
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 547261, 11 pages
http://dx.doi.org/10.1155/2013/547261

Research Article
Well-Posedness, Blow-Up Phenomena, and Asymptotic
Profile for a Weakly Dissipative Modified Two-Component
Camassa-Holm Equation

Yongsheng Mi1,2 and Chunlai Mu2

1 College of Mathematics and Computer Sciences, Yangtze Normal University, Chongqing, Fuling 408100, China
2 College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China

Correspondence should be addressed to Yongsheng Mi; miyongshen@163.com

Received 20 March 2013; Revised 27 June 2013; Accepted 3 July 2013

Academic Editor: Michael Meylan

Copyright © 2013 Y. Mi and C. Mu. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the Cauchy problem of a weakly dissipative modified two-component Camassa-Holm equation. We firstly establish the
local well-posedness result.Then we present a precise blow-up scenario. Moreover, we obtain several blow-up results and the blow-
up rate of strong solutions. Finally, we consider the asymptotic behavior of solutions.

1. Introduction

In this paper, we consider the Cauchy problem of the follow-
ing weakly dissipative modified two-component Camassa-
Holm system:

𝑚
𝑡
+ 𝑢𝑚
𝑥
+ 2𝑚𝑢

𝑥
+ 𝜌𝜌
𝑥
+ 𝜆𝑚 = 0,

𝑡 > 0, 𝑥 ∈ R,

𝜌
𝑡
+ (𝜌𝑢)

𝑥
+ 𝜆𝜌 = 0, 𝑡 > 0, 𝑥 ∈ R,

𝑚 (0, 𝑥) = 𝑚
0
(𝑥) , 𝑥 ∈ R,

𝜌 (0, 𝑥) = 𝜌
0
(𝑥) , 𝑥 ∈ R,

(1)

where 𝑚 = (1 − 𝜕
2

𝑥
)𝑢, 𝜌 = (1 − 𝜕

2

𝑥
)(𝜌 − 𝜌

0
), and 𝜆 is a

nonnegative dissipative parameter.
The Camassa-Holm equation [1] has been recently

extended to a two-component integrable system (CH2)

𝑚
𝑡
+ 𝑢𝑚
𝑥
+ 2𝑚𝑢

𝑥
= 𝜌𝜌
𝑥
, 𝑡 > 0, 𝑥 ∈ R,

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0, 𝑡 > 0, 𝑥 ∈ R,

(2)

with 𝑚 = 𝑢 − 𝑢
𝑥𝑥
, which is a model for wave motion on

shallow water, where 𝑢(𝑡, 𝑥) describes the horizontal velocity
of the fluid and 𝜌(𝑡, 𝑥) is in connection with the horizontal

deviation of the surface from equilibrium, all measured in
dimensionless units. Moreover, 𝑢 and 𝜌 satisfy the boundary
conditions: 𝑢 → 0 and 𝜌 → 1 as |𝑥| → ∞. The system
can be identified with the first negative flow of the AKNS
hierarchy and possesses the interesting peakon andmultikink
solutions [2]. Moreover, it is connected with the time-
dependent Schrödinger spectral problem [2]. Popowicz [3]
observes that the system is related to the bosonic sector
of an 𝑁 = 2 supersymmetric extension of the classical
Camassa-Holm equation. Equation (2) with 𝜌 ≡ 0 becomes
the Camassa-Holm equation, which has global conservative
solutions [4] and dissipative solutions [5]. For other methods
to handle the problems relating to various dynamic properties
of the Camassa-Holm equation and other shallow water
equations, the reader is referred to [6–8] and the references
therein.

Since the system was derived physically by Constantin
and Ivanov [9] in the context of shallow water theory (also by
Chen et al. in [2] and Falqui in [10]), many researchers have
paid extensive attention to it. In [11], Escher et al. establish
the local well-posedness and present the precise blow-up
scenarios and several blow-up results of strong solutions to
(2) on the line. In [9], Constantin and Ivanov investigate the
global existence and blow-up phenomena of strong solutions
of (2) on the line. Later, Guan andYin [12] obtain a new global
existence result for strong solutions to (2) and get several
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blow-up results, which improve the recent results in [9].
Recently, they study the global existence of weak solutions to
(2) [13]. In [14], Henry studies the infinite propagation speed
for (2). Gui and Liu [15] establish the local well-posedness for
(2) in a range of the Besov spaces; they also derive a wave-
breaking mechanism for strong solutions. Mustafa [16] gives
a simple proof of existence for the smooth travellingwaves for
(2).Hu andYin [17, 18] study the blow-up phenomena and the
global existence of (2) on the circle.

Recently, the CH2 system was generalized into the fol-
lowing modified two-component Camassa-Holm (MCH2)
system:

𝑚
𝑡
+ 𝑢𝑚
𝑥
+ 2𝑚𝑢

𝑥
= −𝑔𝜌𝜌

𝑥
, 𝑡 > 0, 𝑥 ∈ R,

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0, 𝑡 > 0, 𝑥 ∈ R,

(3)

where 𝑚 = (1 − 𝜕
2

𝑥
)𝑢, 𝜌 = (1 − 𝜕

2

𝑥
)(𝜌 − 𝜌

0
), 𝑢 denotes

the velocity field, 𝜌
0
is taken to be a constant, and 𝑔 is the

downward constant acceleration of gravity in applications to
shallow water waves. This MCH2 system does admit peaked
solutions in the velocity and average density; we refer this
to [19] for details. There, the authors analytically identified
the steepening mechanism that allows the singular solutions
to emerge from smooth spatially confined initial data. They
found that wave breaking in the fluid velocity does not imply
singularity in the pointwise density 𝜌 at the point of vertical
slope. Some other recent works can be found in [20–31].
We find that the MCH2 system is expressed in terms of
an averaged or filtered density 𝜌 in analogy to the relation
between momentum and velocity by setting 𝜌 = (1 − 𝜕

2

𝑥
)(𝜌 −

𝜌
0
), but it may not be integrable unlike the CH2 system.

The important point here is that MCH2 has the following
conservation law ∫

𝑅
(𝑢
2
+𝑢
2

𝑥
+𝜌
2
+𝜌
2

𝑥
)𝑑𝑥, which plays a crucial

role in the study of (3), noting that, for the CH2 system, we
cannot obtain the conservation of 𝐻1 norm.

In general, it is quite difficult to avoid energy dissipation
mechanisms in the real world. Ghidaglia [32] studies the
long-time behavior of solutions to the weakly dissipative
KdV equation as a finite-dimensional dynamical system.
Recently, Hu and Yin [33] study the blow-up and blow-
up rate of solutions to a weakly dissipative periodic rod
equation. In [34, 35], Hu considered global existence and
blow-up phenomena for a weakly dissipative two-component
Camassa-Holm systemon the circle and on the line.However,
(1) on the line (nonperiodic case) has not been studied yet.
The aim of this paper is to study the blow-up phenomena
and asymptotic profile of the strong solutions to (1). We find
that asymptotic profile of solutions to the weakly dissipative
modified two-component periodicCamassa-Holm system (1)
is similar to that of the modified two-component Camassa-
Holm system (3), such as the local well-posedness and the
blow-up scenario. In addition, we also find that the blow-up
rate of (1) is not affected by the weakly dissipative term, but
the occurrence of blow-up of (1) is affected by the dissipative
parameter.

This paper is organized as follows. In Section 2,we present
some notations and establish the local well-posedness for

system (1) by applying Kato’s semigroup approach to non-
linear hyperbolic evolution equations. In Section 3, we prove
a precise blow-up scenario result. In Section 4, we present
the blow-up results for strong solutions to (1) provided
that the initial data satisfy appropriate conditions and we
derive a blow-up rate estimate result. Finally, we consider the
asymptotic behavior of solutions.

2. Local Well-Posedness

We now provide the framework in which we will reformulate
system (1). With𝑚 = 𝑢−𝑢

𝑥𝑥
, 𝜌 = 𝛾 − 𝛾

𝑥𝑥
, and 𝛾 = 𝜌 − 𝜌

0
, we

can rewrite (1) as follows:

𝑚
𝑡
+ 𝑢𝑚
𝑥
+ 2𝑚𝑢

𝑥
+ 𝜌𝛾
𝑥
+ 𝜆𝑦 = 0,

𝑡 > 0, 𝑥 ∈ R,

𝜌
𝑡
+ (𝜌𝑢)

𝑥
+ 𝜆𝜌 = 0, 𝑡 > 0, 𝑥 ∈ R,

𝑦 (0, 𝑥) = 𝑢
0
(𝑥) − 𝑢

0,𝑥𝑥
(𝑥) , 𝑥 ∈ R,

𝜌 (0, 𝑥) = 𝛾
0
(𝑥) − 𝛾

0,𝑥𝑥
(𝑥) , 𝑥 ∈ R.

(4)

Note that if𝑝(𝑥) := (1/2)𝑒
−|𝑥|, 𝑥 ∈ 𝑅, then (1−𝜕

2

𝑥
)
−1

𝑓 = 𝑝∗𝑓

for all 𝑓 ∈ 𝐿
2
(𝑅), 𝑝 ∗ 𝑦 = 𝑢, and 𝑝 ∗ 𝜌 = 𝛾. Here, we denote

by ∗ the convolution. Using this identity, we can rewrite (5)
as follows:

𝑢
𝑡
+ 𝑢𝑢
𝑥
= −𝜕
𝑥
𝑝 ∗ (𝑢

2
+

1

2

𝑢
2

𝑥
+

1

2

𝛾
2
−

1

2

𝛾
2

𝑥
) − 𝜆𝑢,

𝑡 > 0, 𝑥 ∈ R,

𝛾
𝑡
+ 𝑢𝛾
𝑥
= −𝑝 ∗ ((𝑢

𝑥
𝛾
𝑥
)
𝑥
+ 𝑢
𝑥
𝛾) − 𝜆𝛾,

𝑡 > 0, 𝑥 ∈ R,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑥 ∈ R,

𝛾 (0, 𝑥) = 𝛾
0
(𝑥) , 𝑥 ∈ R,

(5)

or we can write it in the equivalent form

𝑢
𝑡
+ 𝑢𝑢
𝑥

= −𝜕
𝑥
(1 − 𝜕

2

𝑥
)

−1

(𝑢
2
+

1

2

𝑢
2

𝑥
+

1

2

𝛾
2
−

1

2

𝛾
2

𝑥
) − 𝜆𝑢,

𝑡 > 0, 𝑥 ∈ R,

𝛾
𝑡
+ 𝑢𝛾
𝑥

= −𝜕
𝑥
(1 − 𝜕

2

𝑥
)

−1

(𝑢
𝑥
𝛾
𝑥
) − (1 − 𝜕

2

𝑥
)

−1

𝑢
𝑥
𝛾 − 𝜆𝛾,

𝑡 > 0, 𝑥 ∈ R,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑥 ∈ R,

𝛾 (0, 𝑥) = 𝛾
0
(𝑥) , 𝑥 ∈ R.

(6)

The local well-posedness of the Cauchy problem (5) in
Sobolev spaces 𝐻

𝑠 with 𝑠 > 5/2 can be obtained by applying
Kato’s theorem [23, 36]. As a result, we have the following
well-posedness result.
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Theorem 1. Given 𝑧
0
= 𝑧(𝑥, 0) = (𝑢

0
, 𝛾
0
) ∈ 𝐻

𝑠
× 𝐻
𝑠
, 𝑠 > 5/2,

then there exist amaximal𝑇 = 𝑇(‖𝑧
0
‖
𝐻
𝑠
×𝐻
𝑠) > 0 and a unique

solution 𝑧 = (𝑢, 𝛾) to (3) (or (6)) such that

𝑧 = (⋅, 𝑧
0
) ∈ 𝐶 ([0, 𝑇] ;𝐻

𝑠
× 𝐻
𝑠
)

∩ 𝐶
1
([0, 𝑇] ;𝐻

𝑠−1
× 𝐻
𝑠−1

) .

(7)

Moreover, the solution depends continuously on the initial data;
that is, themapping 𝑢

0
→ 𝑢(⋅, 𝑢

0
) : 𝐻
𝑠
→ 𝐶([0, 𝑇];𝐻

𝑠
(R))∩

𝐶
1
([0, 𝑇];𝐻

𝑠−1
(R)) is continuous.

3. The Precise Blow-Up Scenario

In this section, we present the precise blow-up scenarios for
solutions to (6).

Theorem 2. Let 𝑧
0

= (𝑢, 𝛾) ∈ 𝐻
𝑠
× 𝐻
𝑠, 𝑠 > 5/2, be

given and assume that 𝑇 is the maximal existence time of the
corresponding solution 𝑧 = (𝑢, 𝛾) to (6) with initial data 𝑧

0
; if

there exists 𝑀 > 0 such that
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝛾 (𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝛾
𝑥
(𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞

≤ 𝑀, 𝑡 ∈ [0, 𝑇) ,

(8)

then the 𝐻
𝑠
× 𝐻
𝑠 norm of 𝑧(𝑡, ⋅) does not blow up on [0, T).

The proof of the theorem is similar to the proof of
Theorem 3 in [22]; we omit it here.

Consider the following differential equation:
𝑑𝑞 (𝑥, 𝑡)

𝑑𝑡

= 𝑢 (𝑞 (𝑥, 𝑡) , 𝑡) , 𝑡 ∈ [0, 𝑇) ,

𝑞 (0, 𝑡) = 𝑥, 𝑥 ∈ R.

(9)

By applying the classical results on the theory of ordinary
differential equations, wemay derive the following properties
of the solution 𝑞 of (9), which are crucial in the proof of global
existence and blow-up of solutions.

Lemma 3 (see [23]). Let 𝑢
0

∈ 𝐻
𝑠, 𝑠 ≥ 5/2, and let 𝑇 be the

maximal existence time of the corresponding solution 𝑢(𝑡, 𝑥)

to (9). Then (9) has a unique solution 𝑞 ∈ 𝐶
1
([0, 𝑇) × R,R).

Moreover, the map 𝑞(𝑡, ⋅) is an increasing diffeomorphism ofR
with

𝑞
𝑥
(𝑥, 𝑡) = exp(∫

𝑡

0

𝑢
𝑥
(𝑞 (𝑥, 𝑠) , 𝑠) 𝑑𝑠) > 0,

𝑞
𝑥
(𝑥, 0) = 1, 𝑥 ∈ 𝑅, 0 ≤ 𝑡 < 𝑇.

(10)

Lemma 4. Let 𝑧
0

= (𝑢
0
, 𝛾
0
) ∈ 𝐻

𝑠
× 𝐻
𝑠 with 𝑠 > 5/2, and

let 𝑇 > 0 be the maximal existence time of the corresponding
solution 𝑧 ∈ (𝑢, 𝛾) to (5). Then, one has

𝜌 (𝑡, 𝑞 (𝑥, 𝑡)) 𝑞
𝑥
= 𝜌
0
𝑒
−𝜆𝑡

, ∀ (𝑡, 𝑥) ∈ [0, 𝑇) × 𝑅. (11)

Moreover, if there exists 𝑀
1
> 0, such that 𝑢

𝑥
(𝑡, 𝑥) ≥ −𝑀

1
for

all (𝑡, 𝑥) ∈ [0, 𝑇) × 𝑅, then
󵄩
󵄩
󵄩
󵄩
𝜌 (𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞ =

󵄩
󵄩
󵄩
󵄩
𝜌 (𝑡, 𝑞 (𝑡, 𝑥))

󵄩
󵄩
󵄩
󵄩𝐿
∞

≤ 𝑒
𝑀
1
𝑇󵄩
󵄩
󵄩
󵄩
𝜌
0
(⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞ , ∀𝑡 ∈ [0, 𝑇) .

(12)

Proof. Differentiating the left-hand side of (6) with respect to
𝑡, in view of (9) and the second equation of (5), we have

𝑑

𝑑𝑡

(𝜌 (𝑡, 𝑞 (𝑥, 𝑡)) 𝑞
𝑥
) = 𝜌
𝑡
𝑞
𝑥
+ 𝜌
𝑥
𝑞
𝑡
𝑞
𝑥
+ 𝜌𝑞
𝑥𝑡

= −𝜆𝜌𝑞
𝑥
.

(13)

Solving the equation, we get (11).
By Lemma 3, in view of (11) and the assumption of the

lemma, we obtain

󵄩
󵄩
󵄩
󵄩
𝜌 (𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞ =

󵄩
󵄩
󵄩
󵄩
𝜌 (𝑡, 𝑞 (𝑡, ⋅))

󵄩
󵄩
󵄩
󵄩∞

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
−𝜆𝑡−∫

𝑡

0

𝑢
𝑥
(𝑠,⋅)𝑑𝑥

𝜌
0
(⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

≤ 𝑒
𝑀
1
𝑇󵄩
󵄩
󵄩
󵄩
𝜌 (⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞ , ∀𝑡 ∈ [0, 𝑇) .

(14)

The following result is proved only with regard to 𝑟 = 3,
since we can obtain the same conclusion for the general case
𝑟 > 5/2 by using Theorem 1 and a simple density argument.

We now present a precise blow-up scenario for strong
solutions to (5).

Theorem5. Let 𝑦
0
= (𝑢
0
, 𝛾
0
) ∈ 𝐻

𝑠
×𝐻
𝑠, 𝑠 > 5/2, and let𝑇 be

the maximal existence of the corresponding solution 𝑧 = (𝑢, 𝛾)

to (6). Then, the solution blows up in finite time if and only if

lim inf
𝑡→𝑇, 𝑥∈R

𝑢
𝑥
(𝑡, 𝑥) = −∞ (15)

or

lim sup
𝑡→𝑇

{
󵄩
󵄩
󵄩
󵄩
𝛾
𝑥
(𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞} = +∞. (16)

Proof. Multiplying the first equation in (5) by 𝑚 = 𝑢 − 𝑢
𝑥𝑥

and integrating by parts, we obtain

𝑑

𝑑𝑡

∫

R

𝑚
2
𝑑𝑥

= 2∫

R

𝑚𝑚
𝑡
𝑑𝑥

= 2∫

R

𝑚(−𝑢𝑚
𝑥
− 2𝑚𝑢

𝑥
− 𝜌𝛾
𝑥
) 𝑑𝑥 − 2𝜆∫

R

𝑚
2
𝑑𝑥

= −3∫

R

𝑚
2
𝑢
𝑥
𝑑𝑥 − 2∫

R

𝑚𝜌𝛾
𝑥
𝑑𝑥 − 2𝜆∫

R

𝑚
2
𝑑𝑥.

(17)

Repeating the same procedure to the second equation in (5),
we get

𝑑

𝑑𝑡

∫

R

𝜌
2
𝑑𝑥 = −∫

R

𝜌
2
𝑢
𝑥
− 2𝜆∫

R

𝜌
2
𝑑𝑥. (18)

A combination of (17) and (18) yields

𝑑

𝑑𝑡

∫

R

(𝑚
2
+ 𝜌
2
) 𝑑𝑥 = −3∫

R

𝑚
2
𝑢
𝑥
𝑑𝑥 − 2∫

R

𝑚𝜌𝛾
𝑥
𝑑𝑥

− ∫

R

𝜌
2
𝑢
𝑥
− 2𝜆∫

R

(𝑚
2
+ 𝜌
2
) 𝑑𝑥.

(19)
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Differentiating the first equation in (5) with respect to 𝑥,
multiplying by 𝑚

𝑥
= 𝑢
𝑥

− 𝑢
𝑥𝑥𝑥

, and then integrating over
R, we obtain

𝑑

𝑑𝑡

∫

R

𝑚
2

𝑥
𝑑𝑥 = −5∫

R

𝑚
2

𝑥
𝑢
𝑥
𝑑𝑥 + 2∫

R

𝑚
2
𝑢
𝑥
𝑑𝑥

− 2∫

R

𝑚
𝑥
𝜌
𝑥
𝛾
𝑥
𝑑𝑥 − 2∫

R

𝑚
𝑥
𝜌𝛾
𝑥𝑥

𝑑𝑥

− 2𝜆∫

R

𝑚
2

𝑥
𝑑𝑥.

(20)

Similarly,

𝑑

𝑑𝑡

∫

R

𝜌
2

𝑥
𝑑𝑥 = −3∫

R

𝜌
2

𝑥
𝑢
𝑥
𝑑𝑥 + ∫

R

𝜌
2
𝑢
𝑥𝑥𝑥

𝑑𝑥 − 2𝜆∫

R

𝜌
2

𝑥
𝑑𝑥.

(21)

A combination of (17)–(21) yields

𝑑

𝑑𝑡

∫

R

(𝑚
2
+ 𝜌
2
+ 𝑚
2

𝑥
+ 𝜌
2

𝑥
) 𝑑𝑥

= −∫

R

𝑚
2
𝑢
𝑥
𝑑𝑥 − 5∫

R

𝑚
2

𝑥
𝑢
𝑥
𝑑𝑥

− 2∫

R

𝑚𝜌𝛾
𝑥
𝑑𝑥 − 2∫

R

𝑚
𝑥
𝜌
𝑥
𝛾
𝑥
𝑑𝑥

− 2𝜆∫

R

(𝑚
2
+ 𝜌
2
) 𝑑𝑥 − 2∫

R

𝑚
𝑥
𝜌𝛾
𝑥𝑥

𝑑𝑥

− ∫

R

𝜌
2
𝑢
𝑥
𝑑𝑥 − 3∫

R

𝜌
2

𝑥
𝑢
𝑥
𝑑𝑥

+ ∫

R

𝜌
2
𝑢
𝑥𝑥𝑥

𝑑𝑥 − 2𝜆∫

R

(𝑚
2

𝑥
+ 𝜌
2

𝑥
) 𝑑𝑥

= −∫

R

𝑚
2
𝑢
𝑥
𝑑𝑥 − 5∫

R

𝑚
2

𝑥
𝑢
𝑥
𝑑𝑥

− ∫

R

𝜌
2
𝑢
𝑥
𝑑𝑥 − 3∫

R

𝜌
2

𝑥
𝑢
𝑥
𝑑𝑥

− 2𝜆∫

R

(𝑚
2
+ 𝜌
2
) 𝑑𝑥 + ∫

R

𝜌
2
𝑢
𝑥𝑥𝑥

𝑑𝑥

− 2∫

R

𝑚𝜌𝛾
𝑥
𝑑𝑥 − 2∫

R

𝑚
𝑥
𝜌
𝑥
𝛾
𝑥
𝑑𝑥

− 2∫

R

𝑚
𝑥
𝜌𝛾
𝑥𝑥

𝑑𝑥 − 2𝜆∫

R

(𝑚
2

𝑥
+ 𝜌
2

𝑥
) 𝑑𝑥.

(22)

Assume that there exist 𝑀
1

> 0 and 𝑀
2

> 0 such that
𝑢𝑥(𝑡, 𝑥) ≥ 𝑀

1
and ‖𝛾

𝑥
(𝑡, ⋅)‖
𝐿
∞ ≤ 𝑀

2
for all (𝑡, 𝑥) ∈ [0, 𝑇) ×𝑅;

then it follows from Lemma 4 that

󵄩
󵄩
󵄩
󵄩
𝜌 (𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞ ≤ 𝑒
𝑀
1
𝑇󵄩
󵄩
󵄩
󵄩
𝜌
0
(⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞ . (23)

Therefore,

𝑑

𝑑𝑡

∫

R

(𝑚
2
+ 𝜌
2
+ 𝑚
2

𝑥
+ 𝜌
2

𝑥
) 𝑑𝑥

≤ (5𝑀
1
+ 2𝜆)∫

R

(𝑚
2
+ 𝜌
2
+ 𝑚
2

𝑥
+ 𝜌
2

𝑥
) 𝑑𝑥

+ (𝑀
2
+ 𝑒
𝑀
1
𝑇󵄩
󵄩
󵄩
󵄩
𝜌
0
(⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞)

× ∫

R

(𝑚
2
+ 𝜌
2
+ 𝑚
2

𝑥
+ 𝜌
2

𝑥
+ 𝑢
2

𝑥𝑥𝑥
+ 𝛾
2

𝑥𝑥
) 𝑑𝑥

≤ (5𝑀
1
+ 2𝜆)∫

R

(𝑚
2
+ 𝜌
2
+ 𝑚
2

𝑥
+ 𝜌
2

𝑥
) 𝑑𝑥

+ 2 (𝑀
2
+ 𝑒
𝑀
1
𝑇󵄩
󵄩
󵄩
󵄩
𝜌
0
(⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞)

× ∫

R

(𝑚
2
+ 𝜌
2
+ 𝑚
2

𝑥
+ 𝜌
2

𝑥
) 𝑑𝑥

≤ (5𝑀
1
+ 2𝜆) + 2 (𝑀

2
+ 𝑒
𝑀
1
𝑇󵄩
󵄩
󵄩
󵄩
𝜌
0
(⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞)

× ∫

R

(𝑚
2
+ 𝜌
2
+ 𝑚
2

𝑥
+ 𝜌
2

𝑥
) 𝑑𝑥.

(24)

The previous discussion shows that if there exist 𝑀
1
> 0 and

𝑀
2

> 0 such that 𝑢
𝑥
(𝑡, 𝑥) ≥ 𝑀

1
and ‖𝛾

𝑥
(𝑡, ⋅)‖ ≤ 𝑀

2
for all

(𝑡, 𝑥) ∈ [0, 𝑇) × R, then there exist two positive constants 𝐾

and 𝑘 such that the following estimate holds:

‖𝑢 (𝑡, ⋅)‖
2

𝐻
𝑠 + ‖V (𝑡, ⋅)‖

2

𝐻
𝑠 ≤ 𝐾𝑒

𝑘𝑡
, 𝑡 ∈ [0, 𝑇) . (25)

This inequality, Sobolev’s embedding theorem, and
Theorem 2 guarantee that the solution does not blow up in
finite time.

On the other hand, we see that, if

lim inf
𝑡→𝑇,𝑥∈R

𝑢
𝑥
(𝑡, 𝑥) = −∞ or

lim sup
𝑡→𝑇

{
󵄩
󵄩
󵄩
󵄩
𝛾
𝑥
(𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞} = +∞,

(26)

then, by Sobolev’s embedding theorem, the solutionwill blow
up in finite time.This completes the proof of the theorem.

4. Blow-Up Results and Blow-Up
Rate Estimate

In this section, we investigate the blow-up phenomena of
strong solutions to (6). We now present the first blow-up
result.

Lemma 6. Let 𝑧
0

= (𝑢
0
, 𝛾
0
) ∈ 𝐻

𝑠
× 𝐻
𝑠, 𝑠 > 5/2, and let 𝑇

be the maximal existence time of the solution 𝑧 = (𝑢, 𝛾) to (6)
with the initial data 𝑧

0
. Then, for all 𝑡 ∈ [0, 𝑇), one has

‖𝑢 (𝑡, ⋅)‖
2

𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝛾 (𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩

2

𝐻
1 = 𝑒
−2𝜆𝑡

(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝛾
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1) . (27)
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Moreover,

‖𝑢 (𝑡, ⋅)‖
𝐿
∞ ≤

√2

2

‖𝑢 (𝑡, ⋅)‖
𝐻
1 ≤

√2

2

(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝛾
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1)

1/2

,

󵄩
󵄩
󵄩
󵄩
𝛾 (𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞ ≤

√2

2

󵄩
󵄩
󵄩
󵄩
𝛾 (𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩𝐻
1 ≤

√2

2

(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝛾
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1)

1/2

.

(28)

Proof. Denote

𝑓 (𝑢, 𝛾) = 𝑢
2
+

1

2

𝑢
2

𝑥
+

1

2

𝛾
2
−

1

2

𝛾
2

𝑥
,

𝑔 = 𝑔 (𝑢, 𝛾) = (𝑢
𝑥
𝛾
𝑥
)
𝑥
+ 𝑢
𝑥
𝛾.

(29)

In view of the identity −𝜕
2

𝑥
𝑝 ∗ 𝑓 = 𝑓 − 𝑝 ∗ 𝑓, we can obtain,

from (6),

𝑢
𝑡𝑥

= −𝑢
2

𝑥
− 𝑢𝑢
𝑥𝑥

+ 𝑓 − 𝑝 ∗ 𝑓,

V
𝑡𝑥

= −𝑢
𝑥
𝛾
𝑥
− 𝑢𝛾
𝑥𝑥

− 𝜕
𝑥
𝑝 ∗ 𝑔.

(30)

Therefore, an integration by parts yields

1

2

𝑑

𝑑𝑡

(‖𝑢‖
2

𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝛾
󵄩
󵄩
󵄩
󵄩

2

𝐻
1)

= ∫

R

(𝑢𝑢
𝑡
+ 𝑢
𝑥
𝑢
𝑡𝑥

+ 𝛾𝛾
𝑡
+ 𝛾
𝑥
𝛾
𝑡𝑥
) 𝑑𝑥

= ∫

R

𝑢 (−𝑢𝑢
𝑥
− 𝜕
2

𝑥
𝑝 ∗ 𝑓 − 𝜆𝑢)

+ 𝑢
𝑥
(−𝑢
2

𝑥
− 𝑢𝑢
𝑥𝑥

+ 𝑓 − 𝑝 ∗ f − 𝜆𝑢
𝑥
)

+ 𝛾 (−𝑢𝛾
𝑥
− 𝜆𝛾)

+ 𝛾
𝑥
(−𝑢𝛾
𝑥
− 𝑢𝛾
𝑥𝑥

− 𝜕
𝑥
𝑝 ∗ 𝑔 − 𝜆𝛾

𝑥
) 𝑑𝑥

= ∫

R

[−

1

2

𝑢
3

𝑥
+ 𝑢
𝑥
(𝑢
2
+

1

2

𝑢
2

𝑥
+

1

2

𝛾
2
−

1

2

𝛾
2

𝑥
)

− 𝑢𝛾𝛾
𝑥
− 𝛾 (𝑢

𝑥𝑥
𝛾
𝑥
+ 𝑢
𝑥
𝛾) − 𝑢𝛾

𝑥
𝛾
2

𝑥

−𝑢𝛾
𝑥
𝛾
𝑥𝑥

− 𝜆 (𝑢
2
+ 𝑢
2

𝑥
+ 𝛾
2
+ 𝛾
2

𝑥
) ] 𝑑𝑥

= −𝜆∫

R

(𝑢
2
+ 𝑢
2

𝑥
+ 𝛾
2
+ 𝛾
2

𝑥
) 𝑑𝑥.

(31)

Thus, the statement of the conservation law follows. The
remaining part of this lemma can be easily deduced from the
conservation law. The proof of the lemma is complete.

Lemma 7 (see [37]). Let 𝑇 > 0 and V ∈ 𝐶
1
([0, 𝑇);𝐻

2
). Then,

for every 𝑡 ∈ [0, 𝑇), there exists at least one point 𝜉 ∈ 𝑅 with

𝑚(𝑡) := inf
𝑥∈𝑅

[V
𝑥
(𝑡, 𝑥)] = V

𝑥
(𝑡, 𝜉 (𝑡)) . (32)

The function 𝑚(𝑡) is absolutely continuous on (0, 𝑇) with

𝑑𝑚

𝑑𝑡

= V
𝑡𝑥

(𝑡, 𝜉 (𝑡)) , a.e., on (0, 𝑇) . (33)

Theorem 8. Let 𝑧
0
= (𝑢
0
, 𝛾
0
) ∈ 𝐻

𝑠
×𝐻
𝑠, 𝑠 > 5/2, and let 𝑇 be

the maximal existence time of the solution 𝑧 = (𝑢, 𝛾) to the (6)
with the initial data 𝑧

0
. If there exists some 𝑥

0
∈ R such that

𝑢
󸀠

0
(𝑥
0
) < −𝜆 − [𝜆

2
+ (‖ 𝑢

0
‖
2

𝐻
1+ ‖ 𝛾

0
‖
2

𝐻
1)]

1/2

, (34)

then the existence time 𝑇 is finite and the slope of 𝑢 tends
to negative infinity as 𝑡 goes to 𝑇 while 𝑢 remains uniformly
bounded on [0, 𝑇].

Proof. As mentioned earlier, here we only need to show that
the previous theorem holds for 𝑠 = 3. Differentiating the first
equation of (6)with respect to𝑥, in view of 𝜕2

𝑥
𝑝∗𝑓 = 𝑝∗𝑓−𝑓,

we have

𝑢
𝑡𝑥

+ 𝑢𝑢
𝑥𝑥

= −

1

2

𝑢
2

𝑥
+ 𝑢
2
+

1

2

𝛾
2
−

1

2

𝛾
2

𝑥

− 𝑝 ∗ (𝑢
2
+

1

2

𝑢
2

𝑥
+

1

2

𝛾
2
−

1

2

𝛾
2

𝑥
)

− 𝜆𝑢
𝑥
.

(35)

Note that

𝑑𝑢
𝑥
(𝑡, 𝑞 (𝑡, 𝑥))

𝑑𝑡

= 𝑢
𝑥𝑡

(𝑡, 𝑞 (𝑡, 𝑥)) + 𝑢
𝑥𝑥

(𝑡, 𝑞 (𝑡, 𝑥)) 𝑞
𝑡
(𝑡, 𝑥)

= 𝑢
𝑥𝑡

(𝑡, 𝑞 (𝑡, 𝑥)) + 𝑢 (𝑡, 𝑞 (𝑡𝑥)) 𝑢
𝑥𝑥

(𝑡, 𝑞 (𝑡, 𝑥)) .

(36)

We know that 𝑝 ∗ (𝑢
2
+ (1/2)𝑢

2

𝑥
) ≥ (1/2)𝑢

2 and

󵄩
󵄩
󵄩
󵄩
󵄩
𝑝 ∗ 𝛾
2

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

≤
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩𝐿
∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝛾
2

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
1
=

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝛾
2

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
1
. (37)

By (35) and (36) and the previous estimates, we deduce that

𝑑𝑢
𝑥
(𝑡, 𝑞 (𝑡, 𝑥))

𝑑𝑡

≤ −

1

2

𝑢
2

𝑥
(𝑡, 𝑞 (𝑡, 𝑥)) +

1

2

𝑢
2
(𝑡, 𝑞 (𝑡, 𝑥))

+

1

4

𝛾
2
(𝑡, 𝑞 (𝑡, 𝑥))

+

3

4

𝑝 ∗ (𝛾
2

𝑥
) (𝑡, 𝑞 (𝑡, 𝑥)) − 𝜆𝑢

𝑥

≤ −

1

2

𝑢
2

𝑥
(𝑡, 𝑞 (𝑡, 𝑥)) +

1

2

𝑢
2
(𝑡, 𝑞 (𝑡, 𝑥))

+

1

4

𝛾
2
(𝑡, 𝑞 (𝑡, 𝑥)) +

3

8

󵄩
󵄩
󵄩
󵄩
𝛾
𝑥

󵄩
󵄩
󵄩
󵄩𝐿
1 − 𝜆𝑢

𝑥
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≤ −

1

2

𝑢
2

𝑥
(𝑡, 𝑞 (𝑡, 𝑥)) +

1

4

‖𝑢‖
2

𝐻
1

+

1

8

󵄩
󵄩
󵄩
󵄩
𝛾
󵄩
󵄩
󵄩
󵄩

2

𝐻
1 +

3

8

󵄩
󵄩
󵄩
󵄩
󵄩
𝛾
2

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
1
− 𝜆𝑢
𝑥

≤ −

1

2

𝑢
2

𝑥
(𝑡, 𝑞 (𝑡, 𝑥))

+

1

2

(‖𝑢‖
2

𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝛾
󵄩
󵄩
󵄩
󵄩

2

𝐻
1) − 𝜆𝑢

𝑥

= −

1

2

𝑢
2

𝑥
(𝑡, 𝑞 (𝑡, 𝑥)) − 𝜆𝑢

𝑥

+

1

2

(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝛾
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1) ,

(38)

in view of Lemma 6. Take

𝐾 =

√2

2

(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝛾
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1)

1/2 (39)

and define 𝑔(𝑡) = 𝑢
𝑥
(𝑡, 𝑞(𝑡, 𝑥

0
)). It then follows from (38) that

on [0, 𝑇),

𝑔
󸀠
(𝑡) ≤ −

1

2

𝑔
2
(𝑡) − 𝜆𝑔 + 𝐾

2

= −

1

2

(𝑔 (𝑡) + 𝜆 + √𝜆
2
+ 2𝐾
2
)

× (𝑔 (𝑡) + 𝜆 − √𝜆
2
+ 2𝐾
2
) .

(40)

Note that if 𝑔(0) ≤ −𝜆 − √𝜆
2
+ 2𝐾
2, then 𝑔(𝑡) ≤ −𝜆 −

√𝜆
2
+ 2𝐾
2, for all 𝑡 ∈ [0, 𝑇). Therefore, we can solve the

previous inequality to obtain

𝑔 (0) + 𝜆 + √𝜆
2
+ 2𝐾
2

𝑔 (0) + 𝜆 − √𝜆
2
+ 2𝐾
2

𝑒

√𝜆
2
+2𝐾
2
𝑡
− 1

≤

2√𝜆
2
+ 2𝐾
2

𝑔 (𝑡) + 𝜆 − √𝜆
2
+ 2𝐾
2

.

(41)

Due to 0 < (𝑔(0)+𝜆+√𝜆
2
+ 2𝐾
2
)/(𝑔(0)+𝜆−√𝜆

2
+ 2𝐾
2
) < 1,

then there exists𝑇, and 0 < 𝑇 < (1/√𝜆
2
+ 2𝐾
2
) ln((𝑔(0)+𝜆+

√𝜆
2
+ 2𝐾
2
)/(𝑔(0)+𝜆−√𝜆

2
+ 2𝐾
2
)), such that lim

𝑡→𝑇
𝑔(𝑡) =

−∞. Applying Theorem 5, the solution 𝑧 does not exist
globally in time.

Next, we give a blow-up result if 𝑢
0
and 𝛾
0
are odd.

Theorem 9. Let 𝑧
0

= (𝑢
0
, 𝛾
0
) ∈ 𝐻

𝑠
× 𝐻
𝑠, 𝑠 > 5/2, and let T

be the maximal existence time of the solution 𝑧 = (𝑢, 𝛾) to (6)
with the initial data 𝑧

0
. If 𝑢
0
and 𝛾
0
are odd, and furthermore

𝑢
󸀠

0
(𝑥
0
) < −𝜆 − [𝜆

2
+

1

2

(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝛾
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1)]

1/2

, (42)

then 𝑇 is finite and 𝑢
𝑥
(𝑡, 0) → −∞ as 𝑡 goes to 𝑇.

Proof. As mentioned earlier, here we only need to show that
the previous theorem holds for 𝑠 = 3. Note that (6) is the
invariant under the transformation (𝑢, 𝑥) → (−𝑢, −𝑥) and
(𝛾, 𝑥) → (−𝛾, −𝑥). Thus, we deduce that if 𝑢

0
(𝑥) and 𝛾

0
(𝑥)

are odd, then 𝑢(𝑡, 𝑥) and 𝛾(𝑡, 𝑥) are odd for any 𝑡 ∈ [0, 𝑇). By
continuity with respect to 𝑥 of 𝑧 and 𝑧

𝑥𝑥
, we have

𝑢 (𝑡, 0) = 𝑢
𝑥𝑥

(𝑡, 0) = 𝛾 (𝑡, 0) = 𝛾
𝑥𝑥

(𝑡, 0) = 0, ∀𝑡 ∈ [0, 𝑇) .

(43)

Hence, in view of (35) and Lemma 6, we obtain

𝑢
𝑡𝑥

(𝑡, 0) = −

1

2

𝑢
2

𝑥
(𝑡, 0) −

1

2

𝛾
2

𝑥

− 𝑝 ∗ (𝑢
2
+

1

2

𝑢
𝑥
+

1

2

𝛾
2
−

1

2

𝛾
2

𝑥
) (𝑡, 0) − 𝜆𝑢

𝑥

≤ −

1

2

𝑢
2

𝑥
(𝑡, 0) +

1

2

𝑝 ∗ 𝛾
2

𝑥
(𝑡, 0) − 𝜆𝑢

𝑥

≤ −

1

2

𝑢
2

𝑥
(𝑡, 0) − 𝜆𝑢

𝑥
+

1

4

(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝛾
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1) .

(44)

Take

𝐾 =

1

2

(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝛾
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1)

1/2

(45)

and define 𝑔(𝑡) = 𝑢
𝑥
(𝑡, 𝑞(𝑡, 𝑥

0
)). It then follows from (38) that

on [0, 𝑇),

𝑔
󸀠
(𝑡) ≤ −

1

2

𝑔
2
(𝑡) − 𝜆𝑔 + 𝐾

2

= −

1

2

(𝑔 (𝑡) + 𝜆 + √𝜆
2
+ 2𝐾
2
)

× (𝑔 (𝑡) + 𝜆 − √𝜆
2
+ 2𝐾
2
) .

(46)

Note that if 𝑔(0) ≤ −𝜆 − √𝜆
2
+ 2𝐾
2, then 𝑔(𝑡) ≤ −𝜆 −

√𝜆
2
+ 2𝐾
2, for all 𝑡 ∈ [0, 𝑇). Therefore, we can solve the

previous inequality to obtain

𝑔 (0) + 𝜆 + √𝜆
2
+ 2𝐾
2

𝑔 (0) + 𝜆 − √𝜆
2
+ 2𝐾
2

𝑒

√𝜆
2
+2𝐾
2
𝑡
− 1

≤

2√𝜆
2
+ 2𝐾
2

𝑔 (𝑡) + 𝜆 − √𝜆
2
+ 2𝐾
2

.

(47)

Due to 0 < (𝑔(0)+𝜆+√𝜆
2
+ 2𝐾
2
)/(𝑔(0)+𝜆−√𝜆

2
+ 2𝐾
2
) < 1,

then there exists𝑇, and 0 < 𝑇 < (1/√𝜆
2
+ 2𝐾
2
) ln((𝑔(0)+𝜆+

√𝜆
2
+ 2𝐾
2
)/(𝑔(0)+𝜆−√𝜆

2
+ 2𝐾
2
)), such that lim

𝑡→𝑇
𝑔(𝑡) =

−∞. Applying Theorem 5, the solution 𝑧 does not exist
globally in time.

Next, we give more insight into the blow-up rate for the
wave-breaking solutions to (6).

Theorem 10. Let 𝑧
0
= (𝑢
0
, 𝛾
0
) ∈ 𝐻

𝑠
× 𝐻
𝑠, 𝑠 ≥ 5/2, 𝑧 = (𝑢, 𝛾)

be the corresponding solution to (6) with initial data 𝑧
0
and
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satisfy ‖ 𝛾
𝑥
(𝑡, 𝑥)‖

𝐿
∞ ≤ 𝑀, for all (𝑡, 𝑥) ∈ [0, 𝑇) × 𝑅, and 𝑇 be

the maximal existence time of the solution. Then let one has

lim
𝑡→𝑇

(inf
𝑥∈R

(𝑢
𝑥
(𝑡, 𝑥) (𝑇 − 𝑡))) = −2. (48)

Proof. By Lemma 6, we get the uniform bound of 𝑢. Set
𝑚(𝑡) = inf

𝑥∈R𝑢
𝑥
(𝑡, 𝑥). By the proof of Theorem 8 (or

Theorem 9), we find a constant 𝐾 > 0 such that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑔
󸀠
(𝑡) +

1

2

𝑔 (𝑡) + 𝜆𝑔 (𝑡) ≤ 𝐾

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (49)

where 𝐾 depends only on ‖𝑢
0
‖
𝐻
1 and ‖𝛾

0
‖
𝐻
1 . It follows that

−𝐾 −

1

2

𝜆
2
≤ 𝑔
󸀠
(𝑡) +

1

2

(𝑔 (𝑡) + 𝜆)
2

≤ 𝐾 +

1

2

𝜆
2
, a.e., on (0, 𝑇) .

(50)

Choose 𝜖 ∈ (0, 1/2). Since lim inf
𝑟→𝑇

(𝑦(𝑡) + 𝜆) = −∞ by
Theorem 5, there is some 𝑡

0
∈ (0, 𝑇) with 𝑔(𝑡

0
) + 𝜆 < 0 and

(𝑔(𝑡
0
) + 𝜆)

2
> (𝐾 + (1/2)𝜆

2
)/𝜖. Let us first prove that

(𝑔 (𝑡) + 𝜆)
2

>

1

𝜖

(𝐾 +

1

2

𝜆
2
) , 𝑡 ∈ [𝑡

0
, 𝑇) . (51)

Since 𝑔 is locally Lipschitz, there is some 𝛿 > 0 such that

(𝑔(𝑡) + 𝜆)
2

>

1

𝜖

(𝐾 +

1

2

𝜆
2
) , 𝑡 ∈ (𝑡

0
, 𝑡
0
+ 𝛿) . (52)

Note that 𝑔 is locally Lipschitz and therefore absolutely
continuous. Integrating the previous relation on (𝑡

0
, 𝑡
0
+ 𝛿)

yields that

𝑔 (𝑡
0
+ 𝛿) + 𝜆 ≤ 𝑔 (𝑡

0
) + 𝜆 < 0. (53)

It follows from the previous inequality that

(𝑔(𝑡
0
+ 𝛿) + 𝜆)

2

≥ (𝑔 (𝑡
0
) + 𝜆)

2

>

1

𝜖

(𝐾 +

1

2

𝜆
2
) . (54)

By (50)-(51), we infer that

1

2

− 𝜖 ≤ −

𝑔
󸀠
(𝑡)

(𝑚 + 𝜆)
2

≤

1

2

+ 𝜖, a.e., on (0, 𝑇) . (55)

For 𝑡 ∈ (𝑡
0
, 𝑇), integrating (55) on (𝑡, 𝑇) to get

(

1

2

− 𝜖) (𝑇 − 𝑡) ≤ −

1

𝑔 (𝑡) + 𝜆

≤ (

1

2

+ 𝜖) (𝑇 − 𝑡) , 𝑡 ∈ (𝑡
0
, 𝑇) .

(56)

Since 𝑔(𝑡) + 𝜆 < 0 on [𝑡
0
, 𝑇), it follows that

1

(1/2) + 𝜖

≤ − (𝑔 (𝑡) + 𝜆) (𝑇 − 𝑡)

≤

1

(1/2) + 𝜖

, 𝑡 ∈ (𝑡
0
, 𝑇) .

(57)

By the arbitrariness of 𝜖 ∈ (0, 1/2), the statement of the
theorem follows.

5. Asymptotic Profile

In this section, we focus on the persistence property of the
solution to (6) in 𝐿

∞-space. Precisely, we give an asymptotic
description on how the solutions behave under the initial
values possess algebraic decay at infinity. Recently, the asymp-
totic behavior for the celebrated Camassa-Holm equation
was investigated in [38]. We notice that in [39], the authors
showed that the solution of the Camassa-Holm equation and
its first-order spatial derivative retain exponential decay at
infinity as their initial values behave. After all, the exponential
decay of initial value is a faster way; this motivates us
to establish the decay rate of solution if its initial value
decays algebraically. We show that the strong solution of
(6) corresponding to initial data with a slower algebraically
decaying way will keep this behavior in the 𝑥-variable at
infinity in its lifespan. In order to achieve our result, we first
recall the following lemma.

Lemma 11 (see [40]). For a function Φ
𝑁
(𝑋) defined next,

there exists a constant 𝐶
𝜃
which only depends on 𝜃 ∈ (0, 1],

such that for any positive integer 𝑁 ≥ 2

Φ
𝑁

(𝑥) ∫

𝑅

𝑒
−|𝑥−𝑦| 1

Φ
𝑁

(𝑦)

𝑑𝑦 ≤ 𝐶
𝜃
, (58)

where

Φ
𝑁

(𝑥) =

{
{

{
{

{

1, 𝑥 ≤ 1,

𝑥
𝜃
, 𝑥 ∈ (1,𝑁) ,

𝑁
𝜃
, 𝑋 ≥ 𝑁.

(59)

Theorem 12. Assume that𝑋
0
(𝑥) = (𝑢

0
(𝑥), 𝛾
0
(𝑥))
𝑇

∈ 𝐻
𝑠
×𝐻
𝑠

with 𝑠 > 5/2 satisfies that for some 𝜃 ∈ (0, 1]

󵄨
󵄨
󵄨
󵄨
𝑋
0
(𝑥)

󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
𝑋
0𝑥

(𝑥)
󵄨
󵄨
󵄨
󵄨
∼ 𝑂 (𝑥

−𝜃
) as 𝑥 ↑ ∞. (60)

Then, the corresponding strong solution 𝑋(𝑥) = (𝑢(𝑥),
𝛾(𝑥))
𝑇

∈ 𝐶([0, 𝑇);𝐻
𝑠
× 𝐻
𝑠
) to (6) satisfies that

|𝑋 (𝑥)| ,
󵄨
󵄨
󵄨
󵄨
𝑋
𝑥
(𝑥)

󵄨
󵄨
󵄨
󵄨
∼ 𝑂 (𝑥

−𝜃
) as 𝑥 ↑ ∞, (61)

uniformly in the time interval [0, 𝑇).

Notation. One has

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
∼ 𝑂 (

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑥)

󵄨
󵄨
󵄨
󵄨
) as𝑥 ↑ ∞ if lim

𝑥→∞

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑥)

󵄨
󵄨
󵄨
󵄨

= 𝐿, (62)

where 𝐿 is a nonnegative constant. In order to shorten the
presentation in the sequel, we introduce

𝐹 (𝑢, 𝛾) = 𝑢
2
+

1

2

𝑢
2

𝑥
+

1

2

𝛾
2
−

1

2

𝛾
2

𝑥
,

𝐻 (𝑢, 𝛾) = (𝑢
𝑥
𝛾
𝑥
)
𝑥
+ 𝑢
𝑥
𝛾.

(63)

Proof. The first step is devoted to giving estimates on
‖𝑢(𝑥, 𝑡)‖

∞
and ‖𝛾(𝑥, 𝑡)‖

∞
, where ‖ ⋅ ‖

𝑝
is the standard 𝐿

𝑝
(R)

norm.
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Multiplying the first equation of (6) by 𝑢
2𝑛−1 with 𝑛 ∈

𝑍
+ and integrating both sides with respect to 𝑥 variable, we

obtain

∫

R

𝑢
2𝑛−1

𝑢
𝑡
𝑑𝑥 + ∫

R

𝑢
2𝑛−1

𝑢𝑢
𝑥
𝑑𝑥

+ ∫

R

𝑢
2𝑛−1

𝜕
𝑥
(G ∗ 𝐹) 𝑑𝑥 + 𝜆∫

R

𝑢
2𝑛
𝑑𝑥 = 0.

(64)

The first term in (64) is

∫

R

𝑢
2𝑛−1

𝑢
𝑡
𝑑𝑥 =

1

2𝑛

𝑑

𝑑𝑡

‖𝑢‖
2𝑛

2𝑛
= ‖𝑢‖
2𝑛−1

2𝑛

𝑑

𝑑𝑡

‖𝑢‖
2𝑛
; (65)

for the second term of (64), we have

∫

R

𝑢
2𝑛−1

𝑢𝑢
𝑥
𝑑𝑥 ≤

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩∞

‖𝑢‖
2𝑛

2𝑛
. (66)

It follows from the Höder inequality that

∫

R

𝑢
2𝑛−1

𝜕
𝑥
(𝐺 ∗ 𝐹 (𝑢)) 𝑑𝑥 ≤ ‖𝑢‖

2𝑛−1

2𝑛

󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
(𝐺 ∗ 𝐹)

󵄩
󵄩
󵄩
󵄩2𝑚

. (67)

Therefore,
𝑑

𝑑𝑡

‖𝑢‖
2𝑛

≤ (
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩∞

+ 𝜆) ‖𝑢‖
2𝑛

+
󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
(𝐺 ∗ 𝐹)

󵄩
󵄩
󵄩
󵄩2𝑛

. (68)

Similarly, for the estimate of ‖𝛾(𝑥)‖
∞
, we have bymultiplying

𝛾
2𝑛−1 and integration

∫

R

𝛾
2𝑛−1

𝛾
𝑡
𝑑𝑥 + ∫

R

𝛾
2𝑛−1

𝑢𝛾
𝑥
𝑑𝑥

+ ∫

R

𝛾
2𝑛−1

(𝐺 ∗ 𝐻) 𝑑𝑥 + 𝜆∫

R

𝛾
2𝑛−1

𝑑𝑥 = 0,

𝑑

𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝛾
󵄩
󵄩
󵄩
󵄩2𝑛

≤ (
󵄩
󵄩
󵄩
󵄩
𝛾
𝑥

󵄩
󵄩
󵄩
󵄩∞

+ 𝜆) ‖𝑢‖
2𝑛

+ ‖𝐺 ∗ 𝐻‖
2𝑛
.

(69)

By the Sobolev embedding theorem, there exists a constant
𝑀 > 0 such that

𝑑

𝑑𝑡

(
󵄩
󵄩
󵄩
󵄩
𝛾
󵄩
󵄩
󵄩
󵄩2𝑛

+ ‖𝑢‖
2𝑛
) ≤ 𝑀(

󵄩
󵄩
󵄩
󵄩
𝛾
󵄩
󵄩
󵄩
󵄩2𝑛

+ ‖𝑢‖
2𝑛
)

+
󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
(𝐺 ∗ 𝐻)

󵄩
󵄩
󵄩
󵄩2𝑛

+ ‖𝐺 ∗ 𝐻‖
2𝑛
.

(70)

In view of Gronwall’s inequality, we have the estimate
󵄩
󵄩
󵄩
󵄩
𝛾
󵄩
󵄩
󵄩
󵄩2𝑛

+ ‖𝑢‖
2𝑛

≤ 𝑒
𝑀𝑡

(
󵄩
󵄩
󵄩
󵄩
𝛾
0

󵄩
󵄩
󵄩
󵄩2𝑛

+
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩2𝑛

+∫

𝑡

0

(
󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
(𝐺 ∗ 𝐻)

󵄩
󵄩
󵄩
󵄩2𝑛

+ ‖𝐺 ∗ 𝐻‖
2𝑛
) 𝑑𝜏) .

(71)

We can take limits as 𝑁 goes to infinity to obtain
󵄩
󵄩
󵄩
󵄩
𝛾
󵄩
󵄩
󵄩
󵄩∞

+ ‖𝑢‖
∞

≤ 𝑒
𝑀𝑡

(
󵄩
󵄩
󵄩
󵄩
𝛾
0

󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩∞

+∫

𝑡

0

(
󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
(𝐺 ∗ 𝐻)

󵄩
󵄩
󵄩
󵄩∞

+ ‖𝐺 ∗ 𝐻‖
∞

) 𝑑𝜏) .

(72)

The second step is to establish estimates for ‖𝑢
𝑥
‖
∞

and
‖𝛾
𝑥
‖
∞

by using the same method as previously mentioned.
Differentiating the first equation of (6) with respect to 𝑥

produces the following equation:

𝑢
𝑥𝑡

+ 𝑢
2

𝑥
+ 𝑢𝑢
𝑥𝑥

+ 𝜕
2

𝑥
(𝐺 ∗ 𝐹) + 𝜆𝑢

𝑥
= 0. (73)

Multiplying (73) by 𝑢
2𝑛−1

𝑥
, and then integrating by parts, one

obtains

∫

R

𝑢
2𝑛−1

𝑥
𝑢
𝑥𝑡
𝑑𝑥 + ∫

R

𝑢
2𝑛+1

𝑥
𝑑𝑥 −

1

2𝑛

∫

R

𝑢
2𝑛

𝑥
𝑢
𝑥

+ ∫

R

𝑢
2𝑛−1

𝑥
𝜕
2

𝑥
(𝐺 ∗ 𝐹) 𝑑𝑥 + 𝜆∫

R

𝑢
2𝑛

𝑥
= 0.

(74)

Similarly, one can obtain

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩∞

≤ 𝑒
𝑀𝑡

(
󵄩
󵄩
󵄩
󵄩
𝑢
0𝑥

󵄩
󵄩
󵄩
󵄩∞

+ ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
2

𝑥
(𝐺 ∗ 𝐹)

󵄩
󵄩
󵄩
󵄩
󵄩∞

𝑑𝜏) . (75)

For the second equation of (6), we may get

∫

R

𝛾
2𝑛−1

𝑥
𝛾
𝑥𝑡
𝑑𝑥 + ∫

R

𝑢
𝑥
𝛾
2𝑛

𝑥
𝑑𝑥

+ ∫

R

𝑢𝛾
𝑥𝑥

𝛾
2𝑛−1

𝑥
𝑑𝑥 + ∫

R

𝛾
2𝑛−1

𝑥
𝜕
𝑥
(𝐺 ∗ 𝐻) 𝑑𝑥

+𝜆∫
R
𝛾
2𝑛

𝑥
= 0,

𝑑

𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝛾
𝑥

󵄩
󵄩
󵄩
󵄩2𝑛

≤ (
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩∞

+ 𝜆)
󵄩
󵄩
󵄩
󵄩
𝛾
𝑥

󵄩
󵄩
󵄩
󵄩2𝑛

+
󵄩
󵄩
󵄩
󵄩
𝛾
𝑥𝑥

󵄩
󵄩
󵄩
󵄩∞

‖𝑢‖
2𝑛

+
󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
(𝐺 ∗ 𝐻)

󵄩
󵄩
󵄩
󵄩2𝑛

,

(76)

and by Gronwall’s inequality

󵄩
󵄩
󵄩
󵄩
𝛾
𝑥

󵄩
󵄩
󵄩
󵄩∞

≤ 𝑒
𝑀𝑡

(
󵄩
󵄩
󵄩
󵄩
𝛾
0𝑥

󵄩
󵄩
󵄩
󵄩∞

+ ∫

𝑡

0

(‖𝑢‖
∞

+
󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
(𝐺 ∗ 𝐻)

󵄩
󵄩
󵄩
󵄩∞

) 𝑑𝜏) .

(77)

In order to arrive at our result, we introduce a weighted
continuous function which is independent on 𝑡 as follows:

Φ
𝑁

(𝑥) =

{
{

{
{

{

1, 𝑥 ≤ 1,

𝑥
𝜃
, 𝑥 ∈ (1,𝑁) ,

𝑁
𝜃
, 𝑋 ≥ 𝑁,

(78)

where 𝜃 ∈ (0, 1], 𝑁 ∈ 𝑍
+, 𝑁 > 2. It is trivial that

0 ≤ Φ
󸀠

𝑁
(𝑥) ≤ Φ

𝑁
(𝑥) , a.e., 𝑥 ∈ 𝑅, (79)

where the derivative is with respect to the variable 𝑥. From
the first equation of (6) and (73), we have

Φ
𝑁
𝑢
𝑡
+ Φ
𝑁
𝑢𝑢
𝑥
+ Φ
𝑁
𝜕
𝑥
(𝐺 ∗ 𝐹) + 𝜆Φ

𝑁
𝑢 = 0, (80)

Φ
𝑁
𝑢
𝑥𝑡

+ Φ
𝑁
𝑢
2

𝑥
+ Φ
𝑁
𝑢𝑢
𝑥𝑥

+ Φ
𝑁
𝜕
2

𝑥
(𝐺 ∗ 𝐹) + 𝜆Φ

𝑁
𝑢
𝑥
= 0.

(81)



Journal of Applied Mathematics 9

Next, in order to obtain the estimates on ‖𝑢Φ
𝑁
‖
∞

and
‖𝑢
𝑥
Φ
𝑁
‖
∞
, we apply a similar technique that was used before

for ‖𝑢(𝑥, 𝑡)‖
∞

and ‖𝑢
𝑥
(𝑥, 𝑡)‖

∞
step by step to (80) and (81).

For (81), we need to eliminate the termwith the second-order
derivative in order to attain the estimate for 𝑢

𝑥
Φ
𝑁
. Using

integration by parts, we obtain

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R

(𝑢
𝑥
Φ
𝑁
)
2𝑛−1

Φ
𝑁
𝑢𝑢
𝑥𝑥

𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑅

(𝑢
𝑥
Φ
𝑁
)
2𝑛−1

𝑢 ((Φ
𝑁
𝑢
𝑥
)
𝑥
− Φ
󸀠

𝑁
𝑢
𝑥
) 𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R

𝑢(

(𝑢
𝑥
Φ
𝑁
)
2𝑛

2𝑛

)

𝑥

𝑑𝑥 − ∫

R

𝑢(𝑢
𝑥
Φ
𝑁
)
2𝑛−1

Φ
󸀠

𝑁
𝑢
𝑥
𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2 (
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩∞

+ ‖𝑢‖
∞

)
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
Φ
𝑁

󵄩
󵄩
󵄩
󵄩

2𝑛

2𝑛
,

(82)

where (79) is used directly. Therefore, with these prepara-
tions, it holds that

󵄩
󵄩
󵄩
󵄩
𝑢Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

≤ 𝑒
2𝑀𝑡

(
󵄩
󵄩
󵄩
󵄩
𝑢
0
Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
𝑢
0𝑥

Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

)

+ 𝑒
2𝑀𝑡

∫

𝑡

0

(
󵄩
󵄩
󵄩
󵄩
Φ
𝑁
𝜕
𝑥
(𝐺 ∗ 𝐻)

󵄩
󵄩
󵄩
󵄩∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
Φ
𝑁
𝜕
2

𝑥
(𝐺 ∗ 𝐹)

󵄩
󵄩
󵄩
󵄩
󵄩∞

) 𝑑𝜏.

(83)

For the second equation of (6), we have

Φ
𝑁
𝛾
𝑡
+ Φ
𝑁
𝑢𝛾
𝑥
+ Φ
𝑁
𝐺 ∗ 𝐻 + 𝜆𝛾 = 0,

Φ
𝑁
𝛾
𝑥𝑡

+ Φ
𝑁
𝑢
𝑥
𝛾
𝑥
+ Φ
𝑁
𝑢𝛾
𝑥𝑥

+Φ
𝑁
𝜕
𝑥
𝐺 ∗ 𝐻 + 𝜆𝛾

𝑥
= 0.

(84)

Therefore,

𝑑

𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝛾Φ
𝑁

󵄩
󵄩
󵄩
󵄩2𝑛

≤ ‖𝑢‖
∞

󵄩
󵄩
󵄩
󵄩
Φ
𝑁
𝛾
󵄩
󵄩
󵄩
󵄩2𝑛

+

1

2𝑛

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩∞

󵄩
󵄩
󵄩
󵄩
𝛾Φ
𝑁

󵄩
󵄩
󵄩
󵄩2𝑛

+
󵄩
󵄩
󵄩
󵄩
Φ
𝑁
𝐺 ∗ 𝐻

󵄩
󵄩
󵄩
󵄩2𝑛

,

𝑑

𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝛾
𝑥
Φ
𝑁

󵄩
󵄩
󵄩
󵄩2𝑛

≤ 3 (‖𝑢‖
∞

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩∞

)
󵄩
󵄩
󵄩
󵄩
𝛾
𝑥
Φ
𝑁

󵄩
󵄩
󵄩
󵄩2𝑛

+
󵄩
󵄩
󵄩
󵄩
Φ
𝑁
𝜕
𝑥
(𝐺 ∗ 𝐻)

󵄩
󵄩
󵄩
󵄩2𝑛

.

(85)

Then by (85), we obtain

󵄩
󵄩
󵄩
󵄩
𝛾Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
𝛾
𝑥
Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

≤ 𝑒
3𝑀𝑡

(
󵄩
󵄩
󵄩
󵄩
𝛾
0
Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
𝛾
0𝑥

Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

)

+ 𝑒
3𝑀𝑡

∫

𝑡

0

(
󵄩
󵄩
󵄩
󵄩
Φ
𝑁
𝜕
𝑥
(𝐺 ∗ 𝐻)

󵄩
󵄩
󵄩
󵄩∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
Φ
𝑁
𝜕
2

𝑥
(𝐺 ∗ 𝐹)

󵄩
󵄩
󵄩
󵄩
󵄩∞

) 𝑑𝜏.

(86)

On the other hand, for a suitable function𝑓, one obtains, due
to Lemma 11,

󵄨
󵄨
󵄨
󵄨
󵄨
Φ
𝑁
𝜕
𝑥
(𝐺 ∗ 𝑓

2
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ Φ
𝑁

(𝑥) ∫

𝑅

𝑒
−|𝑥−𝑦| 1

Φ
𝑁

(𝑦)

Φ
𝑁

(𝑦) 𝑓 (𝑦) 𝑓 (𝑦) 𝑑𝑦

≤
󵄩
󵄩
󵄩
󵄩
𝑓Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩∞

Φ
𝑁

(𝑥) ∫

𝑅

𝑒
−|𝑥−𝑦| 1

Φ
𝑁

(𝑦)

𝑑𝑦

≤ 𝐶
𝜃

󵄩
󵄩
󵄩
󵄩
𝑓Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩∞

.

(87)

Similarly,
󵄨
󵄨
󵄨
󵄨
󵄨
Φ
𝑁
𝜕
2

𝑥
(𝐺 ∗ 𝑓

2
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶
𝜃

󵄩
󵄩
󵄩
󵄩
𝑓Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩∞

. (88)

Note that there are two additional quantities in (86) to be
dealt with. Let us estimate ‖Φ

𝑁
(𝐺 ∗ 𝐻)‖

∞
first. One has

󵄨
󵄨
󵄨
󵄨
Φ
𝑁

(𝐺 ∗ 𝐻)
󵄨
󵄨
󵄨
󵄨

=

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Φ
𝑁

(𝑥) ∫

𝑅

𝑒
−|𝑥−𝑦|

((𝑢
𝑥
𝛾
𝑥
)
𝑥
+ 𝑢
𝑥
𝛾) 𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ C
𝜃

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

(
󵄩
󵄩
󵄩
󵄩
𝛾
󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
𝛾
𝑥

󵄩
󵄩
󵄩
󵄩∞

) .

(89)

It is similar to the remaining ‖Φ
𝑁
𝜕
𝑥
(𝐺 ∗ 𝐻)‖

∞
. Then, com-

bining (87)–(89) with (83) and (86), it follows that there exists
a constant 𝐶 = 𝐶(𝑀,𝑇) > 0 such that

Γ (𝑡) ≤ 𝐶Γ (0) + 𝐶∫

𝑡

0

𝜁 (𝜏) Γ (𝜏) 𝑑𝜏

≤ 𝐶(Γ (0) + ∫

𝑡

0

Γ (𝜏) 𝑑𝜏) ,

(90)

where
Γ (𝑡) =

󵄩
󵄩
󵄩
󵄩
𝑢Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

+ 𝛾Φ
𝑁

󵄩
󵄩
󵄩
󵄩∞

+ 𝛾
𝑥
Φ
𝑁
‖
∞

,

𝜁 (𝑡) = ‖𝑢‖
∞

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
𝛾
󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
𝛾
𝑥

󵄩
󵄩
󵄩
󵄩∞

(91)

are introduced just for simplicity. Next for any 𝑁 ∈ 𝑍
+, 𝑡 ∈

[0, 𝑇], and 𝑥 > 0, we have, by Gronwall’s inequality,

Γ (𝑡) ≤ 𝐶
0
Γ (0)

≤ 𝐶
0
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0
(𝑥)𝑥
𝜃󵄩󵄩
󵄩
󵄩
󵄩∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0𝑥

(𝑥)𝑥
𝜃󵄩󵄩
󵄩
󵄩
󵄩∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝛾
0
(𝑥) 𝑥
𝜃󵄩󵄩
󵄩
󵄩
󵄩∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝛾
0𝑥

(𝑥) 𝑥
𝜃󵄩󵄩
󵄩
󵄩
󵄩∞

) .

(92)

Finally, passing limit as 𝑁 goes to infinity in the previous
inequality, we obtain

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢(𝑥, 𝑡)𝑥

𝜃󵄩󵄩
󵄩
󵄩
󵄩∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑥, 𝑡)𝑥

𝜃󵄩󵄩
󵄩
󵄩
󵄩∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝛾(𝑥, 𝑡)𝑥

𝜃󵄩󵄩
󵄩
󵄩
󵄩∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝛾
𝑥
(𝑥, 𝑡)𝑥

𝜃󵄩󵄩
󵄩
󵄩
󵄩∞

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0
(𝑥)𝑥
𝜃󵄩󵄩
󵄩
󵄩
󵄩∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0𝑥

(𝑥)𝑥
𝜃󵄩󵄩
󵄩
󵄩
󵄩∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝛾
0
(𝑥)𝑥
𝜃󵄩󵄩
󵄩
󵄩
󵄩∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝛾
0
(𝑥)𝑥
𝜃󵄩󵄩
󵄩
󵄩
󵄩∞

.

(93)

We complete the proof.
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[19] D. Holm, L. Ó. Náraigh, and C. Tronci, “Singular solutions of
a modified two-component Camassa-Holm equation,” Physical
Review E, vol. 79, Article ID 016601, 2009.

[20] G. Lv and M. Wang, “Some remarks for a modified periodic
Camassa-Holm system,” Discrete and Continuous Dynamical
Systems A, vol. 30, no. 4, pp. 1161–1180, 2011.

[21] Y. Fu, Y. Liu, and C. Qu, “Well-posedness and blow-up solution
for amodified two-component periodic Camassa-Holm system
with peakons,”Mathematische Annalen, vol. 348, no. 2, pp. 415–
448, 2010.

[22] S. Yu, “Well-posedness and blow-up for a modified two-
component Camassa-Holm equation,” Applicable Analysis, vol.
91, no. 7, pp. 1321–1337, 2012.

[23] C. Guan, K. Karlsen, and Z. Yin, “Well-posedness and blow-
up phenomena for a modified two-component Camassa-Holm
equation, Nonlinear partial differential equations and hyper-
bolic wave phenomena,” in Contemporary Mathematics, vol.
526, pp. 199–220, American Mathematical Society, Providence,
RI, USA, 2010.

[24] W. Tan and Z. Yin, “Global dissipative solutions of a modified
two-component Camassa-Holm shallow water system,” Journal
of Mathematical Physics, vol. 52, no. 3, Article ID 033507, 2011.

[25] Z. Guo and L. Ni, “Persistence properties and unique continua-
tion of solutions to a two-componentCamassa-Holm equation,”
Mathematical Physics, Analysis and Geometry, vol. 14, no. 2, pp.
101–114, 2011.

[26] W. Tan and Z. Yin, “Global periodic conservative solutions of
a periodic modified two-component Camassa-Holm equation,”
Journal of Functional Analysis, vol. 261, no. 5, pp. 1204–1226,
2011.

[27] Z. Guo, M. Zhu, and L. Ni, “Blow-up criteria of solutions to
a modified two-component Camassa-Holm system,” Nonlinear
Analysis. Real World Applications, vol. 12, no. 6, pp. 3531–3540,
2011.

[28] Z. Guo and M. Zhu, “Wave breaking for a modified two-
component Camassa-Holm system,” Journal of Differential
Equations, vol. 252, no. 3, pp. 2759–2770, 2012.

[29] L. Jin and Z. Guo, “A note on a modified two-component
Camassa-Holm system,” Nonlinear Analysis. Real World Appli-
cations, vol. 13, no. 2, pp. 887–892, 2012.

[30] W. Rui and Y. Long, “Integral bifurcation method together with
a translation-dilation transformation for solving an integrable
2-component Camassa-Holm shallow water system,” Journal of
Applied Mathematics, vol. 2012, Article ID 736765, 21 pages,
2012.

[31] J. B. Li and Y. S. Li, “Bifurcations of travelling wave solutions for
a two-component Camassa-Holm equation,”ActaMathematica
Sinica, vol. 24, no. 8, pp. 1319–1330, 2008.

[32] J.-M. Ghidaglia, “Weakly damped forced Korteweg-de Vries
equations behave as a finite-dimensional dynamical system in
the long time,” Journal of Differential Equations, vol. 74, no. 2,
pp. 369–390, 1988.



Journal of Applied Mathematics 11

[33] Q. Hu and Z. Yin, “Blowup and blowup rate of solutions
to a weakly dissipative periodic rod equation,” Journal of
Mathematical Physics, vol. 50, no. 8, Article ID 083503, 2009.

[34] Q. Hu, “Global existence and blow-up phenomena for a weakly
dissipative 2-component Camassa-Holm system,” Applicable
Analysis, vol. 92, no. 2, pp. 398–410, 2013.

[35] Q. Hu, “Global existence and blow-up phenomena for a
weakly dissipative periodic 2-component Camassa-Holm sys-
tem,” Journal of Mathematical Physics, vol. 52, no. 10, Article ID
103701, 2011.

[36] T. Kato, “Quasi-linear equations of evolutionwith application to
partial differential equations,” in SpectralTheory andDifferential
Equations, pp. 25–70, Springer, Berlin, Germany, 1975.

[37] A. Constantin and J. Escher, “Wave breaking for nonlinear
nonlocal shallow water equations,” Acta Mathematica, vol. 181,
no. 2, pp. 229–243, 1998.

[38] L. Ni and Y. Zhou, “A new asymptotic behavior of solutions
to the Camassa-Holm equation,” Proceedings of the American
Mathematical Society, vol. 140, no. 2, pp. 607–614, 2012.

[39] A. A. Himonas, G. Misiołek, G. Ponce, and Y. Zhou, “Persis-
tence properties and unique continuation of solutions of the
Camassa-Holm equation,” Communications in Mathematical
Physics, vol. 271, no. 2, pp. 511–522, 2007.

[40] Z. Guo, “Asymptotic profiles of solutions to the two-component
Camassa-Holm system,”Nonlinear Analysis.Theory, Methods &
Applications A, vol. 75, no. 1, pp. 1–6, 2012.


