𝑞
𝑖,𝑥
(𝑡, 𝑥) = exp(∫

𝑡

0

𝑢
𝑥
(𝜏, 𝑞
𝑖
(𝜏, 𝑥)) 𝑑𝜏)> 0, 𝑡 > 0, 𝑥 ∈ R,

(12)

which means that 𝑞
𝑖
(𝑡, ⋅): R → R is a diffeomorphism of

the line for every 𝑡 ∈ [0, 𝑇). Consequently, the 𝐿∞-norm
of any function V(𝑡, ⋅) is preserved under the family of the
diffeomorphisms 𝑞

𝑖
(𝑡, ⋅); that is,

‖V (𝑡, ⋅)‖
𝐿
∞ =

󵄩󵄩󵄩󵄩V (𝑡, 𝑞1 (𝑡, ⋅))
󵄩󵄩󵄩󵄩𝐿∞ =

󵄩󵄩󵄩󵄩V (𝑡, 𝑞2 (𝑡, ⋅))
󵄩󵄩󵄩󵄩𝐿∞ ,

𝑡 ∈ [0, 𝑇) .
(13)

Similarly,

inf
𝑥∈R

V (𝑡, 𝑥) = inf
𝑥∈R

V (𝑡, 𝑞
1
(𝑡, 𝑥)) = inf

𝑥∈R
V (𝑡, 𝑞
2
(𝑡, 𝑥)) ,

𝑡 ∈ [0, 𝑇) ,

sup
𝑥∈R

V (𝑡, 𝑥) = sup
𝑥∈R

V (𝑡, 𝑞
1
(𝑡, 𝑥)) = sup

𝑥∈R

V (𝑡, 𝑞
2
(𝑡, 𝑥)) ,

𝑡 ∈ [0, 𝑇) .

(14)

3. Blowup Phenomenon

In this section, we show that blowup phenomenon is the only
one way that singularity arises in smooth solutions. We start
this section with the following useful lemma.



Abstract and Applied Analysis 3

Lemma 5. Let𝑋
0
= (𝑢
0
, V
0
) ∈ 𝐻

𝑠
×𝐻
𝑠−1, 𝑠 ≥ 2. 𝑇 is assumed

to be the maximal existence time of the solution 𝑋 = (𝑢, V)
to system (3) corresponding to the initial data 𝑋

0
. Then for all

𝑡 ∈ [0, 𝑇), one has the following conservation law:

𝐸 (𝑡) = ∫
R

(𝑢
2
+ 𝛼
2
𝑢
2

𝑥
+ V2 + V2

𝑥
) 𝑑𝑥. (15)

Proof. We will prove that 𝐸(𝑡) is a conserved quantity with
respect to time variable. Here we use the classical energy
method. Multiplying the first equation in (3) by 𝑢(𝑥, 𝑡) and
integrating by parts, we obtain

∫
R

𝑢𝑢
𝑡
𝑑𝑥 + ∫

R

𝛼
2
𝑢
𝑥
𝑢
𝑥𝑡
𝑑𝑥 = −∫

R

𝑢V
𝑥
(V − V

𝑥𝑥
) 𝑑𝑥. (16)

Similarly, we have the following inequality for the second
equation (3):

∫
R

VV
𝑡
+ V
𝑥
V
𝑥𝑡
𝑑𝑥 = ∫

R

𝑢V
𝑥
(V − V

𝑥𝑥
) 𝑑𝑥. (17)

This implies that

∫
R

(𝑢𝑢
𝑡
+ 𝛼
2
𝑢
𝑥
𝑢
𝑥𝑥
+ VV
𝑡
+ V
𝑥
V
𝑥𝑥
) 𝑑𝑥 = 0. (18)

Thus, we have

𝑑

𝑑𝑡
∫
R

(𝑢
2
+ 𝛼
2
𝑢
2

𝑥
+ V2 + V2

𝑥
) 𝑑𝑥

= 2∫
R

(𝑢𝑢
𝑡
+ 𝛼
2
𝑢
𝑥
𝑢
𝑥𝑥
+ VV
𝑡
+ V
𝑥
V
𝑥𝑥
) 𝑑𝑥 = 0.

(19)

This completes the proof.

Using this conservation law, we obtain

‖𝑢 (⋅, 𝑡)‖
2

𝐿
∞
(R) + ‖V (⋅, 𝑡)‖

2

𝐿
∞
(R)

≤
1

2𝛼
‖𝑢 (⋅, 𝑡)‖

2

𝐻
1

𝛼
(R) +

1

2
‖V (⋅, 𝑡)‖2

𝐻
1
(R) ≤ 𝐶1𝐸 (0) ,

(20)

where

𝐶
1
= max { 1

2𝛼
,
1

2
} . (21)

Theorem 6. Suppose that 𝑋
0
= (𝑢
0
, V
0
) ∈ 𝐻

𝑠
× 𝐻
𝑠−1, 𝑠 ≥

5/2, 𝜌
0
(𝑥
0
) = 𝑦
0
(𝑥
0
) + 𝜅 = 0, and the initial data satisfies the

following conditions:

(i) 𝜌
0
(𝑥) ≥ 0 𝑜𝑛 (−∞, 𝑥

0
) and 𝜌

0
(𝑥) ≤ 0 𝑜𝑛 (𝑥

0
,∞),

(ii) ∫𝑥0
−∞

𝑒
𝜉/𝛼
(𝑦
0
(𝜉) + 𝜅)𝑑𝜉 > 0 and ∫

𝑥
0

−∞
𝑒
−𝜉/𝛼

(𝑦
0
(𝜉) +

𝜅)𝑑𝜉 < 0,

for some point 𝑥
0
∈ R. Then the solution to system (3) with the

initial value𝑋
0
blowsup in finite time.

Proof. Differentiating the first equation of (3) with respect to
𝑥, we obtain

𝑢
𝑥𝑡
+ 𝑢
2

𝑥
+ 𝑢𝑢
𝑥𝑥
+ 𝜆𝑢
𝑥𝑥

+ 𝜕
2

𝑥
𝐺 ∗ (𝑢

2
+
𝛼
2

2
𝑢
2

𝑥
+ 2𝜅𝑢 +

1

2
V2 −

1

2
V2
𝑥
) = 0.

(22)

Applying the relation 𝜕2
𝑥
(𝐺 ∗ 𝑓) = (1/𝛼

2
)(𝐺 ∗ 𝑓 − 𝑓) yields

𝑢
𝑥𝑡
+ 𝑢
2

𝑥
+ 𝑢𝑢
𝑥𝑥
+ 𝜆𝑢
𝑥𝑥

+
1

𝛼2
𝐺 ∗ (𝑢

2
+
𝛼
2

2
𝑢
2

𝑥
+ 2𝜅𝑢 +

1

2
V2 −

1

2
V2
𝑥
)

−
1

𝛼2
(𝑢
2
+
𝛼
2

2
𝑢
2

𝑥
+ 2𝜅𝑢 +

1

2
V2 −

1

2
V2
𝑥
) = 0.

(23)

From (23) we have

𝑑

𝑑𝑡
𝑢
𝑥
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

= (𝑢
𝑥𝑡
+ 𝑢𝑢
𝑥𝑥
+ 𝜆𝑢
𝑥𝑥
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

= −𝑢
2

𝑥
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡) −

1

𝛼2
𝐺

∗ (𝑢
2
+
𝛼
2

2
𝑢
2

𝑥
+ 2𝜅𝑢 +

1

2
V2 −

1

2
V2
𝑥
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

+
1

𝛼2
(𝑢
2
+
𝛼
2

2
𝑢
2

𝑥
+ 2𝜅𝑢 +

1

2
V2 −

1

2
V2
𝑥
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

≤ −
1

2
𝑢
2

𝑥
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡) +

1

2𝛼2
(𝑢 + 𝜅)

2
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

+
1

2𝛼2
(V2 − V2

𝑥
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

−
1

2𝛼2
(𝐺 ∗ (V2 − V2

𝑥
)) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡) ,

(24)

where we used the fact proved in [30] that

𝐺 ∗ ((𝑢 + 𝜅)
2
+
𝛼
2

2
𝑢
2

𝑥
) ≥

1

2
(𝑢 + 𝜅)

2
. (25)

In order to arrive at our result, we need the following three
claims.

Claim 1. 𝑦(𝑞
1
(𝑥
0
, 𝑡), 𝑡)) + 𝜅 = 0 for all 𝑡 in its lifespan; 𝑞

1
is

defined in (9).
It is worth noting the equivalent form of the first equation

in (3) in what follows:

𝑦
𝑡
+ 𝑢𝑦
𝑥
+ 2𝑦𝑢

𝑥
+ 𝜆𝑦
𝑥
+ 2𝜅𝑢

𝑥
+ 𝜌V
𝑥
= 0. (26)
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From the previous equation, we can get

𝑑

𝑑𝑡
((𝑦 (𝑞

1
(𝑥, 𝑡) , 𝑡) + 𝜅) 𝑞

2

1,𝑥
(𝑥, 𝑡))

= (𝑦
𝑡
+ 𝑢𝑦
𝑥
+ 2𝑦𝑢

𝑥
+ 𝜆𝑦
𝑥
+ 2𝜅𝑢

𝑥
) (𝑞
1
(𝑥, 𝑡) , 𝑡) 𝑞

2

1,𝑥
(𝑥, 𝑡)

= −𝜌 (𝑞
1
(𝑥, 𝑡) , 𝑡) V

𝑥
(𝑞
1
(𝑥, 𝑡) , 𝑡) 𝑞

2

1,𝑥
(𝑥, 𝑡) .

(27)

Since 𝑞
2
(𝑥, ⋅) defined by (10) is a diffeomorphism of the line

for any 𝑡 ∈ [0, 𝑇), so there exists an 𝑥
3
(𝑡) ∈ R such that

𝑞
2
(𝑡, 𝑥
3
(𝑡)) = 𝑞

1
(𝑡, 𝑥
0
) , 𝑡 ∈ [0, 𝑡) . (28)

When 𝑡 = 0, we have

𝑥
3
(0) = 𝑞

2
(0, 𝑥
3
(0)) = 𝑞

1
(0, 𝑥
0
) = 𝑥
0
. (29)

Now we prove that 𝜌(𝑡, 𝑞
1
(𝑡, 𝑥
0
)) = 0. It is easy to get

𝑑

𝑑𝑡
𝜌 (𝑡, 𝑞

2
(𝑡, 𝑥
3
(𝑡))) = − (𝜌𝑢

𝑥
) (𝑡, 𝑞
2
(𝑡, 𝑥
3
(𝑡))) . (30)

Since

𝜌
0
(𝑥
0
) = 0, (31)

integrating the previous equation, we can obtain

𝜌 (𝑡, 𝑞
2
(𝑡, 𝑥
3
(𝑡))) = 𝜌 (0, 𝑞

2
(0, 𝑥
3
(0))) 𝑒

−∫
𝑡

0

𝑢
𝑥
(𝜏,𝑞
2
(𝜏,𝑥
3
(𝜏)))𝑑𝜏

= 𝜌
0
(𝑥
0
) 𝑒
−∫
𝑡

0

𝑢
𝑥
(𝜏,𝑞
2
(𝜏,𝑥
3
(𝜏)))𝑑𝜏

= 0;

(32)

thus we have

𝜌 (𝑡, 𝑞
1
(𝑡, 𝑥
0
)) = 𝜌 (𝑡, 𝑞

2
(𝑡, 𝑥
3
(𝑡))) = 0. (33)

So we can get

𝑑

𝑑𝑡
((𝑦 (𝑞

1
(𝑥
0
, 𝑡) , 𝑡) + 𝜅) 𝑞

2

1,𝑥
(𝑥
0
, 𝑡))

= −𝜌 (𝑞
1
(𝑥
0
, 𝑡) , 𝑡) V

𝑥
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡) 𝑞

2

1,𝑥
(𝑥
0
, 𝑡) = 0;

(34)

then we have

𝑦 (𝑞
1
(𝑥
0
, 𝑡) , 𝑡) + 𝜅 = 𝑦

0
(𝑥
0
) + 𝜅 = 0. (35)

Our claim is proved.

Claim 2. For any fixed 𝑡, V2
𝑥
(𝑥, 𝑡) − V2(𝑥, 𝑡) ≤ V2

𝑥
(𝑞
1
(𝑥
0
, 𝑡), 𝑡) −

V2(𝑞
1
(𝑥
0
, 𝑡), 𝑡) for all 𝑥 ∈ R. For any fixed 𝑡, if 𝑥 ≤ 𝑞

1
(𝑥
0
, 𝑡),

then

V2
𝑥
(𝑥, 𝑡) − V2 (𝑥, 𝑡)

= −(∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉
𝜌 (𝜉, 𝑡) 𝑑𝜉 − ∫

𝑞
1
(𝑥
0
,𝑡)

𝑥

𝑒
𝜉
𝜌 (𝜉, 𝑡) 𝑑𝜉)

× (∫

∞

𝑞
1(𝑥0 ,𝑡)

𝑒
−𝜉
𝜌 (𝜉, 𝑡) 𝑑𝜉 + ∫

𝑞
1
(𝑥
0
,𝑡)

𝑥

𝑒
−𝜉
𝜌 (𝜉, 𝑡) 𝑑𝜉)

= V2
𝑥
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡) − V2 (𝑞

1
(𝑥
0
, 𝑡) , 𝑡)

− ∫

𝑥

−∞

𝑒
𝜉
𝜌 (𝜉, 𝑡) 𝑑𝜉 ∫

𝑞
1
(𝑥
0
,𝑡)

𝑥

𝑒
−𝜉
𝜌 (𝜉, 𝑡) 𝑑𝜉

+ ∫

𝑞
1
(𝑥
0
,𝑡)

𝑥

𝑒
𝜉
𝜌 (𝜉, 𝑡) 𝑑𝜉∫

∞

𝑞
1(𝑥0 ,𝑡)

𝑒
−𝜉
𝜌 (𝜉, 𝑡) 𝑑𝜉

≤ V2
𝑥
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡) − V2 (𝑞

1
(𝑥
0
, 𝑡) , 𝑡) ,

(36)

where the condition (i) is used. Similarly, for 𝑥 ≥ 𝑞
1
(𝑥
0
, 𝑡), we

also have

V2
𝑥
(𝑥, 𝑡) − V2 (𝑥, 𝑡) ≤ V2

𝑥
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡) − V2 (𝑞

1
(𝑥
0
, 𝑡) , 𝑡) .

(37)

So Claim 2 is proved. Consequently, we can obtain

(𝐺 ∗ (V2 − V2
𝑥
)) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

=
1

2𝛼
∫
R

𝑒
−|𝑞
1
(𝑥
0
,𝑡)−𝜉|/𝛼

(V2 − V2
𝑥
) (𝜉, 𝑡) 𝑑𝜉

≥
1

2𝛼
∫
R

𝑒
−|𝑞
1
(𝑥
0
,𝑡)−𝜉|/𝛼

(V2 − V2
𝑥
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡) 𝑑𝜉

= (V2 − V2
𝑥
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡) .

(38)

Thus, one can get

𝑑

𝑑𝑡
𝑢
𝑥
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡) ≤ −

1

2
𝑢
2

𝑥
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

+
1

2𝛼2
(𝑢 + 𝜅)

2
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡) .

(39)

Claim 3. (𝑢 + 𝜅)2(𝑞
1
(𝑥
0
, 𝑡), 𝑡) < 𝛼

2
𝑢
2

𝑥
(𝑞
1
(𝑥
0
, 𝑡), 𝑡) for all 𝑡 ≥ 0.

Furthermore, 𝑢
𝑥
(𝑞
1
(𝑥
0
, 𝑡), 𝑡) < 0 is strictly decreasing.
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Suppose that there exists a 𝑡
0
such that (𝑢 + 𝜅)2(𝑞

1
(𝑥
0
,

𝑡), 𝑡) < 𝛼
2
𝑢
2

𝑥
(𝑞
1
(𝑥
0
, 𝑡), 𝑡) on [0, 𝑡

0
) and (𝑢+𝜅)2(𝑞

1
(𝑥
0
, 𝑡
0
), 𝑡
0
) =

𝛼
2
𝑢
2

𝑥
(𝑞
1
(𝑥
0
, 𝑡
0
), 𝑡
0
). From the expression of 𝑢(𝑥, 𝑡) in terms of

𝑦(𝑥, 𝑡), we can rewrite 𝑢(𝑥, 𝑡) + 𝜅 and 𝑢
𝑥
(𝑥, 𝑡) as follows:

𝑢 (𝑥, 𝑡) + 𝜅 =
1

2𝛼
𝑒
−𝑥/𝛼

∫

𝑥

−∞

𝑒
𝜉/𝛼
(𝑦 (𝜉, 𝑡) + 𝜅) 𝑑𝜉

+
1

2𝛼
𝑒
𝑥/𝛼

∫

∞

𝑥

𝑒
−𝜉/𝛼

(𝑦 (𝜉, 𝑡) + 𝜅) 𝑑𝜉,

𝑢
𝑥
(𝑥, 𝑡) = −

1

2𝛼2
𝑒
−𝑥/𝛼

∫

𝑥

−∞

𝑒
𝜉/𝛼
(𝑦 (𝜉, 𝑡) + 𝜅) 𝑑𝜉

+
1

2𝛼2
𝑒
𝑥/𝛼

∫

∞

𝑥

𝑒
−𝜉/𝛼

(𝑦 (𝜉, 𝑡) + 𝜅) 𝑑𝜉.

(40)

Letting

𝐼 (𝑡) = 𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(𝑦 (𝜉, 𝑡) + 𝜅) 𝑑𝜉,

𝐼𝐼 (𝑡) = 𝑒
𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

∞

𝑞
1(𝑥0 ,𝑡)

𝑒
−𝜉/𝛼

(𝑦 (𝜉, 𝑡) + 𝜅) 𝑑𝜉,

(41)

then

𝑑𝐼 (𝑡)

𝑑𝑡
= −

1

𝛼
(𝑢 (𝑞
1
(𝑥
0
, 𝑡) , 𝑡) + 𝜆) 𝑒

−𝑞
1
(𝑥
0
,𝑡)/𝛼

× ∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(𝑦 (𝜉, 𝑡) + 𝜅) 𝑑𝜉

+ 𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
𝑦
𝑡
(𝜉, 𝑡) 𝑑𝜉.

(42)

Integrating by parts, the first term of (42) yields

−
1

𝛼
(𝑢 (𝑞
1
(𝑥
0
, 𝑡) , 𝑡) + 𝜆) 𝑒

−𝑞
1
(𝑥
0
,𝑡)/𝛼

× ∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(𝑦 (𝜉, 𝑡) + 𝜅) 𝑑𝜉

= (𝛼𝑢𝑢
𝑥
− 𝑢
2
− 𝜅𝑢) (𝑞

1
(𝑥
0
, 𝑡) , 𝑡)

−
1

𝛼
𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
𝜆 (𝑦 (𝜉, 𝑡) + 𝜅) 𝑑𝜉.

(43)

For the second term of (42), we have the following equation
in the view of Claim 1:

𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
𝑦
𝑡
(𝜉, 𝑡) 𝑑𝜉

= −𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(((𝑦 + 𝜅) 𝑢)

𝑥
+
1

2
(𝑢
2
− 𝛼
2
𝑢
2

𝑥
)
𝑥

+𝜆(𝑦 + 𝜅)
𝑥
+ 𝜅𝑢
𝑥
+ 𝜌V
𝑥
)𝑑𝜉

= (
𝛼
2

2
𝑢
2

𝑥
−
1

2
𝑢
2
− 𝜅𝑢) (𝑞

1
(𝑥
0
, 𝑡) , 𝑡)

− 𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
𝜌V
𝑥
𝑑𝜉

+
1

𝛼
𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
((𝑦 + 𝜅) 𝑢 +

1

2
(𝑢
2
− 𝛼
2
𝑢
2

𝑥
)

+𝜆 (𝑦 + 𝜅) + 𝜅𝑢) 𝑑𝜉

= (
𝛼
2

2
𝑢
2

𝑥
−
1

2
𝑢
2
− 𝜅𝑢 +

1

2
(V2
𝑥
− V2)) (𝑞

1
(𝑥
0
, 𝑡) , 𝑡)

+
1

2𝛼
𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(V2 − V2

𝑥
) 𝑑𝜉

+
1

𝛼
𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(
3

2
𝑢
2
−
𝛼
2

2
𝑢
2

𝑥
− 𝛼
2
𝑢𝑢
𝑥𝑥

+𝜆 (𝑦 + 𝜅) + 2𝜅𝑢)𝑑𝜉

= (
𝛼
2

2
𝑢
2

𝑥
− 𝛼𝑢𝑢

𝑥
− 𝜅𝑢 +

1

2
(V2
𝑥
− V2)) (𝑞

1
(𝑥
0
, 𝑡) , 𝑡)

+
1

2𝛼
𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(V2 − V2

𝑥
) 𝑑𝜉

+
1

𝛼
𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(𝑢
2
+
𝛼
2

2
𝑢
2

𝑥

+𝜆 (𝑦 + 𝜅) + 2𝜅𝑢)𝑑𝜉.

(44)
Here we have used

− 𝛼𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(𝑢𝑢
𝑥𝑥
) (𝜉, 𝑡) 𝑑𝜉

= −𝛼 (𝑢𝑢
𝑥
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡) +

1

2
𝑢
2
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

+ 𝛼𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(𝑢
2

𝑥
−

1

2𝛼2
𝑢
2
) (𝜉, 𝑡) 𝑑𝜉.

(45)
Combining the previous equations together, and with the
help of (38), (42) reads as

𝑑𝐼 (𝑡)

𝑑𝑡
= (

𝛼
2

2
𝑢
2

𝑥
− 𝑢
2
− 2𝜅𝑢) (𝑞

1
(𝑥
0
, 𝑡) , 𝑡)

+
1

𝛼
𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(𝑢
2
+
𝛼
2

2
𝑢
2

𝑥
+ 2𝜅𝑢)𝑑𝜉

+
1

2
(V2
𝑥
− V2) (𝑞

1
(𝑥
0
, 𝑡) , 𝑡) +

1

2𝛼
𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

× ∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(V2 − V2

𝑥
) 𝑑𝜉
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= (
𝛼
2

2
𝑢
2

𝑥
− (𝑢 + 𝜅)

2
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡) +

1

𝛼
𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

× ∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(
𝛼
2

2
𝑢
2

𝑥
+ (𝑢 + 𝜅)

2
)𝑑𝜉

+
1

2
(V2
𝑥
− V2) (𝑞

1
(𝑥
0
, 𝑡) , 𝑡) +

1

2𝛼
𝑒
−𝑞
1
(𝑥
0
,𝑡)/𝛼

× ∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(V2 − V2

𝑥
) 𝑑𝜉

≥
1

2
(𝛼
2
𝑢
2

𝑥
− (𝑢+𝜅)

2
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡)>0, on [0, 𝑡

0
) ,

(46)

where Claim 2 and the inequality [30]

∫

𝑥

−∞

𝑒
𝜉/𝛼
((𝑢 + 𝜅)

2
+
𝛼
2

2
𝑢
2

𝜉
) (𝜉, 𝑡) 𝑑𝜉 ≥

𝛼

2
𝑒
𝑥/𝛼
(𝑢 + 𝜅)

2 (47)

have been used. From the continuity property, we have

𝑒
−𝑞
1
(𝑥
0
,𝑡
0
)/𝛼
∫

𝑞
1
(𝑥
0
,𝑡
0
)

−∞

𝑒
𝜉/𝛼
(𝑦 (𝜉, 𝑡

0
) + 𝜅) 𝑑𝜉

> 𝑒
−𝑥
0
/𝛼
∫

𝑥
0

−∞

𝑒
𝜉/𝛼
(𝑦
0
(𝜉) + 𝜅) 𝑑𝜉 > 0.

(48)

Similarly,

𝑑𝐼𝐼 (𝑡)

𝑑𝑡
≤
1

2
((𝑢+𝜅)

2
− 𝛼
2
𝑢
2

𝑥
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡)< 0, on [0, 𝑡

0
) .

(49)

Thus, by continuity property,

𝑒
𝑞
1
(𝑥
0
,𝑡
0
)/𝛼
∫

𝑞
1
(𝑥
0
,𝑡
0
)

−∞

𝑒
−𝜉/𝛼

(𝑦 (𝜉, 𝑡
0
) + 𝜅) 𝑑𝜉

< 𝑒
𝑥
0
/𝛼
∫

𝑥
0

−∞

𝑒
−𝜉/𝛼

(𝑦
0
(𝜉) + 𝜅) 𝑑𝜉 < 0.

(50)

Summarizing (48) and (50), we obtain

𝛼
2
𝑢
2

𝑥
(𝑞
1
(𝑥
0
, 𝑡
0
) , 𝑡
0
) − (𝑢 + 𝜅)

2
(𝑞
1
(𝑥
0
, 𝑡
0
) , 𝑡
0
)

= −
1

𝛼2
∫

𝑞
1
(𝑥
0
,𝑡
0
)

−∞

𝑒
𝜉/𝛼
(𝑦 (𝜉, 𝑡

0
) + 𝜅) 𝑑𝜉

× ∫

∞

𝑞
1(𝑥0 ,𝑡0)

𝑒
−𝜉/𝛼

(𝑦 (𝜉, 𝑡
0
) + 𝜅) 𝑑𝜉

> −
1

𝛼2
∫

𝑥
0

−∞

𝑒
𝜉/𝛼
(𝑦
0
(𝜉) + 𝜅) 𝑑𝜉∫

∞

𝑥
0

𝑒
−𝜉/𝛼

(𝑦
0
(𝜉) + 𝜅) 𝑑𝜉

= 𝛼
2
𝑢
2

0𝑥
(𝑥
0
) − (𝑢

0
+ 𝜅)
2

(𝑥
0
) > 0.

(51)

That is a contradiction. On the other hand, from the expres-
sion of 𝑢

𝑥
(𝑥, 𝑡) in terms of 𝑦(𝑥, 𝑡), we can easily get that

𝑢
𝑥
(𝑞
1
(𝑥
0
, 𝑡), 𝑡) < 0. So we complete the proof of Claim 3.

Furthermore, due to (46) and (49), we can obtain

𝑑

𝑑𝑡
(𝛼
2
𝑢
2

𝑥
− (𝑢 + 𝜅)

2
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

= −
1

𝛼2

𝑑

𝑑𝑡
(∫

𝑞
1
(𝑥
0
,𝑡)

−∞

𝑒
𝜉/𝛼
(𝑦 (𝜉, 𝑡) + 𝜅) 𝑑𝜉

× ∫

∞

𝑞
1(𝑥0 ,𝑡)

𝑒
−𝜉/𝛼

(𝑦 (𝜉, 𝑡) + 𝜅) 𝑑𝜉)

≥ −
1

2𝛼2
(𝛼
2
𝑢
2

𝑥
− (𝑢 + 𝜅)

2
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡) 𝑒

𝑞
1
(𝑥
0
,𝑡)/𝛼

× ∫

𝑥

−∞

𝑒
−𝜉/𝛼

(𝑦 (𝜉, 𝑡) + 𝜅) 𝑑𝜉

+
1

2𝛼2
(𝛼
2
𝑢
2

𝑥
− (𝑢 + 𝜅)

2
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡) 𝑒

−𝑞
1
(𝑥
0
,𝑡)/𝛼

× ∫

∞

𝑥

𝑒
𝜉/𝛼
(𝑦 (𝜉, 𝑡) + 𝜅) 𝑑𝜉

= −𝑢
𝑥
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡) (𝛼

2
𝑢
2

𝑥
− (𝑢 + 𝜅)

2
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡) .

(52)

Integrating (39) and then substituting it into the previous
inequality, we have

𝑑

𝑑𝑡
(𝛼
2
𝑢
2

𝑥
− (𝑢 + 𝜅)

2
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

≥
1

2𝛼2
(𝛼
2
𝑢
2

𝑥
− (𝑢 + 𝜅)

2
) (𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

× (∫

𝑡

0

(𝛼
2
𝑢
2

𝑥
− (𝑢 + 𝜅)

2
) (𝑞
1
(𝑥
0
, 𝜏) , 𝜏) 𝑑𝜏

−2𝛼
2
𝑢
0𝑥
(𝑥
0
) ) .

(53)

Let Ψ(𝑡) = ∫𝑡
0
(𝛼
2
𝑢
2

𝑥
− (𝑢 + 𝜅)

2
)(𝑞
1
(𝑥
0
, 𝜏), 𝜏)𝑑𝜏 − 2𝛼

2
𝑢
0𝑥
(𝑥
0
);

then we can complete the proof with the help of Lemma 4.

Remark 7. We note that if the condition (i) is replaced by the
following one:

(i󸀠) 𝜌
0
(𝑥) ≤ 0 on (−∞, 𝑥

0
) and 𝜌

0
(𝑥) ≥ 0 on (𝑥

0
,∞),

thenClaim 2 also holds; that is, the theoremalways holdswith
anyone of (i) and (i󸀠).

As a corollary of Theorem 6, we have the following.

Theorem8. Suppose that𝑋
0
= (𝑢
0
, V
0
) ∈ 𝐻

𝑠
×𝐻
𝑠−1
, 𝑠 ≥ 5/2,

and the initial data satisfies the following conditions:

(i) 𝜌
0
(𝑥) ≥ 0 𝑜𝑛 (−∞, 𝑥

0
) and 𝜌

0
(𝑥) ≤ 0 𝑜𝑛 (𝑥

0
,

∞) (or 𝜌
0
(𝑥) ≤ 0 𝑜𝑛 (−∞, 𝑥

0
) and 𝜌

0
(𝑥) ≥

0 𝑜𝑛 (𝑥
0
,∞)),

(ii) 𝑢󸀠
0
(𝑥
0
) ≤ −(√𝐶

1
𝐸
0
+ |𝜅|)/𝛼,
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for some point 𝑥
0
∈ R. Then the solution to system (3) with the

initial value𝑋
0
blowsup in finite time.

Proof. As shown in Theorem 6, condition (i) guarantees that
V2
𝑥
(𝑥, 𝑡) + V2(𝑥, 𝑡) ≤ (V2

𝑥
− V2)(𝑞

1
(𝑥
0
, 𝑡), 𝑡) for all 𝑥 ∈ R. Then,

𝑑

𝑑𝑡
𝑢
𝑥
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡) ≤ −

1

2
𝑢
2

𝑥
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

+
1

2𝛼2
(𝑢 + 𝜅)

2
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

≤ −
1

2
𝑢
2

𝑥
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡)

+
1

2𝛼2
(√𝐶
1
𝐸
0
+ |𝜅|)

2

:= −
1

2
𝑢
2

𝑥
(𝑞
1
(𝑥
0
, 𝑡) , 𝑡) + 𝐾

2
,

(54)

where 𝐾 > 0 is a constant. By setting 𝜑(𝑡) = 𝑢
𝑥
(𝑞
1
(𝑥
0
, 𝑡), 𝑡),

we obtain
𝑑𝜑

𝑑𝑡
= −

1

2
𝜑
2
+ 𝐾
2
. (55)

Applying Lemma 3, we have

lim
𝑡↑𝑇

𝜑 (𝑡) = −∞ with 𝑇 = 1

− (1/2) 𝜑
0
− (𝐾2/𝜑

0
)
, (56)

when

𝜑
0
< −√2𝐾 = −

√𝐶
1
𝐸
0
+ |𝜅|

𝛼
. (57)

This completes the proof.
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