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Fuzzy measures and fuzzy integrals have been successfully used in many real applications. How to determine fuzzy measures is
a very difficult problem in these applications. Though there have existed some methodologies for solving this problem, such as
genetic algorithms, gradient descent algorithms, neural networks, and particle swarm algorithm, it is hard to say which one is more
appropriate and more feasible. Each method has its advantages. Most of the existed works can only deal with the data consisting
of classic numbers which may arise limitations in practical applications. It is not reasonable to assume that all data are real data
before we elicit them from practical data. Sometimes, fuzzy data may exist, such as in pharmacological, financial and sociological
applications. Thus, we make an attempt to determine a more generalized type of general fuzzy measures from fuzzy data by means
of genetic algorithms and Choquet integrals. In this paper, we make the first effort to define the 𝜎-𝜆 rules. Furthermore we define
and characterize the Choquet integrals of interval-valued functions and fuzzy-number-valued functions based on 𝜎-𝜆 rules. In
addition, we design a special genetic algorithm to determine a type of general fuzzy measures from fuzzy data.

1. Introduction

Fuzzy measures [1–4] and fuzzy integrals [5–9] have been
applied successfully in multiattributes decision-making [10,
11], classification [12, 13], information fusion [14–18], non-
linear multiregression [19], feature selection [20, 21] and
image processing. The reason of success is from the highly
nonadditive and non-linear characteristics of fuzzy measures
and fuzzy integrals. Fuzzy measure is the generalization of
classical measure by using nonadditivity instead of additivity,
which makes fuzzy measure be able to describe the impor-
tance of each individual information source (attribute or
classifier) as well as the interaction [13], among them.

The Choquet integral [22–26] with respect to fuzzy
measure is often used in information fusion and data mining
as a nonlinear aggregation tool. The nonadditivity of fuzzy
measures can effectively describe the interaction among the
contributions from each attribute toward some target. Some
works have shown successful applications of the Choquet

integral in nonlinear multiregressions, classifications, and
decisionmakings [19, 25, 27–30], where the values of fuzzy
measure are usually regarded as unknown parameter to be
elicited from training data sets.

Most of existed works can only deal with the data consist-
ing of classic numberswhichmay arise limitations in practical
applications. It is not reasonable to assume that all data are
real data before we elicit them from practical data. Some-
times, fuzzy data may exist, such as in pharmacological,
financial, and sociological applications. Genetic algorithm
(GA) is a stochastic searchmethod for optimization problems
based on the mechanics of natural selection and natural
genetics. GA has demonstrated considerable success in pro-
viding good solutions to many complex optimization prob-
lems and received more and more attentions during the past
three decades.The advantage of GA justmake it able to obtain
the global optimal solution fairly. In addition, compared
with the traditional methods, GA has the ability to avoid
getting stuck at a local optimal solution, sinceGA search from
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a single point.Thus, wemake an attempt to determine amore
generalized type of general fuzzymeasures from fuzzy data by
means of genetic algorithms and Choquet integrals.

The rest of this study is organized as follows. In Section 2,
the basic definitions of fuzzy measures based on 𝜎-𝜆 rules
are reviewed. Section 3 briefly introduces the basic concepts
on the Choquet integral of real-valued functions based on
rules and gives the operational schemes of its on discrete
sets. In Section 4, we formulate the problems to be solved.
Section 5 uses genetic algorithm optimization to determine
fuzzy measures from real-valued data. Section 6, introduces
the Choquet integral of interval-valued functions based on
rules. Consequently, we use genetic algorithm optimization
to determine fuzzy measures from interval-valued data.
Section 7 discusses the Choquet integral of fuzzy number-
valued functions based on rules, and then uses genetic
algorithm optimization to determine fuzzy measures from
fuzzy number-valued data. Finally, conclusions are made in
Section 8.

2. Fuzzy Measure Based on 𝜎-𝜆 Rules

Definition 1. Let 𝑋 be a nonempty set and A a 𝜎-algebra on
the𝑋. A set function 𝜇 is called a fuzzymeasure based on 𝜎-𝜆
rules if

𝜇(

∞

⋃

𝑖=1

𝐴
𝑖
) =

{
{
{
{

{
{
{
{

{

1

𝜆

{

∞

∏

𝑖=1

[1 + 𝜆𝜇 (𝐴
𝑖
)] − 1} , 𝜆 ̸= 0,

∞

∑

𝑖=1

𝜇 (𝐴
𝑖
) , 𝜆 = 0,

(1)

where 𝜆 ∈ (−(1/ sup 𝜇),∞)⋃{0}, {𝐴
𝑖
} ⊂ A, and 𝐴

𝑖
∩ 𝐴
𝑗
= 0

for all 𝑖, 𝑗 = 1, 2, . . . and 𝑖 ̸= 𝑗.
Particularly, if 𝜆 = 0, then 𝜎-𝜆 rule is 𝜎-additivity.

Definition 2. LetA be a𝜎-algebra on the𝑋.𝜇 is called Sugeno
measure based on 𝜎-𝜆 rules if 𝜇 satisfies 𝜎-𝜆 rules and 𝜇(𝑋) =

1. Briefly we denoted 𝑔
𝜆
.

Remark 3. In Definition 1, if 𝑛 = 2, then

𝜇 (𝐴 ∪ 𝐵) = {

𝜇 (𝐴) + 𝜇 (𝐵) + 𝜆𝜇 (𝐴) 𝜇 (𝐵) , 𝜆 ̸= 0,

𝜇 (𝐴) + 𝜇 (𝐵) , 𝜆 = 0.

(2)

Remark 4. In Definition 2, 𝑔
𝜆
is a classical probability mea-

sure if 𝜆 = 0, and it can be represented by a wide range of
nonadditive measure as long as we select proper parameters,
many scholars think that it is a very important kind of non-
additive measure [31–33].

Example 5. Three workers, 𝑥
1
, 𝑥
2
, and 𝑥

3
, are engaged in

producing the same kind of products; the efficiencies of
every people are given as follows: 𝜇(𝑥

1
) = 5, 𝜇(𝑥

2
) = 6,

and 𝜇(𝑥
3
) = 8. Then we can get the joint efficiencies by use

of 𝜎-𝜆 rules as shown in Table 1.

Remark 6. In Example 5, 𝑥
𝑖
can be viewed as a attribute,

𝑖 = 1, 2, 3, we can calculate the contribution of their joint
attributes by use of𝜎-𝜆 rules if we only know the contribution
of individual attribute 𝑔

𝜆
(𝑥
𝑖
), 𝑖 = 1, 2, 3.

Table 1: The values of set function 𝜇 in Example 5.

Set Value of 𝜇
𝐸
1
= {𝑥
1
} 5

𝐸
2
= {𝑥
2
} 6

𝐸
3
= {𝑥
1
, 𝑥
2
} 11 + 30𝜆

𝐸
4
= {𝑥
3
} 8

𝐸
5
= {𝑥
1
, 𝑥
3
} 13 + 40𝜆

𝐸
6
= {𝑥
2
, 𝑥
3
} 14 + 48𝜆

𝐸
7
= {𝑥
1
, 𝑥
2
, 𝑥
3
} 240𝜆

2

+ 118𝜆 + 19

Theorem 7. Let 𝑔
𝜆
be a Sugeno measure based on 𝜎-𝜆 rules.

If 𝜆 ≥ 0, then 𝑔
𝜆
has the monotonicity.

Proof. Let 𝐸, 𝐹 ∈ F and 𝐸 ⊂ 𝐹. Since 𝐹 = 𝐸 ∪ (𝐹 − 𝐸), this
implies that

𝑔
𝜆
(𝐹) = 𝑔

𝜆
(𝐸 ∪ (𝐹 − 𝐸)) = 𝑔

𝜆
(𝐸)

+ 𝑔
𝜆
(𝐹 − 𝐸) + 𝜆𝑔

𝜆
(𝐸) 𝑔
𝜆
(𝐹 − 𝐸) ,

(3)

𝑔
𝜆
(𝐹) ≥ 𝑔

𝜆
(𝐸) (4)

for 𝜆 ≥ 0 and 𝑔
𝜆
≥ 0.

Due to the limitation of the classical measure, Sugeno, the
Japanese scholar, presents set functions called fuzzymeasures
which use the monotonicity instead of the additivity. In prac-
tical applications, we often use regular fuzzy measure [32] on
finite sets.

Definition 8 (see [28]). Let 𝑋 be a finite set and 2
𝑋 be the

power set of 𝑋. Set function 𝜇 : 2
𝑋

→ [0, 1] is called
a regular fuzzy measure defined on let 2𝑋 if the following
conditions are satisfied:

(1) 𝜇(0) = 0, 𝜇(𝑋) = 1;
(2) if 𝐸 ∈ 2

𝑋

, 𝐺 ∈ 2
𝑋

, and 𝐸 ⊂ 𝐺, then 𝜇(𝐸) ≤ 𝜇(𝐺).

Definition 9 (see [28]). Let 𝑋 be a finite set and 2
𝑋 be the

power set, of 𝑋. A fuzzy measure 𝜇 : 2
𝑋

→ [0, 1] is called
a regular 𝜆-fuzzy measure defined on let 2𝑋 if the following
conditions are satisfied:

(1) 𝜇(0) = 0, 𝜇(𝑋) = 1;
(2) if 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) + 𝜆𝜇(𝐴)𝜇(𝐵), where 𝐴 ⊂

𝑋, 𝐵 ⊂ 𝑋,𝐴 ∩ 𝐵 = 0 and 𝜆 ∈ (−1,∞).

Theorem 10. Let 𝑔
𝜆
be a Sugeno measure based on 𝜎-𝜆 rules.

Then 𝑔
𝜆
is a regular 𝜆-fuzzy measure defined onA.

Proof. We could prove that 𝑔
𝜆
(0) = 0. Otherwise for every

𝜆 ≥ 0, 𝐴 ∈ A, we have

𝑔
𝜆
(𝐴) = 𝑔

𝜆
(𝐴 ∪ 0)

= 𝑔
𝜆
(𝐴) + 𝑔

𝜆
(0) + 𝜆𝑔

𝜆
(𝐴) 𝑔
𝜆
(0) ,

𝑔
𝜆
(0) = − 𝜆𝑔

𝜆
(𝐴) 𝑔
𝜆
(0) .

(5)
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Since 𝑔
𝜆
(0) ̸= 0, we have 𝜆𝑔

𝜆
(0) = −1; it is a contradiction.

Furthermore, we obtain 𝑔
𝜆
(𝑋) = 1, and 𝑔

𝜆
has the mono-

tonicity by Definition 2 andTheorem 7.

Denoting finite set 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, the value 𝑔

𝜆𝑖
=

𝑔
𝜆
(𝑥
𝑖
) for all 𝑖 = 1, 2, . . . , 𝑛 is called measure density.

Theorem 11. The parameter 𝜆 of a regular Sugeno measure
based on 𝜎-𝜆 rules is determined by the following equation:

𝑛

∏

𝑖=1

(1 + 𝜆𝑔
𝜆𝑖
) = 1 + 𝜆. (6)

Proof. We can prove the above theorem by Theorem 10 and
[32].

If we know the values of Sugenomeasure based on 𝜎-𝜆 on
singleton sets, we can use Theorem 11 to obtain the values of
𝜆 and then use Definition 1 to obtain the values on the other
sets. It implies that a Sugeno measure based on 𝜎-𝜆 can be
determined by measure densities.

Theorem 12 (see [28]). If one knows the measure density 𝑔
𝜆𝑖

on finite set𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, then there is only one solution

𝜆 obtained from∏
𝑛

𝑖=1
(1 + 𝜆𝑔

𝜆𝑖
) = 1 + 𝜆.

3. The Choquet Integrals of Real-Valued
Function Based on 𝜎-𝜆 Rules

Definition 13 (see [34]). A regular fuzzy number, denoted by
𝑎, is a fuzzy subset ofR with membership function𝑚 : R →

[0, 1] satisfying the following conditions.

(RFN1) there exists at least one number 𝑎
0
∈ R such

that 𝑎
0
= 1;

(RFN2) m(t) is nondecreasing on (−∞, 𝑎
0
] and non-

increasing on [𝑎
0
, +∞);

(RFN3) m(t) is upper semicontinuous; that is,
lim
𝑡→ 𝑡
+

0

= 𝑚(𝑡
0
) if 𝑡
0
< 𝑎
0
and lim

𝑡→ 𝑡
−

0

= 𝑚(𝑡
0
) if

𝑡
0
> 𝑎
0
;

(RFN4) ∫∞
−∞

𝑚(𝑡)𝑑𝑡 < ∞.

The set of all regular fuzzy numbers is denoted byN.
Let 𝑓 : 𝑋 → (−∞,∞) be a measurable function with

respect toA; that is, 𝑓 satisfies the condition that

{𝑥 | 𝑓 (𝑥) ≥ 𝛼} ∈ A (7)

for any 𝛼 ∈ R.

From now on, we suppose that all functions defined on
𝑋 appearing as an integrand of the Choquet integral in this
paper are measurable.

Definition 14 (see [22]). Let (𝑋,A) be a measurable space,
and let 𝑔

𝜆
be a Sugeno measure based on 𝜎-𝜆 rules on A.

The Choquet integral of a real-valued function 𝑓 : 𝑋 →

(−∞, +∞) is defined as

(𝑐) ∫

𝑋

𝑓𝑑𝑔
𝜆
= ∫

0

−∞

[𝑔
𝜆
(𝐹
𝛼
) − 𝑔
𝜆
(𝑋)] 𝑑𝛼

+ ∫

∞

0

𝑔
𝜆
(𝐹
𝛼
) 𝑑𝛼,

(8)

where

𝐹
𝛼
= {𝑥 | 𝑓 (𝑥) ≥ 𝛼} (9)

for 𝛼 ∈ (−∞, +∞), if both of Riemann integrals exist and at
least one of them has finite value.

Let 𝐴 ∈ A, then Choquet integral of a nonnegative real-
valued function 𝑓 : 𝑋 → (0, +∞) is defined as

(𝑐) ∫

𝐴

𝑓𝑑𝑔
𝜆
= ∫

∞

0

𝑔
𝜆
(𝐴 ∩ 𝐹

𝛼
) 𝑑𝛼. (10)

Without loss of the generality, Yang et al. [34] have pro-
posed a new scheme to calculate the value of a Choquet inte-
gral with a real-valued integrand.

When 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, for any function 𝑓 : 𝑋 →

(−∞, +∞), both [𝑔
𝜆
(𝐹
𝛼
)−𝑔
𝜆
(𝑋)] and 𝑔

𝜆
(𝐹
𝛼
) are functions of

𝛼 with bounded variance; therefore, their Riemann integrals
with respect to 𝛼 exist and are finite. So, Choquet integral
(𝑐) ∫ 𝑓𝑑𝑔

𝜆
is well defined. To calculate the value of the

Choquet integral of a given real-valued function 𝑓, usually
the values of 𝑓, that is, 𝑓(𝑥

1
), 𝑓(𝑥

2
), . . . , 𝑓(𝑥

𝑛
), should be

sorted in a nondecreasing order, so that 𝑓(𝑥
1
) ≤ 𝑓(𝑥



2
) ≤

⋅ ⋅ ⋅ ≤ 𝑓(𝑥


𝑛
), where {𝑥

1
, 𝑥


2
, . . . , 𝑥



𝑛
} is a certain permutation

of {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}. Then, the value of the Choquet integral is

obtained by

(𝑐) ∫𝑓𝑑𝑔
𝜆
=

𝑛

∑

𝑖=1

[𝑓 (𝑥


𝑖
) − 𝑓 (𝑥



𝑖−1
)]

⋅ 𝑔
𝜆
({𝑥


𝑖
, 𝑥


𝑖+1
, . . . , 𝑥



𝑛
}) ,

(11)

where 𝑓(𝑥
0
) = 0.

Example 15. Let 𝑋 = {𝑥
1
, 𝑥
2
, 𝑥
3
}, 𝑔
𝜆
(𝑥
1
) = 0.1, 𝑔

𝜆
(𝑥
2
) =

0.2, 𝑔
𝜆
(𝑥
3
) = 0.3, 𝑓(𝑥

1
) = 0.3, 𝑓(𝑥

2
) = 0.7, and 𝑓(𝑥

3
) =

0.5. We can obtain ∏
3

𝑖=1
(1 + 𝜆𝑔

𝜆
𝑖

) = 1 + 𝜆 by Theorem 11.
Furthermore we get 𝜆 = 3.1.

By Definition 1, we can get the following results:

𝑔
𝜆
({𝑥
1
, 𝑥
2
}) = 𝑔

𝜆
(𝑥
1
) + 𝑔
𝜆
(𝑥
2
) + 𝜆𝑔

𝜆
(𝑥
1
) ⋅ 𝑔
𝜆
(𝑥
2
)

= 0.1 + 0.2 + 3.1 × 0.1 × 0.2

= 0.362.

(12)

Similarly, 𝑔
𝜆
({𝑥
1
, 𝑥
3
}) = 0.493, 𝑔

𝜆
({𝑥
2
, 𝑥
3
}) = 0.593, 𝑔

𝜆
({𝑥
1
,

𝑥
2
, 𝑥
3
}) = 1.
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Table 2: Data of Example 16.

𝑖 𝑓
𝑖1

𝑓
𝑖2

𝑓
𝑖3

𝑓
𝑖4

𝑓
𝑖5

1 1 0.6 0.8 0.8 1
2 0.8 0.5 0.7 1 0.7
3 0.8 0.8 0.5 0.8 0.9
4 0.5 0.5 1 0.7 0.6
5 0.2 0.9 0.7 0.6 0.3
6 0.7 0.3 0.9 0.6 0.8
7 1 0.6 1 0.5 0.8
8 0.5 0.8 0.4 0.7 0.5
9 0.4 0.7 0.6 0.9 0.2
10 0.7 0.5 0.6 0.8 0.8

ByDefinition 14, we can get the Choquet integrals of𝑓(𝑥)
with respect to 𝑔

𝜆
as follows:

(𝑐) ∫𝑓𝑑𝑔
𝜆
= (0.3 − 0) ⋅ 1 + (0.5 − 0.3)

⋅ 𝑔
𝜆
({𝑥
3
, 𝑥
2
}) + (0.7 − 0.5)

⋅ 𝑔
𝜆
(𝑥
2
) = 0.4586.

(13)

Example 16. Let 𝑋 = {𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
}, 𝑔
𝜆
(𝑥
1
) = 0.1,

𝑔
𝜆
(𝑥
2
) = 0.2, 𝑔

𝜆
(𝑥
3
) = 0.3, 𝑔

𝜆
(𝑥
4
) = 0.15, and 𝑔

𝜆
(𝑥
5
) =

0.175 (Table 2).
By Theorem 11, we obtain that ∏5

𝑖=1
(1 + 𝜆𝑔

𝜆𝑖
) = 1 + 𝜆,

and with the aid of Mathematica software, we calculate that
𝜆 = 0.218; furthermore, we get Choquet integrals which are
shown in Table 3.

4. Questions Description: Determine
Fuzzy Measures

In this section, we formulate our problems to be solved.
If we regard fuzzy integrals as multi-input single-output

systems, we can obtain the Data through handling these
systems. Suppose that we have several information sources
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑛 ≥ 2 and a given object 𝑦. Let 𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}; we have the data with sample size𝑚 as shown

in Table 4, where 𝑓
𝑖𝑗
is the 𝑖th value of source 𝑥

𝑗
and 𝐸

𝑖
is the

𝑖th value of object.
We hope to find a Sugeno measure 𝑔

𝜆
on measurable

space (𝑋, 2
𝑋

), such that 𝐸
𝑖
= (𝑐) ∫𝑓

𝑖
𝑑𝑔
𝜆
, 𝑖 = 1, 2, . . . , 𝑚,

where function 𝑓
𝑖
is defined by 𝑓

𝑖
(𝑥
𝑗
) = 𝑓

𝑖𝑗
, 𝑗 = 1, 2, . . . , 𝑛

for 𝑖 = 1, 2, . . . , 𝑚.
If such a Sugeno measure 𝑔

𝜆
does not exist, we hope

to find the optimally approximate solution. This is just the
inverse problem of synthetic evaluation. We can also use the
least square method to transform the above problem to a
constrained optimization problem. An optimization problem
is described as follows:

min (𝑉) = √

1

𝑚

𝑚

∑

𝑖=1

(𝐸
𝑖
− (𝑐) ∫𝑓

𝑖
𝑑𝑔
𝜆
)

2

. (14)

A result of min(𝑉) = 0 also means that a precise solution
is found.

Here, we discuss this problem in three aspects. The first
one is the values of 𝑓

𝑖𝑗
, and 𝐸

𝑖
(𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛)

are a real-valued data.The second one is the values of 𝑓
𝑖𝑗
, and

𝐸
𝑖
(𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛) are an interval-valued data.

The last one is 𝑓
𝑖𝑗
, and 𝐸

𝑖
(𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛) are

a fuzzy-valued data.

5. Using Genetic Algorithm to Determine
Fuzzy Measures from Real-Valued Data

In this section, we use genetic algorithm to determine fuzzy
measures from real-valued data.

5.1. Genetic Algorithm (GA). Genetic algorithm (GA) is a
stochastic searchmethod for optimization problems based on
the mechanics of natural selection and natural genetics (i.e.,
survival of the fittest). GA has demonstrated considerable
success in providing good solutions to many complex opti-
mization problems and received more and more attentions
during the past three decades. When the objective functions
to be optimized in the optimization problems aremultimodal
or the search spaces are particularly irregular, algorithms
need to be highly robust in order to avoid getting stuck at
a local optimal solution. The advantage of GA just makes it
able to obtain the global optimal solution fairly. In addition,
GA does not require the specific mathematical analysis of
optimization problems, which makes GA easily coded by
users who are not necessarily good at mathematics and
algorithms.

5.1.1.TheDecimal Coding. Chromosome𝑉 is denoted by𝑉 =

(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
), where gene 𝑎

𝑖
∈ [0, 1] for all 𝑖 = 1, 2, . . . , 𝑛,

and 𝑎
1
= 𝑔
𝜆1
, 𝑎
2
= 𝑔
𝜆2
, . . . , and 𝑎

𝑛−1
= 𝑔
𝜆𝑛−1

, 𝑎
𝑛
= 𝜆.

5.1.2. The Decoding. Find the formula

𝑔
𝜆𝑛

=

1

𝜆

(

1 + 𝜆

∏
𝑛−1

𝑖=1
(1 + 𝜆𝑔

𝜆𝑖
)

− 1) (15)

by 𝑔
𝜆𝑖

(𝑖 = 1, 2, . . . , 𝑛 − 1), 𝜆, and Definition 1. Furthermore,
the values of 𝑔

𝜆
(𝑥
1
, 𝑥
2
, . . ., 𝑥

𝑘
) for all 𝑘 = 1, 2, . . . , 𝑛 can be

obtained by Definition 1. The encoding can guarantee to get
a feasible solution. That is, the solution satisfies Definition 1,
and it will not undermine the feasibility of the solution
no matter what kind of genetic operation (crossover or
mutation) be used to chromosome.

5.1.3.The Arithmetic Crossover. Use the crossover probability
𝑃
𝑐
to choose two parent chromosomes 𝑉1 = (𝑎

1

1
, 𝑎
1

2
, . . . , 𝑎

1

𝑛
)
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Table 3: Results of Example 16.

(𝑐) ∫ 𝑓
1
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
2
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
3
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
4
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
5
𝑑𝑔
𝜆

0.8 0.7 0.71 0.79 0.58
(𝑐) ∫ 𝑓

6
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
7
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
8
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
9
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
10
𝑑𝑔
𝜆

0.67 0.79 0.56 0.56 0.65

Table 4: Data.

𝑥
1

𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑛

𝑦

𝑓
11

𝑓
12

⋅ ⋅ ⋅ 𝑓
1𝑛

𝐸
1

𝑓
21

𝑓
22

⋅ ⋅ ⋅ 𝑓
2𝑛

𝐸
2

...
...

...
...

...
𝑓
𝑚1

𝑓
𝑚2

⋅ ⋅ ⋅ 𝑓
𝑚𝑛

𝐸
𝑚

and 𝑉
2

= (𝑎
2

1
, 𝑎
2

2
, . . . , 𝑎

2

𝑛
) and use the arithmetic crossover to

get two offspring chromosomes 𝑉3 and 𝑉
4:

𝑉
3

= 𝛼𝑉
1

+ (1 − 𝛼)𝑉
2

= (𝛼𝑎
1

1
+ (1 − 𝛼) 𝑎

2

1
, 𝛼𝑎
1

2

+ (1 − 𝛼) 𝑎
2

2
, . . . , 𝛼𝑎

1

𝑛
+ (1 − 𝛼) 𝑎

2

𝑛
) ,

𝑉
4

= (1 − 𝛼)𝑉
1

+ 𝛼𝑉
2

= ((1 − 𝛼) 𝑎
1

1
+ 𝛼𝑎
2

1
, (1 − 𝛼) 𝑎

1

2

+ 𝛼𝑎
2

2
, . . . , (1 − 𝛼) 𝑎

1

𝑛
+ 𝛼𝑎
2

𝑛
) ,

(16)

where 𝛼 ∈ [0, 1].

5.1.4. The Nonuniform Mutation. Select parent chromosome
𝑉 = (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) according to the mutation probability 𝑃

𝑚

and take the mutation to 𝑎
𝑘
for the random generation of 𝑘 in

[1, 𝑛]. Let

𝑎


𝑘
= 𝑎
𝑘
+ 𝜙 (𝑡, 𝑎

𝑈

𝑘
− 𝑎
𝑘
) (17)

or

𝑎


𝑘
= 𝑎
𝑘
− 𝜙 (𝑡, 𝑎

𝑘
− 𝑎
𝐿

𝑘
) , (18)

where 𝑎𝑈
𝑘
and 𝑎𝐿
𝑘
are the upper and lower bound of 𝑎

𝑘
, respec-

tively, and 𝑡 is the number of generations. Function 𝜙(𝑡, 𝑏) is
defined as follows:

𝜙 (𝑡, 𝑏) = 𝑏 ⋅ 𝑟 ⋅ (1 −

𝑡

𝑇

)

𝑏

, (19)

where 𝑟 is a random number of [0, 1], 𝑇 is the largest
number of generations, and 𝑏 is the parameter. Obviously,
lim
𝑛→𝑇

𝜙(𝑡, 𝑏) = 0.

5.1.5.TheEvaluation Function. Evaluation function is defined
by

min (𝑉) = √

1

𝑛

𝑛

∑

𝑖=1

(𝐸
𝑖
− (𝑐) ∫𝑓

𝑖
𝑑𝑔
𝜆
)

2

, (20)

where (𝑐) ∫ 𝑓
𝑖
𝑑𝑔
𝜆
is defined by Definition 14. Use the objec-

tive function as the evaluation function of a single chromo-
some.

The genetic algorithm procedure is summarized as fol-
lows.

Step 1. Initialize pop size chromosomes randomly.

Step 2. Update the chromosomes by crossover and mutation
operations.

Step 3. Calculate the evaluation function for all chromo-
somes.

Step 4. Select the chromosomes by spinning the roulette
wheel.

Step 5. Repeat the Step 2 to Step 3 for a given number of
cycles.

Step 6. Report the best chromosome as the optimal solution.

5.2. Examples and Results

Example 17. A railway administration chooses 15 passengers
randomly to evaluate the passenger train plan in the adminis-
tration (Table 5). Customer bases its overall scores on transfer
times, in-train congestion, travel time, and ticket price, and
also they have a score for each of four aspects. Let 𝑋 =

{𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, } be the attributes of transfer times, congestion,

travel time, and ticket price, respectively. We want to know
which attribute is the most important for passengers. Here,
𝑃
𝑐
= 0.85, 𝑃

𝑚
= 0.3, and the population size is 20.

We can obtain that the transfer times are the most impor-
tant for passengers from Table 6 and the convergence rate of
Example 17 as shown in Figure 1.

6. Using Genetic Algorithm to Determine
Fuzzy Measures from Interval-Valued Data

The intervals are derived from many practical application
problems, when instead of knowing the precise values 𝑥 of
some quantity 𝑋 we know only the intervals [𝑥, 𝑥], in which
𝑋, ranges. Since the comparison of two values or quantities is
the basic and most frequently used step in optimization,
interval-valued function plays an important role in interval
computation development.

6.1. The Choquet Integrals of Interval-Valued Function Based
on 𝜎−𝜆 Rules. With the definitions of the preceding subsec-
tions and from Wu et al. [35], we assume that 𝑅+ = [0, +∞),
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Table 5: Data of Example 17 (the customer evaluation).

Customer Transfer times Congestion Travel time Ticket price Evaluation 𝐸
𝑖

1 0 0 0.3 1 0.2
2 0.3 0.8 0.5 0.6 0.5
3 0.7 0.9 1 0.7 0.8
4 0.1 0 0.4 0.3 0.15
5 0.5 0.4 0.5 0.6 0.5
6 1 0.3 0.8 0.8 0.7
7 0.3 1 0 1 0.5
8 0.9 0.6 0.5 0.7 0.7
9 0.6 0.8 0.2 0.4 0.5
10 0.4 1 0.5 0 0.4
11 0.8 0.4 1 0.3 0.6
12 1 0.8 0.7 0.5 0.75
13 0.2 0.6 1 0.7 0.5
14 0 0.3 0.2 0.9 0.2
15 0.4 0.2 0.8 0 0.3

Table 6: Results of Example 17.

Set 𝜆 𝑔
𝜆

Error Number of
generation

{𝑥
1
}

0.965
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0.0154 100{𝑥
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4
} 0.1529
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Figure 1: The convergence rate of Example 17.

𝐼(𝑅
+

) = {𝑟 : [𝑟
−

, 𝑟
+

] ⊂ 𝑅
+

} is the set of interval numbers, and
𝐹(𝑋) is the set of all interval numbers 𝑓.

Interval numbers satisfy the following basic operations:

(1) 𝑟 ∗ 𝑝 = [𝑟
−

∗ 𝑝
−

, 𝑟
+

∗ 𝑝
+

](∗ + ∨∧);

(2) 𝑘 ⋅ 𝑟 = [𝑘𝑟
−

, 𝑘𝑟
+

], (𝑘 ∈ R+);

(3) 𝑟 ≤ 𝑝 ⇔ 𝑟
−

≤ 𝑝
−

, 𝑟
+

≤ 𝑝
+;

(4) 𝑑(𝑟, 𝑝) = max{|𝑟− − 𝑝
−

|, |𝑟
+

− 𝑝
+

|};
(5) if 𝑑(𝑟

𝑛
, 𝑟) → 0, then 𝑟

𝑛
→ 𝑟.

Definition 18 (see [34]). An interval-valued function 𝑓 :

𝑋 → 𝐼(𝑅
+

) is measurable if both 𝑓
−

(𝑥) and 𝑓
+

(𝑥) are
measurable function of 𝑥, where 𝑓(𝑥) = [𝑓

−

(𝑥), 𝑓
+

(𝑥)],
𝑓
−

(𝑥) is the left end point of interval 𝑓(𝑥), and 𝑓
+

(𝑥) is the
right end point of interval 𝑓(𝑥).

Definition 19. Let (𝑋,A, 𝑔
𝜆
) be a nonadditive measure space

based on 𝜎-𝜆 rules 𝑓 : 𝑋 → 𝐼(𝑅
+

) a measurable function in
𝑋 and 𝐸 ∈ A. Then the Choquet integral of 𝑓 with respect to
𝑔
𝜆
is defined by

(𝑐) ∫

𝐸

𝑓𝑑𝑔
𝜆
=: {(𝑐) ∫

𝐸

𝑓𝑑𝑔
𝜆
| 𝑔 ∈ 𝑆

𝑓(𝑥)
} (21)

if (𝑐) ∫
𝐸

𝑓𝑑𝑔
𝜆
is a closed interval on 𝐼(𝑅

+

), where 𝑆
𝑓(𝑥)

= {𝑔 |

𝑔 : 𝑋 → 𝑅
+

} is a measurable selection on 𝑓(𝑥).

Theorem 20. Let 𝑓 : 𝑋 → 𝐼(𝑅
+

) be a measurable interval-
valued function on 𝑋, and let 𝑔

𝜆
be a Sugeno measure based

on 𝜎-𝜆 rules onA. The Choquet integral of𝑓with respect to 𝑔
𝜆

is

(𝑐) ∫𝑓𝑑𝑔
𝜆
= [(𝑐) ∫𝑓

−

𝑑𝑔
𝜆
, (𝑐) ∫𝑓

+

𝑑𝑔
𝜆
] , (22)

where 𝑓−(𝑥) is the left end point of interval 𝑓(𝑥) and 𝑓+(𝑥) is
the right end point of interval 𝑓(𝑥), for every 𝑥 ∈ 𝑋.

Proof. We can prove the above theorem by Theorem 10 and
[34].

Using the continuity and the monotonicity of the Cho-
quet integral with the nonnegativity and the monotonicity of
the fuzzy measures, we may obtain the following theorem.

Theorem 21. Let 𝑓 : 𝑋 → 𝐼(𝑅
+

) be a measurable interval-
valued function on 𝑋, let 𝑔

𝜆
be a sugeno measure based on
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𝜎-𝜆 rules on A, and 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}. Then, the value of

Choquet integral of 𝑓 with respect to 𝑔
𝜆
is obtained by

(𝑐) ∫𝑓𝑑𝑔
𝜆

= [

𝑛

∑

𝑖=1

[𝑓
−

(𝑥


𝑖
) − 𝑓
−

(𝑥


𝑖−1
)]

⋅ 𝑔
𝜆
({𝑥


𝑖
, 𝑥


𝑖+1
, . . . , 𝑥



𝑛
}) ,

𝑛

∑

𝑖=1

[𝑓
+

(𝑥


𝑖
) − 𝑓
+

(𝑥


𝑖−1
)]

⋅ 𝑔
𝜆
({𝑥


𝑖
, 𝑥


𝑖+1
, . . . , 𝑥



𝑛
}) ] ,

(23)

where𝑓−(𝑥
0
) = 0,𝑓+(𝑥

0
) = 0, the values of𝑓− and𝑓+, that is,

𝑓
−

(𝑥
1
), 𝑓
−

(𝑥
2
), . . . , 𝑓

−

(𝑥
𝑛
), and 𝑓

+

(𝑥
1
), 𝑓
+

(𝑥
2
), . . . , 𝑓

+

(𝑥
𝑛
)

should be sorted in a nondecreasing order, so that 𝑓−(𝑥
1
) ≤

𝑓
−

(𝑥


2
) ≤ ⋅ ⋅ ⋅ ≤ 𝑓

−

(𝑥


𝑛
) and𝑓+(𝑥

1
) ≤ 𝑓
+

(𝑥


2
) ≤ ⋅ ⋅ ⋅ ≤ 𝑓

+

(𝑥


𝑛
),

respectively, and {𝑥


1
, 𝑥


2
, . . . , 𝑥



𝑛
} and {𝑥



1
, 𝑥


2
, . . . , 𝑥



𝑛
} are a

certain permutation of {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, respectively.

6.2. Using Genetic Algorithm to Determine Fuzzy Measures
from Interval-Valued Data. In this subsection, we use genetic
algorithm to determine fuzzy measures from interval-valued
data.

6.2.1. Genetic Algorithm (GA). In this subsection, the all
algorithms are the same to the Section 5.1 but the evaluation
function. Here, the valuation function is defined by

Eval (𝑉) = (

1

𝑚

𝑚

∑

𝑖=1

min{((𝑐) ∫𝑓
−

𝑖
𝑑𝑔
𝜆
− 𝐸
−

𝑖
)

2

,

((𝑐) ∫𝑓
+

𝑖
𝑑𝑔
𝜆
− 𝐸
+

𝑖
)

2

})

1/2

,

(24)

where (𝑐) ∫ 𝑓
−

𝑖
𝑑𝑔
𝜆

and (𝑐) ∫ 𝑓
+

𝑖
𝑑𝑔
𝜆

are defined by
Definition 14 andTheorem 20.

6.2.2. Examples and Results

Example 22. If the evaluation information in Example 17 is
represented by the interval-valued fuzzy numbers as shown in
Table 7, then we redetermine fuzzy measures from interval-
valued data by using genetic optimization.

We can obtain that the transfer times are the most
important for passengers from Table 8 and the convergence
rate of Example 22 as shown in Figure 2.

7. Using Genetic Algorithm to Determine
Fuzzy Measures from Fuzzy-Valued Data

In many respects, fuzzy numbers depict the physical world
more realistically than single-valued numbers. suppose, for
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Figure 2: The convergence rate of Example 22.

example, service quality is an intangible asset of enterprises
that is related to customers judgments about the overall
quality of a firm. Fuzzy numbers are used in statistics,
computer programming, engineering (especially communi-
cations), and experimental science. The concept takes into
account the fact that all phenomena in the physical universe
have a degree of inherent uncertainty.

Definition 23 (see [33, 36, 37]). Let (𝑋,
̃F) be a fuzzy

measurable space, and let F∗(R) be the class of all fuzzy
subsets of R. A fuzzy-valued function ̃

𝑓 : 𝑋 → F∗(R) is
called a measurable function if for every 𝜆 ∈ (0, 1], its 𝛼-cut
𝑓
𝛼
(𝑥) is measurable, where

𝑓
𝛼
(𝑥) = (

̃
𝑓 (𝑥))

𝛼

= {𝑟 |
̃
𝑓 (𝑥) (𝑟) ≥ 𝛼} . (25)

Remark 24. A measurable fuzzy-valued function is a espe-
cially measurable fuzzy set-value function.

Let ̃
𝑓 : 𝑋 →

̃F, ∀𝜆 ∈ (0, 1], and (
̃
𝑓(𝑥))
𝛼

=

[(
̃
𝑓(𝑥))
−

𝛼
, (
̃
𝑓(𝑥))
+

𝛼
]. We will simply denote that

𝑓
−

𝛼
(𝑥) = (

̃
𝑓 (𝑥))

−

𝛼

, 𝑓
+

𝛼
(𝑥) = (

̃
𝑓 (𝑥))

+

𝛼

. (26)

Obviously, 𝑓−
𝛼
(𝑥) and 𝑓

+

𝛼
(𝑥) are real functions.

From now on, we suppose that all functions defined on
𝑋 appearing as an integrand of the Choquet integral in this
paper are measurable.

According toTheorem 10,𝑔
𝜆
is a signed fuzzymeasure on

A. Therefore, we may give the following definition referring
to [34].

Fuzzy-valued function ̃
𝑓 : 𝑋 →

̃F is said to be a
𝐶-integrally bounded, if there exists a Choquet integrable
function ℎ : 𝑋 → 𝑅

+ such that |�̇�| ≤ ℎ(𝑡) for �̇� ∈ [
̃
𝑓(𝑡)]
0
.

Definition 25. Let ̃
𝑓 : 𝑋 →

̃F be a measurable fuzzy-valued
function on 𝑋, and let 𝑔

𝜆
be a Sugeno measure based on 𝜎-

𝜆 rules. Assume that ̃
𝑓 is 𝐶-integrally bounded. ̃

𝑓 is called
Choquet integrable with respect to 𝑔

𝜆
if

{[(𝑐) ∫
̃
𝑓d𝜇]
𝜆

=: {(𝑐) ∫ 𝑔d𝜇 | 𝑔 ∈ 𝑆
𝑓
𝜆

} , 0 ≤ 𝜆 ≤ 1} (27)
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Table 7: Data of Example 22 (the customer evaluation).

Customer Transfer times Congestion Travel time Ticket price Evaluation 𝐸
𝑖

1 [0.00, 0.00] [0.00, 0.00] [0.25, 0.35] [1.00, 1.00] [0.15, 0.25]

2 [0.25, 0.35] [0.15, 0.25] [0.45, 0.55] [0.55, 0.65] [0.45, 0.55]

3 [0.65, 0.75] [0.85, 0.95] [1.00, 1.00] [0.65, 0.75] [0.75, 0.85]

4 [0.05, 0.15] [0.00, 0.00] [0.35, 0.45] [0.25, 0.35] [0.10, 0.20]

5 [0.45, 0.55] [0.35, 0.45] [0.45, 0.55] [0.55, 0.65] [0.45, 0.55]

6 [1.00, 1.00] [0.25, 0.35] [0.75, 0.85] [0.75, 0.85] [0.65, 0.75]

7 [0.25, 0.35] [1.00, 1.00] [0.00, 0.00] [1.00, 1.00] [0.45, 0.55]

8 [0.85, 0.95] [0.55, 0.65] [0.45, 0.55] [0.65, 0.75] [0.65, 0.75]

9 [0.55, 0.65] [0.75, 0.85] [0.15, 0.25] [0.35, 0.45] [0.45, 0.55]

10 [0.35, 0.45] [1.00, 1.00] [0.45, 0.55] [0.00, 0.00] [0.35, 0.45]

11 [0.75, 0.85] [0.35, 0.45] [1.00, 1.00] [0.25, 0.35] [0.55, 0.65]

12 [1.00, 1.00] [0.75, 0.85] [0.65, 0.75] [0.45, 0.55] [0.70, 0.80]

13 [0.15, 0.25] [0.55, 0.65] [1.00, 1.00] [0.65, 0.75] [0.45, 0.55]

14 [0.00, 0.00] [0.25, 0.35] [0.15, 0.25] [0.85, 0.95] [0.15, 0.25]

15 [0.35, 0.45] [0.15, 0.25] [0.75, 0.85] [0.00, 0.00] [0.25, 0.35]

Table 8: Results of Example 22.

Set 𝜆 𝑔
𝜆

Error Number of
generation

{𝑥
1
}

0.937

0.3186

0.010 100{𝑥
2
} 0.1819

{𝑥
3
} 0.1407

{𝑥
4
} 0.1344

confirms a unique fuzzy number 𝑎 ∈
̃F, which is denoted

by (𝑐) ∫
̃
𝑓d𝜇 = 𝑎, where 𝑆

𝑓
𝜆

= {𝑔 : 𝑋 → 𝑅, 𝑔 ∈ 𝑓
𝜆
is a

measurable selection of 𝑓
𝜆
}.

The exact membership function of the Choquet integral
with respect to Sugeno fuzzy measure 𝑔

𝜆
for fuzzy-valued

integrand is rather difficult to be found. In a simpler but
common case where 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} is finite, according

to Definition 25, the calculation of the Choquet integral with
a fuzzy-valued function comes down to that of the Choquet
integral with an interval-valued function. Here, let us look at
examples to show how to calculate the fuzzy-valued Choquet
integral with respect to a Sugeno measure 𝑔

𝜆
.

Example 26. Let ̃
𝑓(𝑥
1
) = [0, 1, 1], ̃𝑓(𝑥

2
) = [0.5, 0.5, 1.5], and

̃
𝑓(𝑥
3
) = [0, 1, 2]. Here, a triangular fuzzy number is denoted

by [𝑎
𝑙
, 𝑎
0
, 𝑎
𝑟
], where 𝑎

𝑙
, 𝑎
0
, 𝑎
𝑟
∈ R and 𝑎

𝑙
≤ 𝑎
0
≤ 𝑎
𝑟
. Set

function 𝑔
𝜆
is a sugenomeasure based on 𝜎-𝜆 rules. Function

̃
𝑓 is triangular fuzzy valued. The membership function of
̃
𝑓(𝑥
1
),
̃
𝑓(𝑥
2
), and ̃

𝑓(𝑥
3
) are

𝑚
1
(𝑡) = 𝑚 ̃

𝑓(𝑥
1
)
(𝑡) = {

𝑡, 𝑡 ∈ [0, 1] ,

0, 𝑡 ∉ [0, 1] ,

(28)

𝑚
2
(𝑡) = 𝑚 ̃

𝑓(𝑥
2
)
(𝑡) = {

1.5 − 𝑡, 𝑡 ∈ [0.5, 1.5] ,

0, 𝑡 ∉ [0.5, 1.5] ,

(29)

𝑚
3
(𝑡) = 𝑚 ̃

𝑓(𝑥
3
)
(𝑡) =

{
{

{
{

{

𝑡, 𝑡 ∈ [0, 1] ,

2 − 𝑡, 𝑡 ∈ (1, 2] ,

0, 𝑡 ∉ [0, 2] ,

(30)

respectively. They are shown in Figure 1. The 𝛼-cut of ̃
𝑓 is

represented by interval

̃
𝑓
𝛼
(𝑥
1
) = 𝑀

̃
𝑓(𝑥
1
)

𝛼
= {𝑡 | 𝑚 ̃

𝑓(𝑥
1
)
(𝑡) ≥ 𝛼} = [𝛼, 1] ;

̃
𝑓
𝛼
(𝑥
2
) = 𝑀

̃
𝑓(𝑥
2
)

𝛼
= {𝑡 | 𝑚 ̃

𝑓(𝑥
2
)
(𝑡) ≥ 𝛼}

= [0.5, 1.5 − 𝛼] ;

̃
𝑓
𝛼
(𝑥
3
) = 𝑀

̃
𝑓(𝑥
3
)

𝛼
= {𝑡 | 𝑚 ̃

𝑓(𝑥
3
)
(𝑡) ≥ 𝛼}

= [𝛼, 2 − 𝛼] , where 𝛼 ∈ [0, 1] .

(31)

It is easy to get [ ̃𝑓
𝛼
(𝑥
1
)]
𝑙
= 𝛼, [

̃
𝑓
𝛼
(𝑥
2
)]
𝑙
= 0.5, [

̃
𝑓
𝛼
(𝑥
3
)]
𝑙
=

𝛼, [
̃
𝑓
𝛼
(𝑥
1
)]
𝑟
= 1, [

̃
𝑓
𝛼
(𝑥
2
)]
𝑟
= 1.5 − 𝛼, and [

̃
𝑓
𝛼
(𝑥
3
)]
𝑟
= 2 − 𝛼.

We conclude that
(1) When 0 ≤ 𝛼 ≤ 0.5, we get [ ̃𝑓

𝛼
(𝑥
1
)]
𝑙
=

̃
𝑓
𝛼
(𝑥
3
)]
𝑙
≤

[
̃
𝑓
𝛼
(𝑥
2
)]
𝑙
. Using Definition 14, we can let 𝑥

1
= 𝑥
1
, 𝑥


2
=

𝑥
3
, 𝑥


3
= 𝑥
2
, and then

[(𝑐) ∫
̃
𝑓
𝛼
𝑑𝑔
𝜆
]

𝑙

= {[𝑓 (𝑥


1
)]
𝑙

− [𝑓 (𝑥


0
)]
𝑙

}

⋅ 𝑔
𝜆
(𝑥


1
, 𝑥


2
, 𝑥


3
) + {[𝑓 (𝑥



2
)]
𝑙

− [𝑓 (𝑥


1
)]
𝑙

} ,

𝑔
𝜆
(𝑥


2
, 𝑥


3
) + {[𝑓 (𝑥



3
)]
𝑙

− [𝑓 (𝑥


2
)]
𝑙

} ⋅ 𝑔
𝜆
(𝑥


3
)

= [𝛼 − 0] ⋅ 1 + [𝛼 − 𝛼] ⋅ 0.5931 + [0.5 − 𝛼] ⋅ 0.3

= 0.7𝛼 + 0.15,

(32)

where [𝑓(𝑥
0
)]
𝑙
= 0, [𝑓(𝑥



0
)]
𝑟
= 0.
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Table 9: Data of Example 27 (The customer evaluation).

Customer Transfer times Congestion Travel time Ticket price Evaluation 𝐸
𝑖

1 [−0.1, 0.00, 0.10] [−0.1, 0.00, 0.10] [0.20, 0.30, 0.40] [0.90, 1.00, 1.10] [0.10, 0.20, 0.30]

2 [0.20, 0.30, 0.40] [0.70, 0.80, 0.90] [0.40, 0.50, 0.60] [0.50, 0.60, 0.70] [0.40, 0.50, 0.60]

3 [0.60, 0.70, 0.80] [0.80, 0.90, 1.00] [0.90, 1.00, 1.10] [0.60, 0.70, 0.80] [0.70, 0.80, 0.90]

4 [0.00, 0.10, 0.20] [−0.1, 0.00, 0.10] [0.30, 0.40, 0.50] [0.20, 0.30, 0.40] [0.05, 0.15, 0.25]

5 [0.40, 0.50, 0.60] [0.30, 0.40, 0.50] [0.40, 0.50, 0.60] [0.50, 0.60, 0.70] [0.40, 0.50, 0.60]

Table 10: The triangular fuzzy number changed into the interval number.

Customer Transfer times Congestion Travel time
1 [0.1𝛼 − 0.1, −0.1𝛼 + 0.1] [0.1𝛼 − 0.1, −0.1𝛼 + 0.1] [0.1𝛼 + 0.2, −0.1𝛼 + 0.4]

2 [0.1𝛼 + 0.2, −0.1𝛼 + 0.4] [0.1𝛼 + 0.7, −0.1𝛼 + 0.9] [0.1𝛼 + 0.4, −0.1𝛼 + 0.6]

3 [0.1𝛼 + 0.6, −0.1𝛼 + 0.8] [0.1𝛼 + 0.8, −0.1𝛼 + 1.0] [0.1𝛼 + 0.9, −0.1𝛼 + 1.1]

4 [0.1𝛼, −0.1𝛼 + 0.2] [0.1𝛼 − 0.1, −0.1𝛼 + 0.1] [0.1𝛼 + 0.3, −0.1𝛼 + 0.5]

5 [0.1𝛼 + 0.4, −0.1𝛼 + 0.6] [0.1𝛼 + 0.3, −0.1𝛼 + 0.5] [0.1𝛼 + 0.4, −0.1𝛼 + 0.6]

Customer Ticket price Evaluation 𝐸
𝑖

1 [0.1𝛼 + 0.9, −0.1𝛼 + 1.1] [0.1𝛼 + 0.1, −0.1𝛼 + 0.3]

2 [0.1𝛼 + 0.5, −0.1𝛼 + 0.7] [0.1𝛼 + 0.4, −0.1𝛼 + 0.6]

3 [0.1𝛼 + 0.6, −0.1𝛼 + 0.8] [0.1𝛼 + 0.7, −0.1𝛼 + 0.9]

4 [0.1𝛼 + 0.2, −0.1𝛼 + 0.4] [0.1𝛼 + 0.05, −0.1𝛼 + 0.25]

5 [0.1𝛼 + 0.5, −0.1𝛼 + 0.7] [0.1𝛼 + 0.4, −0.1𝛼 + 0.6]

Table 11: Results of Example 27.

Set 𝜆 𝑔
𝜆

Error Number of
generation

{𝑥
1
}

0.05

0.4292

0.0049 100{𝑥
2
} 0.2428

{𝑥
3
} 0.1586

{𝑥
4
} 0.1524

When 0 ≤ 𝛼 ≤ 0.5, we get [ ̃𝑓
𝛼
(𝑥
1
)]
𝑟
≤ [

̃
𝑓
𝛼
(𝑥
2
)]
𝑟
≤

[
̃
𝑓
𝛼
(𝑥
3
)]
𝑟
. Using Definition 14 we can let 𝑥

1
= 𝑥
1
, 𝑥


2
=

𝑥
2
, and 𝑥



3
= 𝑥
3
, and then

[(𝑐) ∫
̃
𝑓
𝛼
𝑑𝑔
𝜆
]

𝑟

= {[𝑓 (𝑥


1
)]
𝑟

− [𝑓 (𝑥


0
)]
𝑟

}

⋅ 𝑔
𝜆
(𝑥


1
, 𝑥


2
, 𝑥


3
)

+ {[𝑓 (𝑥


2
)]
𝑟

− [𝑓 (𝑥


1
)]
𝑟

} ,

𝑔
𝜆
(𝑥


2
, 𝑥


3
) + {[𝑓 (𝑥



3
)]
𝑟

− [𝑓 (𝑥


2
)]
𝑟

} ⋅ 𝑔
𝜆
(𝑥


3
)

= [1 − 0] ⋅ 1 + [1.5 − 𝛼 − 1]

⋅ 0.593 + [2 − 𝛼 − 1.5 + 𝛼] ⋅ 0.3

= 1.4465 − 0.593𝛼.

(33)

That is, (𝑐) ∫ ̃
𝑓
𝛼
𝑑𝑔
𝜆
= [0.7𝛼 + 0.15, 1.45 − 0.592].

(2) When 0.5 < 𝛼 ≤ 1, we get [ ̃𝑓
𝛼
(𝑥
2
)]
𝑙
< [

̃
𝑓
𝛼
(𝑥
3
)]
𝑙
=

[
̃
𝑓
𝛼
(𝑥
1
)]
𝑙
. Using Definition 14, we can let 𝑥

1
= 𝑥
2
, 𝑥


2
=

𝑥
1
, and 𝑥



3
= 𝑥
3
, and then

[(𝑐) ∫
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𝑓
𝛼
𝑑𝑔
𝜆
]

𝑙

= {[𝑓 (𝑥


1
)]
𝑙

− [𝑓 (𝑥


0
)]
𝑙

}

⋅ 𝑔
𝜆
(𝑥


1
, 𝑥


2
, 𝑥


3
)
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2
)]
𝑙

− [𝑓 (𝑥


1
)]
𝑙

} ,

𝑔
𝜆
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2
, 𝑥


3
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3
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𝑙

− [𝑓 (𝑥


2
)]
𝑙

} ⋅ 𝑔
𝜆
(𝑥


3
)

= 0.5 ⋅ 1 + [𝛼 − 𝛼] ⋅ 0.3 + [𝛼 − 0.5] ⋅ 0.493

= 0.493𝛼 + 0.2535,

(34)

where [𝑓(𝑥
0
)]
𝑙
= 0, [𝑓(𝑥



0
)]
𝑟
= 0.

When 0.5 < 𝛼 ≤ 1, we get [ ̃𝑓
𝛼
(𝑥
2
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𝑟
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𝑓
𝛼
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1
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𝑟
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[
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𝛼
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𝑟
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2
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𝑥
1
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3
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Figure 3: The convergence rate of Example 27.

𝑔
𝜆
(𝑥


2
, 𝑥


3
) + {[𝑓 (𝑥



3
)]
𝑟

− [𝑓 (𝑥


2
)]
𝑟

} ⋅ 𝑔
𝜆
(𝑥


3
)

= [1.5 − 𝛼] ⋅ 1 + [1 − (1.5 − 𝛼)]

⋅ 0.4931 + [(2 − 𝛼) − 1] ⋅ 0.3

= 1.55 − 0.8𝛼.

(35)

That is, (𝑐) ∫ ̃
𝑓
𝛼
𝑑𝑔
𝜆
= [0.493𝛼 + 0.2535, 1.55 − 0.8𝛼].

Example 27. If the evaluation information in Example 17 is
represented by the triangular fuzzy number as shown in
Table 9, then we redetermine fuzzy measures from fuzzy-
valued data by using genetic algorithm.

Fist, we use themethod as shown in Example 26 to change
the triangular fuzzy number of Table 9 into interval number
as shown in Table 10; that is, the optimization of triangular
fuzzy number comes down to that of the interval number.

We can obtain that the transfer times are the most
important for passengers from Table 11 and the convergence
rate of Example 27 as shown in Figure 3, which represents
the convergence rate of Example 27, where the solid line
represents the convergence rate of the target value about
the best optimal solution, and dotted line represents the
convergence rate of average value of the target value about
all the solutions.

8. Conclusions and Remarks

In this paper, we have considered the genetic algorithm opti-
mization for determining fuzzy measures from fuzzy data.
We have gotten joint measures by use of single measure with
the aid of 𝜎-𝜆 rules. Then we have formulated our problems
to be solved; that is, how to determine the fuzzy measures
from fixed data. Furthermore, we have introduced the Cho-
quet integral of interval-valued functions and then given

the genetic algorithm optimization to determine fuzzy mea-
sures from interval-valued data. Finally we have discussed the
Choquet integral of fuzzy number-valued functions. Conse-
quently, we have given the genetic algorithm optimization to
determine fuzzy measures from fuzzy number-valued data.
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[15] G. Büyüközkan and D. Ruan, “Choquet integral based aggre-
gation approach to software development risk assessment,”
Information Sciences, vol. 180, no. 3, pp. 441–451, 2010.

[16] S.-B. Cho and J. H. Kim, “Combining multiple neural networks
by fuzzy integral for robust classification,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 25, no. 2, pp. 380–384, 1995.

[17] H. Tahani and J. M. Keller, “Information fusion in computer
vision using the fuzzy integral,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 20, no. 3, pp. 733–741, 1990.

[18] L. J. Wang, “An improved multiple fuzzy NNC system based on
mutual information and fuzzy integral,” International Journal of
Machine Learning and Cybernetics, vol. 2, no. 1, pp. 25–36, 2011.

[19] K.-S. Leung, M.-L. Wong, W. Lam, Z. Wang, and K. Xu,
“Learning nonlinear multiregression networks based on evolu-
tionary computation,” IEEE Transactions on Systems, Man, and
Cybernetics B, vol. 32, no. 5, pp. 630–644, 2002.

[20] Q. Hu,W. Pan, S. An, P. Ma, and J. Wei, “An efficient gene selec-
tion technique for cancer recognition based on neighborhood
mutual information,” International Journal of Machine Learning
and Cybernetics, vol. 1, no. 1–4, pp. 63–74, 2010.

[21] D. L. Tong and R. Mintram, “Genetic Algorithm-Neural Net-
work (GANN): a study of neural network activation functions
and depth of genetic algorithm search applied to feature
selection,” International Journal ofMachine Learning and Cyber-
netics, vol. 1, no. 1–4, pp. 75–87, 2010.

[22] G. Choquet, “Theory of capacities,”Annales de l’Institut Fourier,
vol. 5, pp. 131–295, 1954.

[23] D. Denneberg, Non-Additive Measure and Integral, vol. 27,
Kluwer Academic, Boston, Mass, USA, 1994.

[24] T. Murofushi, M. Sugeno, and M. Machida, “Non-monotonic
fuzzy measures and the Choquet integral,” Fuzzy Sets and
Systems, vol. 64, no. 1, pp. 73–86, 1994.

[25] Z. Wang, K.-S. Leung, M.-L. Wong, and J. Fang, “A new type
of nonlinear integrals and the computational algorithm,” Fuzzy
Sets and Systems, vol. 112, no. 2, pp. 223–231, 2000.

[26] K. Xu, Z. Wang, P.-A. Heng, and K.-S. Leung, “Classification
by nonlinear integral projections,” IEEE Transactions on Fuzzy
Systems, vol. 11, no. 2, pp. 187–201, 2003.

[27] M. Grabisch, “New algorithm for identifying fuzzy measures
and its application to pattern recognition,” in Proceedings of the
IEEE International Conference on Fuzzy Systems (IFES ’95), pp.
145–150, Yokohama, Japan, March 1995.

[28] X.-Z. Wang, Y.-L. He, L.-C. Dong, and H.-Y. Zhao, “Particle
swarm optimization for determining fuzzy measures from
data,” Information Sciences, vol. 181, no. 19, pp. 4230–4252, 2011.

[29] Z. Wang, G. J. Klir, and W. Wang, “Monotone set functions
defined by Choquet integral,” Fuzzy Sets and Systems, vol. 81,
no. 2, pp. 241–250, 1996.

[30] K. Xu, Z. Wang, M.-L. Wong, and K.-S. Leung, “Discover
dependency pattern among attributes by using a new type of
nonlinear multiregression,” International Journal of Intelligent
Systems, vol. 16, no. 8, pp. 949–962, 2001.

[31] M. H. Ha, Y. Li, J. Li, and D. Z. Tian, “Key theorem of learning
theory and uniform convergence velocity boundary in Sugeno
measure space,”China Science E, vol. 36, no. 4, pp. 398–410, 2006
(Chinese).

[32] Z. Y. Wang and G. J. Klir, Fuzzy Measure Theory, Plenum Press,
New York, NY, USA, 1992.

[33] S. Weber, “Two integrals and some modified versions—critical
remarks,” Fuzzy Sets and Systems, vol. 20, no. 1, pp. 97–105, 1986.

[34] R. Yang, Z.Wang, P.-A. Heng, andK.-S. Leung, “Fuzzy numbers
and fuzzification of the Choquet integral,” Fuzzy Sets and
Systems, vol. 153, no. 1, pp. 95–113, 2005.

[35] C. Wu, D. Zhang, C. Guo, and C. Wu, “Fuzzy number fuzzy
measures and fuzzy integrals (1),” Fuzzy Sets and Systems, vol.
98, no. 3, pp. 355–360, 1998.

[36] M. H. Ha and C. X.Wu,TheTheory of FuzzyMeasure and Fuzzy
Integral, Science Press, Beijing, China, 1998, Chinese.

[37] C. Wu and Z. Gong, “On Henstock integrals of interval-valued
functions and fuzzy-valued functions,” Fuzzy Sets and Systems,
vol. 115, no. 3, pp. 377–391, 2000.


