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Location estimation for object tracking is one of the important topics in the research of wireless sensor networks (WSNs). Recently,
many location estimation or position schemes in WSN have been proposed. In this paper, we will propose the procedure and
modeling of location estimation for object tracking inWSN.Thedesignedmodeling is a simple schemewithout complex processing.
We will use Matlab to conduct the simulation and numerical analyses to find the optimal modeling variables. The analyses with
different variables will include object moving model, sensing radius, model weighting value 𝛼, and power-level increasing ratio k
of neighboring sensor nodes. For practical consideration, we will also carry out the shadowing model for analysis.

1. Introduction

Recently, with the characteristics of low cost and low power
consumption, wireless sensor net-work (WSN) communica-
tion has attracted lots of attentions on different applications
and services, such as monitoring and object tracking. Loca-
tion estimation for object tracking is one of the important
topics in the research of wireless sensor networks (WSNs)
[1, 2]. The wireless sensors not only are able to induce
and detect the environmental target and the change of
environment but also deal with collected data and send the
disposed information to the sink or base station via wireless
communication.

For WSN applications, tracking moving objects is one
of the important issues. Tracking moving objects is more
difficult than sensing objects in fixed area because the objects
maymove from time to time, and sufficient computing power
and storage space are required for disposing information
of objects and sending the information to users. In the
application of wireless sensor networks, users hope to use
sensors to collect needed information, such as temperature,
gas concentration, position of wildlife, and so forth. For users,
the position of object is an important piece of information.
For example, in an intelligent building, when sensors detect

a fire event, the firemen wish to know the fire site andmoving
direction through the sensor nodes so that the action can
be carried out promptly. Therefore, to acquire the accurate
position of the object is one of issues concerning object
tracking.

Another important research issue is information process-
ing. Since the object may move everywhere at any moment,
the information of object should be updated and sent to
the sink timely so that we can maintain the object location
accurately. If the monitoring area is very large, the sensing
coverage and data aggregation technology needs to be taken
into consideration to save energy in terms of sensing and
transmission. Therefore, in the paper we will propose the
procedure and modeling of location estimation for object
tracking with energy issues in mind while maintaining the
relatively low estimation error.

The rest of this paper is organized as follows. Section 2
describes the research related to the positioning and location
estimation for object tracking. The detailed design and
modeling of the proposed scheme is illustrated in Section 3.
Section 4 provides the analyses and evaluations as well as
discussions based on the simulation and numerical results.
We summarize this paper and address future work in
Section 5.
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2. Related Works

Location estimation of object tracking is to define the object
movement path and position [3–7]. In recent years, global
positioning system (GPS) [8], implemented in real system, is
one of themost popular positioning systems for outdoor envi-
ronment. The average error of GPS is within 3m. However,
the GPS positioning technology is not suitable for wireless
sensor networks due to size, cost, and power consumption
constraints.

The location estimation for radio communication can
be divided into 2 categories: range-based positioning [9–
11] and range-free positioning [12, 13]. The range-based
positioning technologies include angle of arrival (AOA) [9],
time of arrival (TOA) [9], time difference of arrival (TDOA)
[9], and received signal strength indicator (RSSI) [11]. The
range-based technology in general can obtain more accu-
rate location estimation by applying the distance and angle
information received from specific or expensive network
equipments; however, it might not be suitable for large-scale
deployment of WSNs.

The range-free positioning technology, on the other hand,
estimates the location without the assist from any expensive
network equipment. The centroid positioning mechanism
[13] employed the centroid of selected reference points to
estimate its own position. The general scheme for object
tracking is taking the object as the center of a circle and
estimating the signal radius with the consideration ofmoving
speed. Besides this general scheme, some other researches
[14, 15] have been studied. The research in [14] proposed
a method using a mobile agent to track the object moving
path and three fixed sensor nodes to calculate the object
position. These three sensor nodes broadcast a message to
their neighboring nodes for object detection. In order to
obtain more accurate object position, some researches [3, 4]
defined some sensor nodes within certain range from the
object to help tracking the object. Other sensor nodes beyond
this range maintain in dormant states. The research in [15]
proposed the dynamic adjustment of the signal coverage
based on the object behavior to reduce the tracking area in
wireless sensor networks. The research can track the object
with minimum number of sensor nodes so that the network
lifetime can be prolonged.

The deployment of WSNs usually consists of a great
number of sensors. Tomanage the sensor node resources and
collected data, some schemes need to be taken into account
to provide efficient data processing or message transfer,
especially in large-scale WSNs. In general, there are two
types of information processing inWSNs, named distributed
processing [12, 13, 16, 17] and centralized processing [14, 18–
21]. For the distributed processing, when the sensor nodes
sense and collect data, they will calculate or process the data
followed by sending the data to the sink. GPS system is one
typical position system using distributed processing [8]. GPS
estimates more accurate location; however, it takes a longer
time to first fix (TTFF) and incurs the additional cost of
setting up a GPS receiver for each sensor node. Some other
researches using related positions of the nodes [16] or area-
based position schemes [13] for distributed data processing

were also proposed. The research in [12] narrows down the
possible region, formed by selecting three anchors among
all sensing nodes, in which a particular node may reside.
The location of an object can be determined by the center of
gravity of the intersection of triangles. To reduce the number
of anchors, the research in [17] employed a few mobile
anchors equipped with the GPS capability to broadcast their
current positions periodically for location estimation.

On the other hand in centralized processing, upon
receiving the sensed data, the sensor nodes send it to the
sink via some routing protocols for data processing. The data
aggregation technology [18–21]might be employed before the
data reach the sink so as to reduce the amount of data transfer
and consequently provide the energy saving. The research in
[14] set a data volume threshold for the detected object data
inWSNs.When the data volume detected by an agent node is
smaller than the threshold, the agent node will send the data
to the sink directly. If the collected data volume is larger than
the threshold, the agent node will carry out the data fusion
for all collected data and then send them to the sink.

From the related researches discussed above, not all sen-
sor nodes can afford the GPS capability due to the limitations
of sensor nodes in size, cost, and power consumption. Also
due to the limited computational power of sensor nodes,
simpler positioning and data processing mechanisms will
be the major consideration in this paper. Therefore, this
paper aims at the scenario wherein static sensing nodes are
deployed in fixed location. The proposed modeling of loca-
tion estimation for object tracking developed using range-
free positioning technology based on centroid scheme [13]
as well as centralized data processing technology to reduce
the data processing and traffic loads is suitable for large-
scale WSNs. We will also use data aggregation idea to reduce
the data volume transfer between the sensing nodes and
sink. From the result of related researches above, the range-
free positioning technology combined with data aggregation
used in the proposed mechanism is suitable for practical
use in large-scale WSNs which are constrained in terms
of energy consumption, computation power, and device
cost. Furthermore, the proposed mechanism using dynamic
sensing procedure with different sensing radii and power-
level of the transmission signal will improve the positioning
accuracy as compared to other related schemes.

3. Proposed Location Estimation Scheme

3.1. Dynamic Sensing Procedure. In this paper, we will make
the following assumptions for our location estimationmodel.
First, we assume that the WSN nodes deployment is in a 2-
dimensional plane. Secondly, there is no interference between
any two sensor nodes. Thirdly, all sensor nodes in WSN have
the knowledge of their own IDs and corresponding GPS
positions as well as sink GPS value. Lastly, we assume that
every node knows its neighboring nodes’ ID. All the above
mentioned data can be set up or acquired during the initial
deployment of the WSN.The sink node maintains the record
of IDs and GPS positions of all sensor nodes. Within the
sensing range, R, each sensor node can detect the movement
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Figure 1: The dynamic power-level sensing topology.

of the object. In this research, we deploy a square network
nodes topology to provide fully coverage of sensing network.
The proposed location estimation for object tracking inWSN
includes three steps.

Step 1. Dynamic power-level sensing: once detecting the
appearance of one object, the sensor node informs the one-
hop neighboring node to increase the power level for sensing.

Step 2. Cluster head selection: designate a node from the
sensing nodes which is the closest node to the sink. The
selected node, named cluster head, will collect all data from
sensing nodes and then send the data to the sink.

Step 3. Modeling of the location estimation: upon receiving
the data from the cluster head, the sink calculates the object
location using the location estimation model.

The detailed modeling and mechanism of the proposed
location estimation for object tracking is described below.

While estimating the position of moving object in WSN,
the sensing node calculates the position according to models
such as [13]. In general, using more sensing nodes to detect
the object, the estimated location will be more accurate.
To increase the accuracy of location estimation for object
tracking, the first step in our proposed mechanism is to
dynamically adjust the sensing power-level of neighboring
nodes which is one hop away from the initial sensing node.
The one-hop neighboring nodes increase their power by
𝑘 time to extend their corresponding signal coverage. The
dynamic power-level sensing topology and scheme is illus-
trated in Figure 1, where sensor node 1 is the initial sensing
node to detect an object. Once detecting the appearance of
the object, the sensing node, node 1, issues a message, with
TTL setting as 1, to its one-hop neighboring nodes, nodes 2,
3, 4, and 5 as shown in Figure 1. Upon receiving the message
from the initial sensing node, the one-hop neighboring nodes
extend their corresponding signal coverage by increasing the
sensing power-level to 𝑘 time. The moving object location
can be calculated using location estimation model, described
later, from all sensible nodes corresponding to nodes 1, 2, and
3 as shown in Figure 1 for example.

The next step is to send sensed information back to
the sink node by each sensible node. In this research, we
designate a node from the sensible nodes being the closest
node to the sink as the cluster head. The cluster head will
collect all data from sensible nodes and then send the data to
the sink. This will reduce the unnecessary messages sending
fromother sensible nodes, except the cluster head, to the sink.

Once the cluster head is determined, all other sensible
nodes will send the sensing information to the cluster head.
After the data fusing, the cluster head sends the sensing object
information to the sink. Upon receiving the data from the
cluster head, the sink calculates the object location using
the location estimation model. The modeling of location
estimation for object tracking is described in more details in
Section 3.2.

3.2. Modeling of Location Estimation for Object Tracking.
Because the dynamic power-level sensing is applied to the
neighboring sensor nodes which would be different from
the initial sensor node, we define the initial sensor node
as major node, node 1 in Figure 1, and the other sensible
neighboring nodes as minor nodes, for example, nodes 2 and
3 in Figure 1. The algorithm with distance formula for our
location estimation is illustrated in Algorithm 1.

In our proposed algorithm, there are two types of sensing
data between sensor nodes to the cluster head. For those
nodes without changing the sensing range, they will send
an Mposition (cluster, ID) packet to the cluster head, where
cluster is the cluster head sensor ID, and ID is the sensor node
ID. If a sensor node, increasing its power by 𝑘 time, detects
the object, it will send an Nposition (cluster, ID) packet to the
cluster head. After receiving the information from all sensible
nodes, the cluster head processes and compresses the data and
then sends it to the sink. Upon receiving the data from the
cluster, the sink calculates the object location according to the
following equation:
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), (𝑀
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,𝑀
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), and (𝑁

𝑥
, 𝑁
𝑦
) are the coor-

dinate of object, major node, and minor node, respectively.
Also, the 𝑧 and 𝑗 are the numbers of the major nodes and
minor nodes, respectively. In (1), we add a weighting value
𝛼 to the estimated formula because sensing ranges for major
nodes and minor nodes are different. The 𝛼 value could be
related to the increase of the power level 𝑘 for minor nodes.
When we conduct the performance analysis, we compare the
numerical result for different 𝑘 and 𝛼 values. The algorithm
for our proposed location estimation model is shown in
Algorithm 2.

Since the practical wireless communications will suffer
from all kinds of interference and signal fading issue, the idea
model with circular sensing coverage may not be feasible.
Therefore, we further consider the shadowing model in our



4 Journal of Applied Mathematics

(1) // Given a graph 𝐺 = (𝑉, 𝐸)

(2) // 𝑉 presents the set of sensor nodes
(3) // 𝐸 presents the set of communication link between sensor node and its neighbors
(4) //𝑀Position (𝑀

𝑥
,𝑀
𝑦
) is the coordinator of the major node

(5) //𝑁Position (𝑁
𝑥
,𝑁
𝑦
) is the coordinator of the minor node

(6) // 𝑅 presents the sensing range of sensor node
(7) 𝑆 = {𝑠

𝑎
}, for 𝑎 = 1, 2, . . . , 𝑖, and 𝑆 ∈ 𝑉 // 𝑆 presents the set of sensor nodes detecting object 𝑂

(8) 𝑁 = {𝑛
𝑏
}, for 𝑏 = 1, 2, . . . , 𝑗, and𝑁 ∈ 𝑉 //𝑁 presents the set of node’s neighboring nodes with enlarged power,

which can detect object 𝑂

(9) 𝑑𝑖𝑠𝑡(𝑂, 𝑠
𝑎
) = √(𝑂

𝑥
− 𝑠
𝑎𝑥
)

2

+ (𝑂
𝑦
− 𝑠
𝑎𝑦
)

2

(10) if 𝑑𝑖𝑠𝑡(𝑂, 𝑠
𝑎
) < 𝑅 then // The proposed method will be triggered when a sensor node 𝑆

𝑎
detects an object 𝑂.

(11) 𝑑𝑖𝑠𝑡(𝑂, 𝑛
𝑏
) = √(𝑂

𝑥
− 𝑛
𝑏𝑥
)

2

+ (𝑂
𝑦
− 𝑛
𝑏𝑦
)

2

// In order to determine object’s location, the sensor node notifies
its one-hop neighboring nodes to increase their sensing range.

(12) end if

Algorithm 1: Algorithm with distance formula for the proposed location estimation.

(1) //When Object O into the Sensing Filed
(2) //The set of Sensor nodes 𝑆 = {𝑠

1
, 𝑠
2
. . . , 𝑠
𝑖
} detect Object 𝑂

(3) //The set of neighbor nodes𝑁 = {𝑛
1
, 𝑛
2
. . . , 𝑛
𝑗
} detect Object 𝑂

(4) for (𝑎 = 1; 𝑎 ≤ 𝑖; 𝑎++)
(5) if 𝑑𝑖𝑠𝑡(𝑂, 𝑠

𝑎
) < 𝑅

(6) 𝑠
𝑎
Send enlarge(ID) to one-hop neighbors;

(7) end if
(8) Broadcast notice(ID);
(9) Broadcast contend(ID, dist(sink, 𝑠

𝑎
));

(10) if dist(sink, 𝑆 + 𝑁 − 𝑠
𝑎
) < dist(sink, 𝑠

𝑎
) then

(11) 𝑠
𝑎
.State = give up;

(12) else
(13) 𝑠

𝑎
.State = cluster;

(14) end if
(15) if 𝑠

𝑎
.State = cluster then

(16) Send cluster(ID) to 𝑆 + 𝑁 − 𝑠
𝑎
;

(17) else if dist (𝑂,𝑠
𝑎
) < 𝑅

(18) SendMposition(Cluster, ID) to Cluster;
(19) else
(20) Send Nposition(Cluster, ID) to Cluster;
(21) end if
(22) if 𝑠

𝑎
.State = cluster then

(23) Send all information to sink;
(24) end if
(25) end for

Algorithm 2: Algorithm of the proposed location estimation model.

design and analysis. We model the shadowing issue with
random process. Basically, when the object is close to the
sensor node, the sensed probability would be higher than that
of the object being remote. The shadowing model applied in
our study is shown in the following:

[

𝑃
𝑟
(𝑑)

𝑃
𝑟
(𝑑
0
)

]

𝑑𝑏

= −10𝛽 log( 𝑑

𝑑
0

) + 𝑋
𝑑𝐵
, (2)

where𝑋
𝑑𝑏
is the random variable with Gaussian distribution,

𝛽 is the path loss exponent, 𝑑 is the distance between the
object and the sensing node, and 𝑑

0
is the sensing radius.

4. Numerical Analyses

The performance analysis is conducted by using Matlab soft-
ware and the experimental parameters; setup and mobility
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Figure 2: Tracking of moving object with line movement path 1
(black broken lines are the real movements, and red dots stand for
predicted object locations).

models are defined according to the survey in [22]. We
deployed 100 sensor nodes in a 100m × 100m environ-
ment. The sensor nodes are equally distributed with square
shape in the experimental region. The distance between two
neighboring nodes is 10 meters. Two object moving paths
are considered in the experiment. Path 1 is line movement
with 1m/s moving speed and path 2 corresponds to the
random movement with 1–5m/s moving speed. The initial
sensing radius 𝑅 is set as 8m, which will be varied for
different simulations.The experiment time for the simulation
is 180 sec.

The experiments include object moving model, sensing
radius, modeling weight value 𝛼 and power level increasing
ratio 𝑘 of neighboring sensor nodes. The detailed result for
each experiment is discussed in Section 4.1.

4.1. Different Object MovingModels. Figures 2 and 3 illustrate
the tracking of moving object with line movement path 1
and random movement path 2, respectively. The location
estimation from our model for both path 1 and path 2 are
quite close to the real objectmoving position.The estimations
error for path 1 movement is shown in Figure 4 where the
𝑥-axis represents the simulation time which corresponds to
the object position after movement at each instance. The 𝑦-
axis in Figure 4 on the other hand stands for the estimation
error between the real object position and calculated position.
The average estimated error for path 1 movement is 1.17m
with 2.83m maximum error and standard deviation 0.83.
The occurrence of maximum error appears during 35–80 sec
simulation time which proceeds with oblique movement
instead of horizontal or vertical movements. For rectangular
deployment of sensor nodes, the oblique movement of object
is expected to come out with large estimation error.

On the other hand, the estimation error for path 2
movement is illustrated in Figure 5. The average estimated
error for path 2 random movement is 1.34m with 3.48m
maximum error and standard deviation 0.62. The random
direction characteristics and various moving speeds is the
major reason which causes larger estimated error.
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Figure 3: Tracking of moving object with random movement path
2 (black broken lines are the real movements, and red dots stand for
predicted object locations).
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Figure 4: The estimation error for path 1 movement.

4.2. Different Sensing Radii. In general, the difference in
sensing radius, resulting in different sensing coverage and
consequently different signal overlay area, will affect the
accuracy of the location estimation. The change of sensing
radius will also affect the numbers of major andminor sensor
nodes as well as the estimated position. Figures 6 and 7 show
the average estimated error with different sensing radii for
path 1 and path 2 movement, respectively. In this research
with 10m separation between each neighboring sensor node,
the minimum sensing range would be 7.2m in order to fully
cover the whole experimental environment. However, for
the practical deployment while considering the shadowing
effects, it is better to provide sensing radius larger than 8m.
On the other hand, larger sensing radius with larger sensing
power will introduce the power consumption issue for WSN
applications. From the power energy viewpoint, the sensing
radius in this design could be between 8m to 10m.

As shown from the simulation results in Figure 6, when
the sensing radius is between 11.2–11.3m, the location estima-
tion error reaches the minimum. However, by taking account
the energy consumption issue, the sensing radius around
9.7m with relatively low location estimation error, not larger
than 0.1m as compared to the sensing radius 11.4m with
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Figure 5: The estimation error for path 2 random movement.
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Figure 6: The average estimated error with different sensing radii
for path 1 movement.

minimum estimation error, could be the optimal candidate in
the experimental scenario for path 1 simulation. On the other
hand, when the sensing radius is around 11.4m, the location
estimation error reaches the minimum for path 2 case shown
in Figure 7. Similarly, we will set the sensing radius 9.6m as
the optimal candidate for energy consumption consideration
in path 2 simulation.

With the optimal sensing radius in mind, more accuracy
location estimation could be obtained. Figures 8 and 9 show
the estimation error result with optimal sensing radius for
path 1 and path 2 movement, respectively. As shown in
Figure 8 for path 1 case, the average estimation error is about
0.61m with 1.04 maximum error and standard deviation 0.46
which are much smaller than the results with 8m sensing
radius. Similarly, for the Path 2movement case in Figure 9 we
obtain the average estimation error about 1.03m with 3.29m
maximum error and standard deviation 0.66. The average
estimation error with optimal sensing radius is less than the
result with 8m sensing radius.

4.3. Different Modeling Weight Values. The weight value 𝛼
of major sensor node will be analyzed in this subsection.
Figures 10 and 11 show the dependence of weighting value
on the average location estimation error for path 1 movement
with sensing radius 9.7m and path 2 movement with sensing
radius 9.6m, respectively. As shown in Figure 10 for path 1
case, for weighting value between 2 and 3 we will obtain the
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Figure 7: The average estimated error with different sensing radii
for path 2 movement.
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Figure 8: The estimation error result with optimal sensing radius
for path 1 movement.

lowest estimation error. Similarly, we will obtain the relatively
low estimation error for weighting value between 2 and 3 in
Figure 11 path 2 case. In general, large weighting value (larger
than 3) would push the calculation of location estimation
too close to major sensor node. On the other hand, small
weighting value (smaller than 2) would push the calculation
of location estimation too close to minor sensor node. Both
situations would increase the estimation error.

4.4. Different Power-Level Increasing Ratios. Figure 12 shows
the simulation results of average estimation error with dif-
ferent sensing radii and power-level increasing ratios 𝑘 for
path 1 movement. As shown in Figure 12, when 𝑘 value of
power-level increasing ratio for minor sensor node is larger
than 2, the estimation error becomes relatively large. This
is because the remote sensor nodes with extended sensing
coverage may detect the object and consequently result in
the increase of the estimation error. The detailed estimation
errors with corresponding variables for some instances of
path 1movement are listed in Table 1. Although theminimum
estimation error is obtained with 9.9–10m sensing radius
and 𝑘 = 1.7, the optimal selection would be the case with
9.7m sensing radius and 𝑘 = 1.5 by considering the energy
consumption issue.
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Figure 9: The estimation error result with optimal sensing radius
for path 2 movement.
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Table 1:The estimation errors with corresponding variables for Path
1 movement.

Sensing radius Power-level (𝑘) Estimation error
7.1 1.4 0.7001
7.2 1.8 0.7801
7.3 1.3 0.7001
7.4 1.3 0.7001
7.5 1.3 0.7001
7.6 1.3 0.7001
7.7 1.2 0.8337
7.8 1.2 0.8337
7.9 1.2 0.7800
8.0 1.2 0.7435
8.1 1.2 0.7435
8.2 1.2 0.7435
8.3 1.2 0.8352
8.4 1.1 0.9099
8.5 1.5 0.8576
8.6 1.1 0.8062
8.7 2.0 0.9888
8.8 1.9 0.9548
8.9 1.9 0.9334
9.0 1.9 0.8808
9.1 1.9 0.8836
9.2 1.8 0.8497
9.3 1.8 0.8497
9.4 1.8 0.8283
9.5 1.5 0.6297
9.6 1.5 0.6297
9.7 1.5 0.6140
9.8 1.7 0.6139
9.9 1.7 0.5925
10 1.7 0.5925
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Figure 12: Average estimation error with different sensing radii and
power-level ratios 𝑘 for path 1.

Similar results with different sensing radii and power-
level increasing ratios 𝑘 for path 2 case is shown in Figure 13,
and the detailed estimation errors with corresponding vari-
ables for path 2 case are listed in Table 2. Again, we may take
the optimal sensing radius as 9.6m and 𝑘 value as 1.5 for path
2 case from this result.
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Table 2: The estimation errors with corresponding variables for
Path 2 movement.

Sensing radius Power-level (𝑘) Estimation error
7.1 1.3 1.0816
7.2 1.3 1.0725
7.3 1.3 1.0607
7.4 1.3 1.0618
7.5 1.3 1.1070
7.6 1.3 1.1575
7.7 1.2 1.1804
7.8 1.2 1.1950
7.9 1.2 1.2324
8.0 1.6 1.2183
8.1 1.6 1.1980
8.2 1.6 1.2118
8.3 1.6 1.2684
8.4 1.6 1.2453
8.5 1.7 1.2698
8.6 1.5 1.2534
8.7 1.6 1.2341
8.8 1.6 1.1755
8.9 1.6 1.1321
9.0 1.6 1.1219
9.1 1.6 1.1225
9.2 1.6 1.1347
9.3 1.5 1.0880
9.4 1.5 1.0358
9.5 1.5 1.0351
9.6 1.5 1.0290
9.7 1.5 1.0532
9.8 1.5 1.1100
9.9 1.4 1.1194
10 1.4 1.1180

4.5. Result of Shadowing Model. In this subsection, the shad-
owing model is considered, and the simulation is conducted
for 100 times to analyze the result. Figure 14 shows the
location estimation error with shadowing model for path
1 movement. The sensing radius is set to 9.7m. From the
result in Figure 14, the estimation error is 1m with 4.47m
maximum error and standard deviation 0.72. On the other
hand, the estimation error with shadowing model for path 2
case with 9.6m sensing radius is shown in Figure 15. From the
result in Figure 15, the estimation error is 1.36m with 5.43m
maximum error and standard deviation 0.77. The results for
path 1 and path 2 for shadowing model are within acceptable
range.

4.6. Comparison with Other Schemes. As mentioned earlier,
the proposed scheme is based on the low power consumption
and computation for moving objecting location tracking.
In this sub-section, we therefore, further compare our esti-
mation accuracy with the results of centroid scheme [13].
Figure 16 shows the comparison of location estimation error
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Figure 13: Average estimation error with different sensing radii and
power-level ratios 𝑘 for path 2.
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Figure 14: The location estimation error with shadowing model for
path 1 movement.

between centroid and our proposed schemes for path 1
movement. As we can see from the results of Figure 16, our
proposed scheme performs better estimation accuracy than
centroid scheme for most radio sensing radii. The proposed
scheme comes out with a little bit higher estimation error
around sensing radii from 12.5m to 13m. Similarly, the
comparison of location estimation error between Centroid
and our proposed schemes for path 2 movement is illustrated
in Figure 17. Againmost results of our proposed scheme show
better estimation accuracy than centroid scheme except for
the results for radii from 12.6m to 13.8m. However, for 100m
× 100mexperimental setup, the optimal sensing radiuswould
be around 9.6–9.7m from the previous results. Therefore,
from practical deployment viewpoint, our proposed scheme
does provide much better accuracy as compared with cen-
troid scheme. In general, the estimation error of our proposed
mechanism is less than half of that of centroid scheme.

5. Conclusion

In this paper, we have developed and proposed the mech-
anism and procedure to model the location estimation for
object tracking in large-scale WSNs. The designed modeling
is a simple scheme without complex processing which uses
range-free-positioning technology as well as centralized data
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Figure 15: The location estimation error with shadowing model for
path 2 movement.
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Figure 16: The comparison of location estimation error with
centroid model for path 1 movement.
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Figure 17: The comparison of location estimation error with
centroid model for path 2 movement.

processing technology with data aggregation idea to reduce
the data processing and traffic loads. The proposed position-
ing model and mechanism are suitable for practical use in
large-scale WSNs which are constrained in terms of energy
consumption, computation power, and device cost.

We have conducted the simulation and numerical anal-
yses on different variables, such as object moving model,
sensing radius, model weighting value 𝛼, and power-level
increasing ratio 𝑘 of neighboring sensor nodes. The shad-
owing model was also introduced and analyzed to map the
designed scheme to the practical situation. The experimental
results showed that the average estimation errors are 0.61m
and 1.03m with optimized sensing radius around 9.7m and
9.6m for path 1 line movement and path 2 random move-
ment, respectively. We have further compared our proposed
model and mechanism with centroid scheme. From practical
deployment viewpoint, our proposed scheme does provide
much better accuracy as compared with centroid scheme. In
general, the estimation error of our proposed mechanism is
less than half of that of centroid scheme.

In the future, we will investigate the design of mobile
sensing nodes to further reduce the number of deployed
nodes.Wewill also conduct experiments on irregular deploy-
ment of sensing nodes to simulate some special scenarios or
environments.
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