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We continue our work on endpoints and startpoints in 𝑇
0
-quasimetric spaces. In particular we specialize some of our earlier results

to the case of two-valued𝑇
0
-quasimetrics, that is, essentially, to partial orders. For instance, we observe that in a complete lattice the

startpoints (resp., endpoints) in our sense are exactly the completely join-irreducible (resp., completely meet-irreducible) elements.
We also discuss for a partially ordered set the connection between its Dedekind-MacNeille completion and the 𝑞-hyperconvex hull
of its natural 𝑇

0
-quasimetric space.

1. Introduction

During his investigations on the hyperconvex (or injective)
hull of a metric space Isbell [1] introduced the concept of an
endpoint of a metric space and proved among other things
that the hyperconvex hull of a compact metric space is equal
to the hyperconvex hull of the subspace consisting of its
endpoints (cf. also [2, 3]). A theory for 𝑇

0
-quasimetric spaces

similar to the one for metric spaces due to Isbell can be
developed (see, e.g., [4, 5]). In particular each 𝑇

0
-quasimetric

space has a 𝑞-hyperconvex (or injective) hull. For instance,
it turns out that the hyperconvex hull of a metric space 𝑋
is isometric to the largest metric subspace containing the
canonical copy of 𝑋 in the 𝑞-hyperconvex hull of 𝑋 (see [5,
Theorem 6]).

In [6] the authors defined the concept of an endpoint in
an arbitrary 𝑇

0
-quasimetric space. In the quasimetric context

it turned out to be natural to consider also the dual concept
of an endpoint, which we called a startpoint.

Improving on a result from [6] in this note we will show
that for any join compact 𝑇

0
-quasimetric space (𝑋, 𝑑) the set

of the endpoints (resp., startpoints) of 𝑋 is equal to the set
of the endpoints (resp., startpoints) of its 𝑞-hyperconvex hull
(𝑄
𝑋
, 𝐷).
We also specialize some of our earlier results in [6] to two-

valued 𝑇
0
-quasimetric spaces. It is well known that they are,

essentially, the partially ordered sets and that in the category
of partially ordered sets the injective hull coincides with the

Dedekind-MacNeille completion (see, e.g., [5, 7, 8]). We will
observe that in the case of a complete lattice our startpoints
(resp., endpoints) turn out to be exactly the completely join-
irreducible (resp., the completely meet-irreducible) elements.
We also discuss for a partially ordered set in some detail the
connection between its Dedekind-MacNeille completion and
the 𝑞-hyperconvex hull of its natural 𝑇

0
-quasimetric space.

Our results can, for instance, be used to analyze the similarity
between the following result due to Isbell [1]:

A compact injectivemetric space𝑌 has a smallest closed
subset 𝐵 such that the hyperconvex hull of 𝐵 is equal to
𝑌;

and the following well-known result from order theory (see,
e.g., [9, Theorem 7.42]):

A lattice 𝐿 with no infinite chains is order isomorphic
to the Dedekind-MacNeille completion of the partially
ordered setJ(𝐿)∪M(𝐿), whereJ(𝐿) denotes the set of
join-irreducible elements of 𝐿 andM(𝐿) denotes the set
of meet-irreducible elements of 𝐿. FurthermoreJ(𝐿)∪
M(𝐿) is the smallest subset of 𝐿which is both join- and
meet-dense in 𝐿.

2. Preliminaries

In this section we first recall some of the basic definitions
from asymmetric topology needed to read this paper. Then
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we recall some fundamental facts of the theory of the 𝑞-
hyperconvex hull of a 𝑇

0
-quasimetric space.

Definition 1. Let 𝑋 be a set and 𝑑 : 𝑋 × 𝑋 → [0,∞)

a function. (Here [0,∞) denotes the set of the nonnegative
reals.) Then 𝑑 is quasipseudometric on𝑋 if

(a) 𝑑(𝑥, 𝑥) = 0 whenever 𝑥 ∈ 𝑋, and
(b) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦)+𝑑(𝑦, 𝑧)whenever 𝑥, 𝑦, and 𝑧 ∈ 𝑋.

We will say that (𝑋, 𝑑) is a 𝑇
0
-quasimetric space provided

that 𝑑 also satisfies the following condition: for each 𝑥, 𝑦 ∈ 𝑋,
𝑑(𝑥, 𝑦) = 0 = 𝑑(𝑦, 𝑥) implies that 𝑥 = 𝑦.

Let 𝑑 be quasipseudometric on a set 𝑋. Then 𝑑−1 : 𝑋 ×

𝑋 → [0,∞) defined by 𝑑
−1
(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) whenever

𝑥, 𝑦 ∈ 𝑋 is also quasipseudometric, called the conjugate
quasipseudometric of 𝑑. Observe that if 𝑑 is a 𝑇

0
-quasimetric

on𝑋, then 𝑑𝑠 = max{𝑑, 𝑑−1} = 𝑑 ∨ 𝑑
−1 is a metric on𝑋.

Given 𝑥 ∈ 𝑋 and a nonnegative real number 𝑟 we set
𝐶
𝑑
(𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≤ 𝑟}. Note that this set is

𝜏(𝑑
−1
)-closed, where 𝜏(𝑑) is the topology having the balls

𝐵
𝜖
(𝑥) = {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) < 𝜖} with 𝑥 ∈ 𝑋 and 𝜖 > 0 as

basic (open) sets.
A map 𝑓 : (𝑋, 𝑑) → (𝑌, 𝑒) between quasipseudometric

spaces (𝑋, 𝑑) and (𝑌, 𝑒) is called isometric provided that
𝑑(𝑥, 𝑦) = 𝑒(𝑓(𝑥), 𝑓(𝑦)) whenever 𝑥, 𝑦 ∈ 𝑋. Each isometric
map with a 𝑇

0
-quasimetric domain is a one-to-one map.

Furthermore a map 𝑓 : (𝑋, 𝑑) → (𝑌, 𝑒) between qua-
sipseudometric spaces (𝑋, 𝑑) and (𝑌, 𝑒) is called nonexpansive
provided that 𝑒(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑑(𝑥, 𝑦) whenever 𝑥, 𝑦 ∈ 𝑋.

Given two real numbers 𝑎 and 𝑏 we will write 𝑎−̇𝑏 for
max{𝑎 − 𝑏, 0}, which we will also denote by (𝑎 − 𝑏) ∨ 0. Note
that 𝑢(𝑥, 𝑦) = 𝑥−̇𝑦 with 𝑥, 𝑦 ∈ R defines the standard 𝑇

0
-

quasimetric on the set R of the reals.
Given a 𝑇

0
-quasimetric space (𝑋, 𝑑), we recall that the

specialization (partial) order ≤
𝑑
of 𝑑 is defined as follows: for

each 𝑥, 𝑦 ∈ 𝑋, set 𝑥≤
𝑑
𝑦 if and only if 𝑑(𝑥, 𝑦) = 0.

For further basic concepts used from the theory of
asymmetric topology we refer the reader to [10–12].

Many facts about hyperconvexity in metric spaces can be
found in [13–15]. Connections between that theory and order
theory are explored in [7, 16]. Throughout we will assume
familiarity of the reader with the results of [6].

We next recall some facts mainly from [4] belonging to
the theory of the 𝑞-hyperconvex hull of a 𝑇

0
-quasimetric

space (see also [5, 8, 17–19] for some related investigations).
Let (𝑋, 𝑑) be a 𝑇

0
-quasimetric space. We will say that a

function pair 𝑓 = (𝑓
1
, 𝑓
2
) on (𝑋, 𝑑), where 𝑓

𝑖
: 𝑋 → [0,∞)

(𝑖 = 1, 2) is ample provided that 𝑑(𝑥, 𝑦) ≤ 𝑓
2
(𝑥) + 𝑓

1
(𝑦)

whenever 𝑥, 𝑦 ∈ 𝑋.
Let𝑃
𝑋
denote the set of all ample function pairs on (𝑋, 𝑑).

(In such situations we may also write 𝑃
(𝑋,𝑑)

in cases where 𝑑
is not obvious.) For each 𝑓, 𝑔 ∈ 𝑃

𝑋
we set

𝐷(𝑓, 𝑔) = sup
𝑥∈𝑋

(𝑓
1 (𝑥) −̇𝑔1 (𝑥)) ∨ sup

𝑥∈𝑋

(𝑔
2 (𝑥) −̇𝑓2 (𝑥)) . (1)

Then𝐷 is an extended (if we replace in the definition of a
quasipseudometric [0,∞) by [0,∞] we obtain the definition

of an extended quasipseudometric. Of course, the triangle
inequality for extended quasipseudometrics is interpreted
in the self-explanatory way. (Indeed some authors prefer
to work with extended quasipseudometrics throughout; see,
e.g., [8]). For the purpose of this paper however real-valued
𝑇
0
-quasimetrics seem to be more appropriate; cf. Section 7)

𝑇
0
-quasimetric on 𝑃

𝑋
.

We will call a function pair 𝑓 minimal on (𝑋, 𝑑) (among
the ample function pairs on (𝑋, 𝑑)) if it is ample andwhenever
𝑔 is ample on (𝑋, 𝑑), and for each 𝑥 ∈ 𝑋 we have 𝑔

1
(𝑥) ≤

𝑓
1
(𝑥) and 𝑔

2
(𝑥) ≤ 𝑓

2
(𝑥) (for any function pairs 𝑓 and 𝑔

satisfying this relation we will write 𝑔 ≤ 𝑓); then 𝑔 = 𝑓. It is
well known that Zorn’s Lemma implies that below each ample
function pair there is a minimal ample pair (cf., e.g., [2, 20]).
By 𝑄
𝑋
we will denote the set of all minimal ample pairs on

(𝑋, 𝑑) equipped with the restriction of 𝐷 to 𝑄
𝑋
× 𝑄
𝑋
, which

we will also denote by 𝐷. Recall that 𝐷 is a (real-valued) 𝑇
0
-

quasimetric on 𝑄
𝑋
× 𝑄
𝑋
[4, Remark 6].

Furthermore 𝑓 = (𝑓
1
, 𝑓
2
) ∈ 𝑄

𝑋
if and only if the fol-

lowing equations (∗) are satisfied:

𝑓
1 (𝑥) = sup {𝑑 (𝑦, 𝑥) −̇𝑓

2
(𝑦) : 𝑦 ∈ 𝑋} ,

𝑓
2
(𝑥) = sup {𝑑 (𝑥, 𝑦) −̇𝑓

1
(𝑦) : 𝑦 ∈ 𝑋}

(∗)

whenever 𝑥 ∈ 𝑋 (cf. [21, Remark 2]). In particular note that
such pairs are ample on (𝑋, 𝑑).

Obviously the second component 𝑓
2
of a minimal ample

pair (𝑓
1
, 𝑓
2
) on (𝑋, 𝑑) satisfies the following equation (∗∗):

𝑓
2 (𝑥) = sup

𝑦∈𝑋

(𝑑 (𝑥, 𝑦) −̇sup
𝑦

∈𝑋

(𝑑 (𝑦

, 𝑦) −̇𝑓

2
(𝑦

))) (∗∗)

whenever 𝑥 ∈ 𝑋.
Given any real-valued function 𝑓 : 𝑋 → [0,∞), sat-

isfying (∗∗), we can set 𝑓
1
(𝑥) := sup{𝑑(𝑦, 𝑥)−̇𝑓(𝑦) : 𝑦 ∈ 𝑋}

whenever 𝑥 ∈ 𝑋.
One readily checks that (𝑓

1
, 𝑓) is an ample function pair

on (𝑋, 𝑑).
Furthermore, of course,

𝑓
1 (𝑥) = sup {𝑑 (𝑦, 𝑥) −̇𝑓 (𝑦) : 𝑦 ∈ 𝑋} ,

𝑓 (𝑥) = sup {𝑑 (𝑥, 𝑦) −̇𝑓
1
(𝑦) : 𝑦 ∈ 𝑋}

(2)

whenever 𝑥 ∈ 𝑋. Hence (𝑓
1
, 𝑓) is a minimal ample pair on

(𝑋, 𝑑), and thus (𝑓
1
, 𝑓) ∈ 𝑄

𝑋
.

Hence (∗∗) characterizes exactly those functions 𝑓 :

𝑋 → [0,∞) that are second component of minimal ample
pairs on (𝑋, 𝑑) (cf., e.g., [5, 8] concerning the underlying
Isbell conjugation adjunction; see also [22]). Of course, an
analogous result holds for the first component of minimal
ample pairs on (𝑋, 𝑑).

It is known (see [4, Lemma 3]) that 𝑓 ∈ 𝑄
𝑋
implies that

𝑓
1
(𝑥)−𝑓

1
(𝑦) ≤ 𝑑(𝑦, 𝑥) and𝑓

2
(𝑥)−𝑓

2
(𝑦) ≤ 𝑑(𝑥, 𝑦)whenever

𝑥, 𝑦 ∈ 𝑋.
Moreover sup

𝑥∈𝑋
(𝑓
1
(𝑥)−̇𝑔

1
(𝑥)) = sup

𝑥∈𝑋
(𝑔
2
(𝑥)−̇𝑓

2
(𝑥))

whenever 𝑓, 𝑔 ∈ 𝑄
𝑋
(cf., [4, Lemma 7]).

For each 𝑥 ∈ 𝑋 we can define the minimal function pair

𝑓
𝑥
(𝑦) = (𝑑 (𝑥, 𝑦) , 𝑑 (𝑦, 𝑥)) (3)
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whenever 𝑦 ∈ 𝑋 on (𝑋, 𝑑). The map 𝑒 defined by 𝑥 → 𝑓
𝑥

whenever 𝑥 ∈ 𝑋 defines an isometric embedding of (𝑋, 𝑑)
into (𝑄

𝑋
, 𝐷) (see [4, Lemma 1]).

Then (𝑄
𝑋
, 𝐷) is called the 𝑞-hyperconvex hull of (𝑋, 𝑑).

A 𝑇
0
-quasimetric space 𝑋 is said to be 𝑞-hyperconvex if

𝑓 ∈ 𝑄
𝑋
implies that there is an 𝑥 ∈ 𝑋 such that 𝑓 = 𝑓

𝑥

(cf. [4, Corollary 4]). An intrinsic characterization of 𝑞-
hyperconvexity of a 𝑇

0
-quasimetric space (𝑋, 𝑑) can, for

instance, be found in [4, Definition 2]: a 𝑇
0
-quasimetric

space (𝑋, 𝑑) is 𝑞-hyperconvex if and only if, given 𝐴 ⊆ 𝑋

and families of nonnegative reals (𝑟
𝑥
)
𝑥∈𝐴

and (𝑠
𝑥
)
𝑥∈𝐴

such
that 𝑑(𝑥, 𝑦) ≤ 𝑟

𝑥
+ 𝑠
𝑦
whenever 𝑥, 𝑦 ∈ 𝐴, we have that

⋂
𝑥∈𝐴

(𝐶
𝑑
(𝑥, 𝑟
𝑥
) ∩ 𝐶
𝑑
−1(𝑥, 𝑠

𝑥
)) ̸= 0 (see [4, Remark 2]).

Note also that 𝐷(𝑓, 𝑓
𝑥
) = 𝑓

1
(𝑥) and 𝐷(𝑓

𝑥
, 𝑓) = 𝑓

2
(𝑥)

whenever 𝑥 ∈ 𝑋 and 𝑓 ∈ 𝑄
𝑋
[4, Lemma 8].

The following important result (see [4, Remark 7]) is best
understood as a kind of density of 𝑋 in 𝑄

𝑋
. For any 𝑦

1
, 𝑦
2
∈

𝑄
𝑋
, we have that

𝐷(𝑦
1
, 𝑦
2
) = sup {(𝐷 (𝑓

𝑥
1

, 𝑓
𝑥
2

) − 𝐷 (𝑓
𝑥
1

, 𝑦
1
)

−𝐷 (𝑦
2
, 𝑓
𝑥
2

)) ∨ 0 : 𝑥
1
, 𝑥
2
∈ 𝑋} .

(4)

Our first example shows that in that formula the step of
taking the supremum with 0 cannot be avoided in general.

Example 2. Let 𝑎, 𝑏 ∈ [0,∞) be such that 𝑎, 𝑏 > 0, and let
𝑌 = [0, 𝑎] × [0, 𝑏]. Set

𝐷((𝛼
1
, 𝛼
2
) , (𝛽
1
, 𝛽
2
)) = (𝛼

1
−̇𝛽
1
) ∨ (𝛼

2
−̇𝛽
2
) (5)

whenever (𝛼
1
, 𝛼
2
), (𝛽
1
, 𝛽
2
) ∈ 𝑌. It is known that 𝑌 can be

identified with the 𝑞-hyperconvex hull of the subspace 𝑋 =

{(𝑎, 0), (0, 𝑏)} of 𝑌 (see [6, Example 4]).
Furthermore

[𝐷 ((𝑎, 0) , (0, 𝑏)) − 𝐷 ((𝑎, 0) , (0, 0)) − 𝐷 ((𝑎, 𝑏) , (0, 𝑏))]

∨ [𝐷 ((0, 𝑏) , (𝑎, 0)) − 𝐷 ((𝑏, 0) , (0, 0)) − 𝐷 ((𝑎, 𝑏) , (𝑎, 0))]

= [𝑎 − 𝑎 − 𝑎] ∨ [𝑏 − 𝑏 − 𝑏] ̸= 0 = 𝐷 ((0, 0) , (𝑎, 𝑏)) .

(6)

3. The Concept of Collinearity in
Quasipseudometric Spaces

The following definition was given in [6] (cf. [3]). Let (𝑋, 𝑑)
be a quasipseudometric space.

(1) A finite sequence (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) in 𝑋 is called

collinear in (𝑋, 𝑑) provided that 𝑖 < 𝑗 < 𝑘 ≤ 𝑛 implies
that 𝑑(𝑥

𝑖
, 𝑥
𝑘
) = 𝑑(𝑥

𝑖
, 𝑥
𝑗
) + 𝑑(𝑥

𝑗
, 𝑥
𝑘
).

(2) An element 𝑥 ∈ 𝑋 is called an endpoint of (𝑋, 𝑑)
provided that there exists an element 𝑦 in (𝑋, 𝑑) such
that 𝑑(𝑦, 𝑥) > 0 and such that for any 𝑧 ∈ 𝑋 col-
linearity of (𝑦, 𝑥, 𝑧) in (𝑋, 𝑑) implies that 𝑥 = 𝑧. We
will say that 𝑦 witnesses that 𝑥 is an endpoint.

(3) An element 𝑥 ∈ 𝑋 is called a startpoint of (𝑋, 𝑑) if it
is an endpoint of (𝑋, 𝑑−1).

Let us finally recall that a quasipseudometric space (𝑋, 𝑑)
is called join compact provided that 𝜏(𝑑𝑠) is compact.

The next result says intuitively that the points in the
remainder of the 𝑞-hyperconvex hull 𝑄

𝑋
of a join compact

𝑇
0
-quasimetric space𝑋 lie between the points of𝑋.

Proposition 3. Let (𝑋, 𝑑) be a join compact 𝑇
0
-quasimetric

space, and let 𝑒 : (𝑋, 𝑑) → (𝑄
𝑋
, 𝐷) be the canonical iso-

metric embedding of (𝑋, 𝑑) into its 𝑞-hyperconvex hull (𝑄
𝑋
, 𝐷).

Consider any 𝑓 ∈ 𝑄
𝑋
\ 𝑒(𝑋). Then there are a startpoint 𝑠 and

an endpoint 𝑒 in (𝑋, 𝑑) such that (𝑠, 𝑓, 𝑒) is collinear in (𝑄
𝑋
, 𝐷).

Proof. As stated above, for 𝑦 ∈ 𝑋 we will identify 𝑓
𝑦
with 𝑦.

Fix 𝑥 ∈ 𝑋. Since (𝑄
𝑋
, 𝐷) is a 𝑇

0
-space, we have that

𝐷(𝑓, 𝑥) > 0 or 𝐷(𝑥, 𝑓) > 0. We consider only the first case.
The second one is analogous. By [6, Lemma 2] there is 𝑦 ∈ 𝑋

such that (𝑦, 𝑓, 𝑥) is collinear in (𝑄
𝑋
, 𝐷).

Then𝐷(𝑦, 𝑥) ≥ 𝐷(𝑓, 𝑥) > 0.Therefore by [6, Corollary 3]
there are a startpoint 𝑠 and an endpoint 𝑒 in (𝑋, 𝑑) such that
(𝑠, 𝑦, 𝑥, 𝑒) is collinear in (𝑄

𝑋
, 𝐷).

It follows that 𝐷(𝑠, 𝑓) + D(𝑓, 𝑒) ≤ (𝐷(𝑠, 𝑦) + 𝐷(𝑦, 𝑓)) +

(𝐷(𝑓, 𝑥) +𝐷(𝑥, 𝑒)) = 𝐷(𝑠, 𝑦) +𝐷(𝑦, 𝑥) +𝐷(𝑥, 𝑒) = (𝐷(𝑠, 𝑦) +

𝐷(𝑦, 𝑥)) + 𝐷(𝑥, 𝑒) = 𝐷(𝑠, 𝑥) + 𝐷(𝑥, 𝑒) = 𝐷(𝑠, 𝑒), and hence
(𝑠, 𝑓, 𝑒) is collinear in (𝑄

𝑋
, 𝐷).

Lemma 4. Let (𝑋, 𝑑) be a 𝑇
0
-quasimetric space. If 𝑥 is an

endpoint with witness 𝑦 and (𝑧, 𝑦, 𝑥) is collinear in (𝑋, 𝑑), then
𝑧 is also a witness that 𝑥 is an endpoint in (𝑋, 𝑑). Similarly, if 𝑥
is a startpoint with witness 𝑦 and (𝑥, 𝑦, 𝑧) is collinear in (𝑋, 𝑑),
then 𝑧 is also a witness that 𝑥 is a startpoint in (𝑋, 𝑑).

Proof. Assume that 𝑥 is an endpoint with witness 𝑦 and that
(𝑧, 𝑦, 𝑥) is collinear in (𝑋, 𝑑). Note that 𝑑(𝑧, 𝑥) ≥ 𝑑(𝑦, 𝑥) > 0.
Suppose that for some 𝑎 ∈ 𝑋, (𝑧, 𝑥, 𝑎) is collinear in (𝑋, 𝑑).
Then inequalities 𝑑(𝑧, 𝑎) ≤ 𝑑(𝑧, 𝑦) + 𝑑(𝑦, 𝑎) ≤ 𝑑(𝑧, 𝑦) +

𝑑(𝑦, 𝑥) + 𝑑(𝑥, 𝑎) = 𝑑(𝑧, 𝑥) + 𝑑(𝑥, 𝑎) = 𝑑(𝑧, 𝑎) imply by
subtracting 𝑑(𝑧, 𝑦) that 𝑑(𝑦, 𝑎) = 𝑑(𝑦, 𝑥) + 𝑑(𝑥, 𝑎) (cf., [6,
Lemma 1]); hence (𝑦, 𝑥, 𝑎) is collinear in (𝑋, 𝑑), and thus
𝑥 = 𝑎 by our assumption. Therefore 𝑧 witnesses that 𝑥 is an
endpoint of (𝑋, 𝑑).The dual result is proved analogously.

Example 5. Let (𝑋, 𝑑) be a join compact𝑇
0
-quasimetric space

with 𝑦
1
, 𝑦
2
∈ 𝑋 such that 𝑑(𝑦

1
, 𝑦
2
) > 0.

According to the proofs of [6, Proposition 3, Corollary
3] there exist a startpoint 𝑠 in (𝑋, 𝑑) with witness 𝑦

2
and

an endpoint 𝑒 in (𝑋, 𝑑) with witness 𝑠 such that (𝑠, 𝑦
1
, 𝑦
2
, 𝑒)

is collinear in (𝑋, 𝑑). By Lemma 4 it follows that both 𝑠

witnesses that 𝑒 is an endpoint and 𝑒 witnesses that 𝑠 is a
startpoint in (𝑋, 𝑑).

We next prove the result mentioned in Section 1.

Proposition 6. Let (𝑋, 𝑑) be a join compact 𝑇
0
-quasimetric

space. Then (𝑄
𝑋
, 𝐷) has exactly the same endpoints and

startpoints as (𝑋, 𝑑).

Proof. In [6, Proposition 4] it was shown that each endpoint
of (𝑋, 𝑑) is an endpoint of (𝑄

𝑋
, 𝐷). In fact, it was proved that

if 𝑥 is an endpoint in (𝑋, 𝑑) with witness 𝑦 ∈ 𝑋, then 𝑓
𝑦

witnesses that 𝑓
𝑥
is an endpoint in (𝑄

𝑋
, 𝐷).
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Here we will show that each endpoint of (𝑄
𝑋
, 𝐷) is an

endpoint of (𝑋, 𝑑).
Suppose that 𝑓 ∈ 𝑄

𝑋
witnesses that 𝑔 ∈ 𝑄

𝑋
is

an endpoint in (𝑄
𝑋
, 𝐷). Then 𝐷(𝑓, 𝑔) > 0. Thus by [20,

Proposition 5] there are sequences 𝑥
𝑛
, 𝑦
𝑛
∈ 𝑋 such that

the increasing sequence (𝐷(𝑥
𝑛
, 𝑦
𝑛
) −𝐷(𝑥

𝑛
, 𝑓) −𝐷(𝑔, 𝑦

𝑛
))
𝑛∈N

converges to𝐷(𝑓, 𝑔)with respect to the usual topology onR.
(Note that here and in the following, for any 𝑥 ∈ 𝑋, we will
identify 𝑥 with 𝑓

𝑥
.)

By join compactness of (𝑋, 𝑑) indeed we have that there
is a subsequence (𝑛

𝑘
)
𝑘∈N of (𝑛)

𝑛∈N and 𝑥, 𝑦 ∈ 𝑋 such that
𝑑
𝑠
(𝑥
𝑛
𝑘

, 𝑥) → 0 and 𝑑𝑠(𝑦
𝑛
𝑘

, 𝑦) → 0. Note that, for instance,
|𝐷(𝑥
𝑛
𝑘

, 𝑓) − 𝐷(𝑥, 𝑓)| ≤ 𝑑
𝑠
(𝑥
𝑛
𝑘

, 𝑥) for any 𝑘 ∈ N.
Taking limits, therefore 𝐷(𝑓, 𝑔) = 𝐷(𝑥, 𝑦) − 𝐷(𝑥, 𝑓) −

𝐷(𝑔, 𝑦), and thus 𝐷(𝑥, 𝑦) = 𝐷(𝑥, 𝑓) + 𝐷(𝑓, 𝑔) + 𝐷(𝑔, 𝑦).
Consequently (𝑓, 𝑔, 𝑦) is collinear in (𝑄

𝑋
, 𝐷), since𝐷(𝑥, 𝑓)+

𝐷(𝑓, 𝑔) +𝐷(𝑔, 𝑦) = 𝐷(𝑥, 𝑦) ≤ 𝐷(𝑥, 𝑓) +𝐷(𝑓, 𝑦) ≤ 𝐷(𝑥, 𝑓) +

𝐷(𝑓, 𝑔) + 𝐷(𝑔, 𝑦). Hence 𝐷(𝑥, 𝑓) + 𝐷(𝑓, 𝑔) + 𝐷(𝑔, 𝑦) =

𝐷(𝑥, 𝑓) + 𝐷(𝑓, 𝑦), and the statement follows.
We conclude that 𝑔 = 𝑦, since 𝑓 witnesses that 𝑔 is

an endpoint in (𝑄
𝑋
, 𝐷). Indeed then 𝐷(𝑥, 𝑦) = 𝐷(𝑥, 𝑓) +

𝐷(𝑓, 𝑦), and (𝑥, 𝑓, 𝑔) is collinear in (𝑄
𝑋
, 𝐷). By Lemma 4

therefore 𝑥 is a witness belonging to 𝑋 that 𝑔 = 𝑦 ∈ 𝑋 is an
endpoint in (𝑄

𝑋
, 𝐷). It follows that 𝑥 witnesses that 𝑦 is an

endpoint in (𝑋, 𝑑), because (𝑋, 𝑑) is a subspace of (𝑄
𝑋
, 𝐷).

The assertion about startpoints is proved analogously.

4. 𝑇
0
-Quasimetrics Induced by Partial Orders

Let (𝑋, ≤) be a partially ordered set and 𝑦 ∈ 𝑋. In the
following, we set ↑ 𝑦 := {𝑥 ∈ 𝑋 : 𝑦 ≤ 𝑥} and ↓ 𝑦 := {𝑥 ∈ 𝑋 :

𝑦 ≥ 𝑥}.
Given a partially ordered set (𝑋, ≤), we equip it with the

𝑇
0
-quasimetric 𝑑 given by setting, for all 𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑦) = 0

if 𝑥 ≤ 𝑦 and 𝑑(𝑥, 𝑦) = 1 otherwise. Indeed 𝑑 is a 𝑇
0
-

ultraquasimetric, but we will not use this fact in this paper
(see, e.g., [23]).

We will call 𝑑 the natural 𝑇
0
-quasimetric of ≤. Note that a

map 𝑓 : (𝑋, 𝑑) → ({0, 1}, 𝑢) is nonexpansive if and only if 𝑓
is monotonically increasing. (Of course, here 𝑢 also denotes
the restriction of 𝑢 to {0, 1}2.)

Observe that, if 𝑑 is the natural 𝑇
0
-quasimetric induced

by a partial order ≤, then 𝑑
−1 is the natural 𝑇

0
-quasimetric

induced by the partial order ≥.
As we noted in the Preliminaries section, with the help

of the specialization order we can equip each 𝑇
0
-quasimetric

space (𝑋, 𝑑) with a partial order. In [6, Proposition 1] we
considered the following more sophisticated method.

Fix 𝑦 ∈ 𝑋. For 𝑎
1
, 𝑎
2
∈ 𝑋, set 𝑎

1
≤
𝑦
𝑎
2
if (𝑦, 𝑎

1
, 𝑎
2
) is

collinear in (𝑋, 𝑑). Then ≤
𝑦
is a partial order on𝑋 according

to [6, Proposition 1]. Our next result shows that, if the 𝑇
0
-

quasimetric space (𝑋, 𝑑) originates from a partial order ≤,
then ≤

𝑦
can be readily described.

Example 7. Let (𝑋, ≤) be a partially ordered set, and let 𝑑 be
its natural 𝑇

0
-quasimetric. Furthermore let 𝑦 ∈ 𝑋. Then ≤

𝑦

agrees with ≤ if the two relations are restricted to (↑ 𝑦)
2 or

to (𝑋\ ↑ 𝑦)
2. Furthermore ≤

𝑦
restricted to (𝑋\ ↑ 𝑦) × ↑ 𝑦

is empty, and ≤
𝑦
restricted to ↑ 𝑦 × (𝑋\ ↑ 𝑦) agrees with the

complement of ≤ restricted to ↑ 𝑦 × (𝑋\ ↑ 𝑦).

Hence ≤
𝑦
can be described as follows. For 𝑎, 𝑏 ∈ 𝑋,

we have 𝑎≤
𝑦
𝑏 if Case 1 is 𝑎 ≤ 𝑏 and [(i) 𝑎, 𝑏 ∈↑ 𝑦 or

(ii) 𝑎, 𝑏 ∈ (𝑋\ ↑ 𝑦)] or if Case 2 is 𝑎 ≰ 𝑏, 𝑎 ∈↑ 𝑦 and
𝑏 ∈ (𝑋\ ↑ 𝑦).
Note that obviously ≤

𝑦
is a linear order if ≤ is a linear

order.

Let us consider two specific examples of this construction.

Example 8. (a) Let (𝑋, ≤) be a partially ordered set with the
smallest element 0. Then ≤

0
=≤.

(b) Let (𝑋, ≤) be a partially ordered set with the largest
element 1. Then ≤

1
is obtained on 𝑋 by removing the top

element 1 from 𝑋 and adding it as a new smallest element
to𝑋 \ {1}.

Let (𝑋, 𝑑) be a 𝑇
0
-quasimetric space. Given 𝑎, 𝑐 ∈ 𝑋 we

set that 𝐿
𝑎,𝑐

:= {𝑏 ∈ 𝑋 : (𝑎, 𝑏, 𝑐) is collinear in (𝑋, 𝑑)} (cf. [2,
(4.2)]). We have that 𝑎, 𝑐 ∈ 𝐿

𝑎,𝑐
and 𝐿

𝑎,𝑐
is obviously 𝜏(𝑑𝑠)-

closed.
In the special case of 𝑇

0
-quasimetrics originating from

partial orders the set 𝐿
𝑎,𝑐

can be described as follows.

Example 9. Let (𝑋, ≤) be a partially ordered set with natural
𝑇
0
-quasimetric 𝑑, and let 𝑎, 𝑐 ∈ 𝑋. Then 𝐿

𝑎,𝑐
is equal to the

interval [𝑎, 𝑐] = {𝑥 ∈ 𝑋 : 𝑎 ≤ 𝑥 ≤ 𝑐} if 𝑎 ≤ 𝑐 and equal to
↑ 𝑎 ∪ ↓ 𝑐 if 𝑎 ≰ 𝑐.

Example 10. Let (𝑋, ≤) be a partially ordered set and 𝑑

its natural 𝑇
0
-quasimetric. Suppose that (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) is

collinear in (𝑋, 𝑑) and 𝑑(𝑥
2
, 𝑥
3
) > 0. Then the sequence

(𝑑(𝑥
𝑖
, 𝑥
𝑖+1
))
𝑖=1,2,3

is equal to 010.

Proof. Of course 𝑑(𝑥
2
, 𝑥
3
) = 1. Furthermore 𝑖 ∈ {1, 2} with

𝑑(𝑥
𝑖
, 𝑥
𝑖+1
) = 1 = 𝑑(𝑥

𝑖+1
, 𝑥
𝑖+2
) is impossible, since (𝑥

𝑖
, 𝑥
𝑖+1

,
𝑥
𝑖+2
) is collinear in (𝑋, 𝑑). Thus we have that the sequence

(𝑑(𝑥
𝑖
, 𝑥
𝑖+1
))
𝑖=1,2,3

is alternating in {0, 1}.

We are next going to illustrate the concepts of a startpoint
(resp., endpoint) in the case of 𝑇

0
-quasimetrics induced by

partial orders. Let us first note that [6, Proposition 3] is
useless for an infinite partially ordered set 𝑋 equipped with
its natural 𝑇

0
-quasimetric 𝑑, since 𝑑𝑠 is the discrete metric,

and therefore 𝜏(𝑑𝑠) is compact if and only if𝑋 is finite.

Lemma 11. Let (𝑋, ≤) be a partially ordered set, 𝑑 its natural
𝑇
0
-quasimetric, and 𝑥, 𝑦 ∈ 𝑋. Then 𝑥 is a startpoint of (𝑋, 𝑑)

witnessed by 𝑦 if and only if 𝑥 is a minimal element in𝑋\ ↓ 𝑦.

Proof. Suppose that 𝑥 is a startpoint of (𝑋, 𝑑) witnessed by
𝑦 ∈ 𝑋. Then 𝑑(𝑥, 𝑦) = 1, and thus 𝑥 ≰ 𝑦. Furthermore for all
𝑎 ∈ 𝑋, 𝑑(𝑎, 𝑥) + 𝑑(𝑥, 𝑦) = 𝑑(𝑎, 𝑦) implies that 𝑥 = 𝑎. Hence
𝑎 ≤ 𝑥 and 𝑎 ∈ 𝑋\ ↓ 𝑦 imply that 𝑥 = 𝑎. Thus 𝑥 is minimal in
𝑋\ ↓ 𝑦.

Assume that 𝑥 is minimal in 𝑋\ ↓ 𝑦. Then 𝑑(𝑥, 𝑦) > 0.
Suppose that, for some 𝑎 ∈ 𝑋, (𝑎, 𝑥, 𝑦) is collinear in (𝑋, 𝑑).
Then 𝑑(𝑎, 𝑦) = 𝑑(𝑎, 𝑥) + 𝑑(𝑥, 𝑦) = 𝑑(𝑎, 𝑥) + 1 = 1; thus 𝑎 ≰ 𝑦
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and 𝑎 ≤ 𝑥. Therefore 𝑎 = 𝑥, since 𝑥 is minimal in 𝑋\ ↓ 𝑦.
Hence 𝑥 is a startpoint in (𝑋, 𝑑) witnessed by 𝑦.

Corollary 12. Let (𝑋, ≤) be a partially ordered set,𝑑 its natural
𝑇
0
-quasimetric, and 𝑥, 𝑦 ∈ 𝑋. Then 𝑥 is an endpoint in (𝑋, 𝑑)

witnessed by 𝑦 if and only if 𝑥 is amaximal element in𝑋\ ↑ 𝑦.

We next illustrate Lemma 11 and its corollary by two
simple examples.

Example 13. Let 𝑋 be a set having at least two points and
equipped with the discrete order =. Then the 𝑇

0
-quasimetric

𝑑 induced by = on 𝑋 is the discrete metric. Note that each
point of𝑋 is an endpoint and a startpoint in (𝑋, 𝑑), witnessed
by any other point.

Example 14. Let 𝑋 be a complete lattice, and let 𝑘 ∈ 𝑋 be
compact (see [24, Definition I-1.1.] for the definition), but
such that 𝑘 ̸= 0. Since 𝑘 ̸= 0, there is 𝑦 ∈ 𝑋 such that 𝑘 ≰ 𝑦. By
Zorn’s Lemma, let𝐶 be amaximal chain in𝑋\ ↑ 𝑘 containing
𝑦. Set 𝑚 = ∨𝐶. Then 𝑚 ∈ 𝑋\ ↑ 𝑘, since 𝑘 is compact.
Furthermore 𝑚 ∈ 𝐶, since 𝐶 is a maximal chain. Thus 𝑚 is
maximal in𝑋\ ↑ 𝑘. Consequently𝑚 is an endpoint witnessed
by 𝑘 in (𝑋, 𝑑), where 𝑑 denotes the natural 𝑇

0
-quasimetric of

𝑋.

The following definition can essentially be found in [24,
Definition I-4.21]. Let 𝑋 be a partially ordered set. An
element 𝑥 ∈ 𝑋 is called completely 𝑚-irreducible if either 𝑥
is maximal in 𝑋 but different from the largest element or the
set ↑ 𝑥 \ {𝑥} has a least element, which will be denoted by 𝑥+.
Dually one defines completely 𝑗-irreducible elements in𝑋.

Proposition 15. (a) Each completely 𝑚-irreducible element 𝑥
in a partially ordered set (𝑋, ≤) is an endpoint in (𝑋, 𝑑), where
𝑑 denotes the natural 𝑇

0
-quasimetric of𝑋.

(b) Let𝑋 be a complete lattice equipped with its natural𝑇
0
-

quasimetric 𝑑 and 𝑥 ∈ 𝑋 (cf. [24, Remark I-4.23]). If 𝑥 is an
endpoint of (𝑋, 𝑑), then 𝑥 is completely𝑚-irreducible.

Proof. (a) Suppose first that 𝑥 is maximal but not the largest
element of𝑋. Then there is 𝑦 ∈ 𝑋 such that 𝑦 ≰ 𝑥. Therefore
𝑥 is maximal in𝑋\ ↑ 𝑦, and 𝑥 is an endpoint by Corollary 12.

Suppose now that ↑ 𝑥 \ {𝑥} has a least element 𝑥+. It will
suffice by Corollary 1 to show that 𝑥 is maximal in 𝑋\ ↑ 𝑥

+.
So let 𝑎 ∈ 𝑋 with 𝑥 < 𝑎. Then 𝑎 ∈↑ 𝑥 \ {𝑥} and consequently
𝑥
+
≤ 𝑎. Hence 𝑎 ∉ 𝑋\ ↑ 𝑥

+ and 𝑥 is maximal in 𝑋\ ↑ 𝑥
+.

Therefore 𝑥 is an endpoint in (𝑋, 𝑑).
(b) For the convenience of the reader we include a proof,

which follows [24, page 126]. Let 𝑘 ∈ 𝑋 witness that 𝑥 is an
endpoint in (𝑋, 𝑑). If 𝑥 is maximal, then 𝑥 is completely 𝑚-
irreducible, as it cannot be the largest element in 𝑋, because
𝑘 ̸< 𝑥.

If 𝑥 is notmaximal in𝑋, then 0 ̸= ↑ 𝑥\{𝑥} ⊆↑ 𝑘, since 𝑥 is
maximal in𝑋\ ↑ 𝑘 by Corollary 12. Hence 𝑥+ := ∧(↑ 𝑥 \ {𝑥})

exists and 𝑥+ > 𝑥, as 𝑥+ ≥ 𝑘.Thus ↑ 𝑥\{𝑥} has a least element.
We have shown that 𝑥 is completely 𝑚-irreducible in either
case.

a

c

d

b

e

Figure 1: Hasse diagram of 𝑃
4
.

Corollary 16. (a) Each completely 𝑗-irreducible element 𝑥 in
a partially ordered set (𝑋, ≤) is a startpoint in (𝑋, 𝑑), where 𝑑
denotes the natural 𝑇

0
-quasimetric of𝑋.

(b) Let 𝑋 be a complete lattice equipped with its natural
𝑇
0
-quasimetric 𝑑 and 𝑥 ∈ 𝑋 (cf., [24, Remark I-4.23]). If 𝑥 is

a startpoint of (𝑋, 𝑑), then 𝑥 is completely 𝑗-irreducible.

Recall that an element 𝑥 in a complete lattice 𝑋 is called
completely join-irreducible if, for each subset 𝑆 of 𝑋, 𝑥 = ∨𝑆

implies that 𝑥 ∈ 𝑆. Completely meet-irreducible elements are
defined dually (see [9, Definition 10.26]).

Of course, in a complete lattice the completely 𝑗-irre-
ducible elements are exactly the completely join-irreducible
elements and the completely 𝑚-irreducible elements are
exactly the completely meet-irreducible elements.

Corollary 17. Let𝑋 be a complete lattice and 𝑑 its natural 𝑇
0
-

quasimetric. Then 𝑥 ∈ 𝑋 is a startpoint in (𝑋, 𝑑) if and only if
𝑥 is completely join-irreducible. Similarly, 𝑥 ∈ 𝑋 is an endpoint
in (𝑋, 𝑑) if and only if𝑥 is completelymeet-irreducible in (𝑋, 𝑑).

Example 18. In a partially ordered set 𝑋 that is not complete
and is equipped with its natural 𝑇

0
-quasimetric 𝑑, an end-

point of (𝑋, 𝑑) need not be completely 𝑚-irreducible. As an
example consider the partially ordered set 𝑃

4
from [9, page

169] (see Figure 1).
Our characterizations (Lemma 11 and Corollary 12)

immediately yield the set of startpoints {𝑎, 𝑏, 𝑐, 𝑒} and the
set of endpoints {𝑏, 𝑐, 𝑑, 𝑒}. In particular 𝑏 is not completely
𝑚-irreducible, although it is an endpoint.

As usual, an element 𝑥 in a complete lattice 𝑋 will be
called completely join-prime if 𝑥 ≤ ∨𝑆 for some subset 𝑆 of
𝑋 means that there is 𝑠 ∈ 𝑆 such that 𝑥 ≤ 𝑠. The concept of
a completely meet-prime element is defined dually. It is easy
to see that each completely join-prime element is completely
join-irreducible and each completely meet-prime element is
completely meet-irreducible (see [9, Definition 10.26]).

Example 19. Let 𝑋 be a complete lattice and 𝑑 its natural
𝑇
0
-quasimetric. Furthermore let 𝑥 ∈ 𝑋 be completely join-

prime. It follows that 𝑦 = ∨(𝑋\ ↑ 𝑥) is completely meet-
prime. Furthermore one proves that ↓ 𝑦 = 𝑋\ ↑ 𝑥. Indeed
(𝑥, 𝑦) is a completely prime pair in the sense of [9, page 246].
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We conclude that 𝑦 is an endpoint with witness 𝑥 in (𝑋, 𝑑),
since 𝑦 is obviously maximal in 𝑋\ ↑ 𝑥, and 𝑥 is a startpoint
with witness 𝑦 in (𝑋, 𝑑), since 𝑥 is minimal in𝑋\ ↓ 𝑦.

We recall that a subset 𝐸 of a partially ordered set 𝑋 is
called join-dense in 𝑋 provided that for each 𝑥 ∈ 𝑋 there
exists 𝐸 ⊆ 𝐸 such that 𝑥 = ∨

𝑋
𝐸
 (see [9, page 53]). Dually

one defines the concept of a meet-dense subset of a partially
ordered set𝑋.

It is known (see [24, Remark I-4.22]) that each meet-
dense subset of 𝑋 contains all completely 𝑚-irreducible
elements. Similarly each join-dense subset of 𝑋 contains all
completely 𝑗-irreducible elements.

Proposition 20. Let 𝑋 be a partially ordered set and 𝑑 its
natural 𝑇

0
-quasimetric.

(a) If 𝐸 is a join-dense subset of 𝑋, then all startpoints of
(𝑋, 𝑑) belong to 𝐸. Dually, if 𝐸 is a meet-dense subset
in𝑋, then all endpoints of (𝑋, 𝑑) belong to 𝐸.

(b) If 𝐸 is join- and meet-dense in 𝑋, then all startpoints
(resp., endpoints) of𝑋 are startpoints (resp., endpoints)
of 𝐸.

Proof. (a) Suppose that 𝑥 is a startpoint of (𝑋, 𝑑). Then our
characterization (see Lemma 11) of a startpoint gives 𝑦 ∈ 𝑋

such that 𝑥 is a minimal element of𝑋\ ↓ 𝑦.
Since 𝑥 ≰ 𝑦, by join density of 𝐸 in𝑋, there must be 𝑒 ∈ 𝐸

such that 𝑒 ≤ 𝑥 and 𝑒 ≰ 𝑦. Hence by the minimality property
of 𝑥we obtain 𝑥 = 𝑒.Therefore 𝑥 belongs to𝐸.The dual result
is proved analogously.

(b) We continue the proof of part (a) dealing with
startpoints. By the additional assumption of meet density of
𝐸 in 𝑋, in the proof of part (a) we can find 𝑦 ∈ 𝐸 such that
𝑦 ≤ 𝑦

 and 𝑥 = 𝑒 ≰ 𝑦
. Then 𝑥 is minimal in 𝑋\ ↓ 𝑦

. We
conclude that 𝑦 ∈ 𝐸 witnesses that 𝑥 ∈ 𝐸 is a startpoint
in 𝐸, because 𝐸 ⊆ 𝑋. The result on endpoints is proved
similarly.

5. Examples

In this section we will discuss various examples in the light of
the results in Section 4. Some of the details of the arguments
are left to the reader.

Example 21. Let (𝑋, ≤) be a partially ordered set with the
smallest element 0 and the largest element 1, where 0 ̸= 1,
equipped with its natural 𝑇

0
-quasimetric 𝑑. Given 𝑥 ∈ 𝑋,

collinearity of (0, 1, 𝑥) in (𝑋, 𝑑) obviously implies that 𝑥 = 1.
However we cannot conclude that 1 is an endpoint of (𝑋, 𝑑)
with witness 0, since 𝑑(0, 1) = 0.

Indeed we have the following result.

Proposition 22. Let (𝑋, ≤) be a partially ordered set equipped
with its natural 𝑇

0
-quasimetric 𝑑. A smallest element 0 of 𝑋

cannot be a startpoint of (𝑋, 𝑑). Similarly a largest element 1 of
𝑋 is never an endpoint of (𝑋, 𝑑).

Proof. Since 0 ≤ 𝑥, thus 𝑑(0, 𝑥) = 0 whenever 𝑥 ∈ 𝑋; there
cannot be an element in𝑋 witnessing that 0 is a startpoint in
(𝑋, 𝑑). The dual statement is proved similarly.

Let (𝑋, ≤) be a linearly ordered set, and let 𝑎, 𝑏 ∈ 𝑋 be
such that 𝑎 < 𝑏, but there does not exist an element 𝑧 ∈ 𝑋

such that 𝑎 < 𝑧 < 𝑏. As usual, the pair (𝑎, 𝑏) is called a
jump in 𝑋. Note that for partially ordered sets one also says
that 𝑏 covers 𝑎 in this case; see, for instance, [9, page 11].

Proposition 23. Let (𝑋, ≤) be a linearly ordered set equipped
with its natural 𝑇

0
-quasimetric 𝑑. The first elements of jumps

in𝑋 are exactly the endpoints of (𝑋, 𝑑). The second elements of
jumps in 𝑋 are exactly the startpoints of (𝑋, 𝑑).

Proof. Suppose that (𝑎, 𝑏) is a jump in 𝑋. Then 𝑏 is minimal
in𝑋\ ↓ 𝑎. Hence 𝑏 is a startpoint of (𝑋, 𝑑) by Lemma 11.

In order to prove the converse suppose that 𝑏 is a
startpoint of (𝑋, 𝑑).Then there is𝑦 ∈ 𝑋 such that 𝑏 isminimal
in 𝑋\ ↓ 𝑦. Since ≤ is a linear order, we have that 𝑦 < 𝑏

and (𝑦, 𝑏) is a jump. Similarly one proves the stated result on
endpoints.

Corollary 24. In {0, 1}, equipped with its usual linear order
and natural 𝑇

0
-quasimetric, 0 is an endpoint but not a

startpoint, while 1 is a startpoint but not an endpoint.
In the setZ of integers equipped with the usual linear order

and its natural 𝑇
0
-quasimetric, each point is an endpoint and

a startpoint.
The closed unit interval of the set of rational numbers

equipped with its usual linear order and the natural 𝑇
0
-

quasimetric induced by that order does not have any endpoints
nor any startpoints.

Corollary 25. Let (𝑋, ≤) be a partially ordered set equipped
with its natural 𝑇

0
-quasimetric 𝑑. If, for some 𝑐 ∈ 𝑋, ↓ 𝑐 con-

sists of two elements, then 𝑐 is a startpoint in (𝑋, 𝑑). Similarly,
if, for some 𝑐 ∈ 𝑋, ↑ 𝑐 consists of two elements, then 𝑐 is an
endpoint in (𝑋, 𝑑).

Proof. Suppose that ↓ 𝑐 = {𝑐, 𝑚} with 𝑚 ̸= 𝑐. Obviously 𝑐
is a minimal element of 𝑋\ ↓ 𝑚. The result follows from
Lemma 11. The dual result is proved analogously.

Corollary 26. Each atom in a partially ordered set 𝑋 (see
[9, page 113] for the definition) with the smallest element and
equipped with its natural 𝑇

0
-quasimetric 𝑑 is a startpoint of

(𝑋, 𝑑). Similarly each coatom in a partially ordered set𝑋 with
a largest element and equipped with its natural 𝑇

0
-quasimetric

𝑑 is an endpoint of (𝑋, 𝑑).

Example 27. For a set 𝑋 with at least one element consider
the complete lattice (P(𝑋), ⊆) equipped with its natural 𝑇

0
-

quasimetric 𝑑, where P(𝑋) is the power set of 𝑋. Then
the startpoints of (P(𝑋), 𝑑) are exactly the singletons. The
endpoints of (P(𝑋), 𝑑) are exactly the complements of the
singletons.

In fact, for each 𝑥 ∈ 𝑋, the startpoint {𝑥} witnesses that
𝑋\{𝑥} is an endpoint, and the endpoint𝑋\{𝑥}witnesses that
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{𝑥} is a startpoint. Observe that for each 𝑥 ∈ 𝑋, ({𝑥}, 𝑋 \ {𝑥})

is a completely prime pair.

Example 28. LetR be the usual topology on the set R of the
reals equipped with set-theoretic inclusion as a partial order,
and let 𝑑 be its natural 𝑇

0
-quasimetric. Then there are no

startpoints, and exactly the complements of singletons are the
endpoints in (R, 𝑑).

Let us give a proof of this statement just using the basic
definitions. Suppose that𝐻 ∈ R is a startpoint with witness
𝐻

∈ R. In particular𝐻 ̸⊆ 𝐻

. Let ℎ ∈ 𝐻 \ 𝐻
. Then we find

𝐻

∈ R such that ℎ ∈ 𝐻 ⊂ 𝐻. It follows that (𝐻, 𝐻,𝐻) is

collinear in (R, 𝑑)—a contradiction. We conclude that there
are no startpoints in (R, 𝑑).

On the other hand fix 𝑥 ∈ R. Then collinearity of (𝑋,𝑋 \

{𝑥}, 𝐺)with𝐺 ∈ R implies that𝐺 = 𝑋\{𝑥}.Thus𝑋witnesses
that𝑋 \ {𝑥} is an endpoint in (R, 𝑑).

Assume that 𝐻 is an endpoint in (R, 𝑑). Then there is
a witness 𝐺 ∈ R such that 𝐺 ̸⊆ 𝐻. Let 𝑔 ∈ 𝐺 \ 𝐻. Then
(𝐺,𝐻,𝑋 \ {𝑔}) is collinear in (R, 𝑑). By our assumption𝐻 =

𝑋 \ {𝑔}. Hence exactly the complements of singletons are the
endpoints in (R, 𝑑).

Given a nonempty subset𝐴 of a set𝑋, by fil{𝐴}we denote
the filter generated by the filter base {𝐴} on𝑋.

Corollary 29. Let P be the set of filters (partially ordered
under set-theoretic inclusion) on an infinite set𝑋 and equipped
with its natural 𝑇

0
-quasimetric 𝑑. Then the set of endpoints

of (P, 𝑑) consists of all the ultrafilters on 𝑋, and the set of
startpoints of (P, 𝑑) consists of all the filters fil{𝑋 \ {𝑥}} with
𝑥 ∈ 𝑋.

Proof. It is well known that each filter on𝑋 is the intersection
of ultrafilters on 𝑋 and that the maximal elements in P are
the ultrafilters. Hence the endpoints in P are exactly the
ultrafilters on𝑋 (see Propositions 15 and 20).

FurthermorePhas a smallest element, namely, {𝑋}. Since
the set of fil{𝐴}with nonempty𝐴 ⊆ 𝑋 is join-dense inP, the
startpoints can only be of the form fil{𝐴} with proper 𝐴 ⊆ 𝑋

by Propositions 20 and 22. We know by Corollary 26 that, for
all 𝑥 ∈ 𝑋, fil{𝑋\{𝑥}} is a startpoint inP. We finally show that
there are no other startpoints in (P, 𝑑).

Let𝐴 ⊆ 𝑋 be such that𝑋\𝐴 contains at least two points.
Take anyG ∈ P such that fil{𝐴} ̸⊆ G. We consider two cases.

Case 1. (∩{𝐺 : 𝐺 ∈ G}) \ 𝐴 = 0. Then choose 𝑎 ∈ 𝑋 \ 𝐴.
It follows that fil{𝐴} is not minimal inP\ ↓ G, since fil{𝐴 ∪

{𝑎

}} ⊂ fil{𝐴} and also fil{𝐴∪{𝑎}} ̸⊆ G. Indeed if𝐴∪{𝑎} ∈ G,

then there is𝑌 ∈ G such that 𝑎 ∉ 𝑌; hence (𝐴∪{𝑎})∩𝑌 ⊆
𝐴 and then fil{𝐴} ⊆ G—a contradiction.

Case 2. There is 𝑎 ∈ (∩{𝐺 : 𝐺 ∈ G}) \ 𝐴. By our assumption
about𝐴we can choose 𝑎 ∈ 𝑋\(𝐴∪{𝑎}).Then fil{𝐴∪{𝑎}} ⊂
fil{𝐴} and also fil{𝐴∪ {𝑎


}} ̸⊆ G, because𝐴∪ {𝑎


} ∉ G, since

𝑎

∉ 𝐴∪ {𝑎


}. It follows that fil{𝐴} is not minimal inP\ ↓ G.

Thus we are done, since no G ∈ P exists that could
witness that fil{𝐴} is a startpoint of (P, 𝑑).

6. The Dedekind-MacNeille Completion versus
the 𝑞-Hyperconvex Hull

Some of the results mentioned in the previous sections may
have reminded the reader of the theory of the Dedekind-
MacNeille completion (cf. also [16]). Of course this is not
accidental but can be explained categorically (see, e.g., [5, 8]).

For the following discussion we need some basic facts
from the theory of the Dedekind-MacNeille completion of a
partially ordered set (see, e.g., [9, page 166]).

Let (𝑋, ≤) be a partially ordered set, and let 𝐴 ⊆ 𝑋. Then
we define the set of upper bounds of 𝐴, that is, 𝐴𝑢 = {𝑥 ∈ 𝑋:
𝑎 ≤ 𝑥 whenever 𝑎 ∈ 𝐴} and the set of lower bounds of 𝐴,
that is, 𝐴ℓ = {𝑥 ∈ 𝑋 : 𝑎 ≥ 𝑥 whenever 𝑎 ∈ 𝐴}. Let DM
(𝑋) = {𝐴 ⊆ 𝑋 : 𝐴

𝑢ℓ
= 𝐴}. The partially ordered set

(DM(𝑋), ⊆) is a complete lattice. It is known as theDedekind-
MacNeille completion of 𝑋. Furthermore 𝜙 : 𝑋 → DM(𝑋)

defined by 𝜙(𝑥) =↓ 𝑥 is an order embedding such that 𝜙(𝑋)
is both join-dense and meet-dense in DM(𝑋). This is indeed
the characteristic property of the Dedekind-MacNeille com-
pletion (cf. [9, Theorem 7.41]).

Proposition 30. Let (𝑋, ≤) be a partially ordered set and 𝑑 its
natural 𝑇

0
-quasimetric. Furthermore let 𝐷 be the natural 𝑇

0
-

quasimetric of (𝐷𝑀(𝑋), ⊆).Then (𝑋, 𝑑) and (DM(𝑋), 𝐷) have
the same startpoints (resp., endpoints).

Proof. For the proof we consider 𝑋 a subset of DM(𝑋).
By Proposition 20(b) each startpoint (resp., endpoint) of
(DM(𝑋), 𝐷) is a startpoint (resp., endpoint) of (𝑋, 𝑑), since
𝑋 is both join-dense and meet-dense in DM(𝑋). Suppose
now that 𝑥 is a startpoint of (𝑋, 𝑑) with witness 𝑦 ∈ 𝑋. Let
𝑓 ∈ DM(𝑋) be such that (𝑓, 𝑥, 𝑦) is collinear in (DM(𝑋), 𝐷).
Thus 𝑥 ≰ 𝑦, and, therefore, ↓ 𝑥 ̸⊆↓ 𝑦, 𝑓 ⊆ ↓ 𝑥, and 𝑓 ̸⊆↓ 𝑦.
Since 𝑋, is join-dense in DM(𝑋), there is 𝑓 ∈ 𝑋 such that
↓ 𝑓

⊆ 𝑓 and ↓ 𝑓 ̸⊆ ↓ 𝑦. Thus ↓ 𝑓 ⊆ 𝑓 ⊆ ↓ 𝑥 and (𝑓, 𝑥, 𝑦)

is collinear in (𝑋, 𝑑). Hence𝑓 = 𝑥 and therefore𝑓 =↓ 𝑥, too.
Consequently 𝑥 is a startpoint with witness 𝑦 in (DM(𝑋), 𝐷).
The dual result is proved analogously.

Example 31. We continue the discussion of Example 18 (see
[9, page 169] and Figure 2).

Considering 𝑃
4
as a subset of DM(𝑃

4
), in the light of

Proposition 30 and according to Corollary 17 in the complete
lattice DM(𝑃

4
), the set of the startpoints of 𝑃

4
becomes the

set of the (completely) join-irreducible elements of DM(𝑃
4
),

and the set of the endpoints of 𝑃
4
becomes the set of the

(completely) meet-irreducible elements of DM(𝑃
4
).

We will say that a partially ordered set (𝑋, ≤) with its
natural 𝑇

0
-quasimetric 𝑑 is 𝑜-hyperconvex if, for any 𝐴 ⊆

𝑋 and any families (𝑟
𝑥
)
𝑥∈𝐴

, (𝑠
𝑥
)
𝑥∈𝐴

in {0, 1} satisfying that
𝑑(𝑥, 𝑦) ≤ 𝑟

𝑥
+ 𝑠
𝑦
whenever 𝑥, 𝑦 ∈ 𝐴, it follows that

⋂
𝑥∈𝐴

(𝐶
𝑑
(𝑥, 𝑟
𝑥
) ∩ 𝐶

𝑑
−1(𝑥, 𝑠

𝑥
)) ̸= 0. Observe that (𝑋, 𝑑) is 𝑜-

hyperconvex provided that (𝑋, 𝑑) is 𝑞-hyperconvex.

Proposition 32. Let (𝑋, ≤) be a complete lattice and 𝑑 its
natural 𝑇

0
-quasimetric on𝑋. Then (𝑋, 𝑑) is 𝑜-hyperconvex.
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Figure 2: Hasse diagram of DM(𝑃
4
).

Proof. Let 𝐴 ⊆ 𝑋, and let (𝑟
𝑥
)
𝑥∈𝐴

and (𝑠
𝑥
)
𝑥∈𝐴

be families
in {0, 1} such that 𝑑(𝑥, 𝑦) ≤ 𝑟

𝑥
+ 𝑠
𝑦
whenever 𝑥, 𝑦 ∈ 𝐴. Set

𝑅 = {𝑥 ∈ 𝐴 : r
𝑥
= 0} and 𝑆 = {𝑥 ∈ 𝐴 : 𝑠

𝑥
= 0}. Note that

𝑅∩𝑆 contains at most one element, since (𝑋, 𝑑) is a 𝑇
0
-space.

We observe that 𝑥, 𝑦 ∈ 𝑅 ∩ 𝑆 implies that 𝑑(𝑥, 𝑦) ≤ 𝑟
𝑥
+ 𝑠
𝑦

and 𝑑(𝑦, 𝑥) ≤ 𝑟
𝑦
+ 𝑠
𝑥
; thus 𝑑(𝑥, 𝑦) = 0 = 𝑑(𝑦, 𝑥), and hence

𝑥 = 𝑦.
Furthermore by our assumption, obviously we have that

𝑅 ⊆ 𝑆
ℓ, since 𝑑(𝑟, 𝑠) ≤ 0 + 0 whenever 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆. Since

𝑋 is a complete lattice, ∨𝑅 exists.
Then

∨ 𝑅 ∈ (⋂

𝑥∈𝑅

↑ 𝑥) ∩ (⋂

𝑥∈𝑆

↓ 𝑥)

= (⋂

𝑥∈𝐴

𝐶
𝑑
(𝑥, 𝑟
𝑥
)) ∩ (⋂

𝑥∈𝐴

𝐶
𝑑
−1 (𝑥, 𝑠

𝑥
)) ,

(7)

since𝐶
𝑑
(𝑥, 𝑟
𝑥
) = 𝑋 if 𝑥 ∈ 𝐴\𝑅 and𝐶

𝑑
−1(𝑥, 𝑠

𝑥
) = 𝑋whenever

𝑥 ∈ 𝐴 \ 𝑆. Thus (𝑋, 𝑑) is 𝑜-hyperconvex.

As an illustration it may be useful to include here the
following simple example (see [4, Example 8]).

Example 33. Let 𝑋 = {0, 1} be equipped with its usual order
≤ and with its natural 𝑇

0
-quasimetric 𝑑. Then (𝑄

𝑋
, 𝐷) can be

identified with ([0, 1], 𝑢) under the obvious inclusion 𝑋 →

[0, 1]. Hence (𝑋, 𝑑) is not 𝑞-hyperconvex, although (𝑋, ≤) is
a complete lattice.

For the following result compare the discussion preceding
[8, Lemma 2.5].

Proposition 34. Let (𝑋, 𝑑) be a bounded 𝑞-hyperconvex 𝑇
0
-

quasimetric space and ≤ its specialization order. Then (𝑋, ≤) is
a complete lattice.

Proof. Suppose that 𝑔 ∈ [0,∞) is an upper bound of 𝑑.
Let 𝐴 ⊆ 𝑋 and 𝑥 ∈ 𝑋. Set 𝑟

𝑥
= 0 if 𝑥 ∈ 𝐴, and 𝑟

𝑥
= 𝑔

otherwise. Furthermore let 𝑠
𝑥
= 0 if 𝑥 ∈ 𝐴

𝑢, and 𝑠
𝑥
= 𝑔

otherwise.

Consider now arbitrary 𝑥, 𝑦 ∈ 𝑋. Assume first that 𝑥 ∈ 𝐴
and 𝑦 ∈ 𝐴

𝑢. Then 𝑥 ≤ 𝑦 and 𝑑(𝑥, 𝑦) = 0 = 𝑟
𝑥
+ 𝑠
𝑦
.

Suppose now that 𝑥 ∉ 𝐴 or 𝑦 ∉ 𝐴
𝑢. Consequently

𝑟
𝑥
+𝑠
𝑦
≥ 𝑔 ≥ 𝑑(𝑥, 𝑦). We have shown that for ((𝐶

𝑑
(𝑥, 𝑟
𝑥
))
𝑥∈𝑋

;
(𝐶
𝑑
−1(𝑥, 𝑠

𝑥
))
𝑥∈𝑋

) the hypothesis of the condition of 𝑞-
hyperconvexity is satisfied.

We conclude that there is

𝑦 ∈ (⋂

𝑥∈𝑋

𝐶
𝑑
(𝑥, 𝑟
𝑥
)) ∩ (⋂

𝑥∈𝑋

𝐶
𝑑
−1 (𝑥, 𝑠

𝑥
))

⊆ (⋂

𝑎∈𝐴

↑ 𝑎) ∩ ( ⋂

𝑏∈𝐴
𝑢

↓ 𝑏) .

(8)

Consequently 𝑦 = ∨𝐴. (Of course, similarly one could
show that ∧𝐴 exists.) We deduce that (𝑋, ≤) is a complete
lattice.

Example 35. Recall that (R, 𝑢) is a 𝑞-hyperconvex 𝑇
0
-

quasimetric space (see [4, Example 1]). The specialization
order ≤ of that space is the standard order onR; hence (R, ≤)
is not a complete lattice. So boundedness cannot be omitted
in Proposition 34.

Remark 36. Let (𝑋, ≤) be a partially ordered set and 𝑑 its nat-
ural 𝑇

0
-quasimetric. If (𝑋, 𝑑) is 𝑜-hyperconvex, then (𝑋, ≤)

is a complete lattice. This is a consequence of the proof of
Proposition 34 by setting 𝑔 = 1, since we have ≤

𝑑
=≤.

Indeed, more generally, our next result shows explicitly
how, given a partially ordered set (𝑋, ≤) equipped with its
natural 𝑇

0
-quasimetric 𝑑, the 𝑞-hyperconvex hull (𝑄

(𝑋,𝑑)
, 𝐷)

of (𝑋, 𝑑) contains the Dedekind-MacNeille completion of𝑋.

Lemma 37. Let (𝑋, ≤) be a partially ordered set and 𝑑 its
natural 𝑇

0
-quasimetric. Furthermore let 𝐹

𝑋
be the set of all

those minimal ample function pairs (𝑓
1
, 𝑓
2
) on (𝑋, 𝑑) that only

attain the values 0 and 1.
Consider an arbitrary pair (𝑓

1
, 𝑓
2
) of functions 𝑋 → {0,

1}. Then the following conditions are equivalent.

(a) (𝑓
1
, 𝑓
2
) ∈ 𝐹
𝑋
.

(b) 𝑓−1
1
{0} = (𝑓

−1

2
{0})
𝑢 and 𝑓−1

2
{0} = (𝑓

−1

1
{0})
ℓ.

(c) (𝑓−1
2
{0})
𝑢ℓ

= 𝑓
−1

2
{0} and 𝑓

1
(𝑥) = sup

𝑦∈𝑋
(𝑑(𝑦, 𝑥)−̇

𝑓
2
(𝑦)) whenever 𝑥 ∈ 𝑋.

Proof. (a) → (b) : given 𝑥 ∈ 𝑋, consider

𝑓
1
(𝑥) = sup

𝑦∈𝑋

(𝑑 (𝑦, 𝑥) −̇𝑓
2
(𝑦)) (9)

(see (∗) from Section 2).
Since the functions 𝑓

1
, 𝑓
2
and 𝑑 attain only the values 0

and 1, we see that these equations are equivalent to 𝑓−1
1
{0} =

(𝑓
−1

2
{0})
𝑢. Indeed, given 𝑥 ∈ 𝑋, we have that 𝑓

1
(𝑥) = 0 if and

only if, for any 𝑦 ∈ 𝑋, 𝑑(𝑦, 𝑥) = 1 implies that 𝑓
2
(𝑦) = 1, and

if and only if, for any𝑦 ∈ 𝑋, 𝑓
2
(𝑦) = 0 implies that𝑑(𝑦, 𝑥) = 0

if and only if 𝑥 ∈ (𝑓−1
2
{0})
𝑢.
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Similarly one verifies that 𝑓−1
2
{0} = (𝑓

−1

1
{0})
ℓ is equiva-

lent to 𝑓
2
(𝑥) = sup

𝑦∈𝑋
(𝑑(𝑥, 𝑦)−̇𝑓

1
(𝑦)) whenever 𝑥 ∈ 𝑋.

Since (𝑓
1
, 𝑓
2
) ∈ 𝐹
𝑋
⊆ 𝑄
𝑋
, condition (b) is satisfied.

(b) → (c) : by (b) we conclude that (𝑓−1
2
{0})
𝑢ℓ
= 𝑓
−1

2
{0}.

Furthermore the second part of (c) is equivalent to 𝑓−1
1
{0} =

(𝑓
−1

2
{0})
𝑢, as we have just noted above. Hence condition (c) is

satisfied.
(c) → (a): observe that (𝑓−1

2
{0})
𝑢ℓ
= 𝑓
−1

2
{0} and 𝑓−1

1
{0}=

(𝑓
−1

2
{0})
𝑢 together imply that 𝑓−1

2
{0} = (𝑓

−1

1
{0})
ℓ. But the

latter equality is equivalent to𝑓
2
(𝑥) = sup

𝑦∈𝑋
(𝑑(𝑥, 𝑦)−̇𝑓

1
(𝑦))

whenever 𝑥 ∈ 𝑋, as we have observed above. Thus (𝑓
1
, 𝑓
2
) ∈

𝐹
𝑋
, and condition (a) holds.

Proposition 38. Let (𝑋, ≤) be a partially ordered set with
its natural 𝑇

0
-quasimetric 𝑑, and let 𝐹

𝑋
be defined as in

Lemma 37.
Then the map 𝜓 : (𝐹

𝑋
, ≤
𝐷
) → (𝐷𝑀(𝑋), ⊆) defined

by (𝑓
1
, 𝑓
2
) → 𝑓

−1

2
{0} is an order isomorphism between 𝐹

𝑋

(equipped with the specialization order ≤
𝐷

induced on 𝐹
𝑋

by the 𝑇
0
-quasimetric 𝐷 of the 𝑞-hyperconvex hull of (𝑋, 𝑑))

and the Dedekind-MacNeille completion (𝐷𝑀(𝑋), ⊆) of 𝑋.
Furthermore for each 𝑥 ∈ 𝑋, 𝜓(𝑓

𝑥
) =↓ 𝑥.

Proof. By Lemma 37 each set 𝑓−1
2
{0} belongs to the Dede-

kind-MacNeille completion, since 𝑓 ∈ 𝐹
𝑋
. Moreover for

each 𝑥 ∈ 𝑋, 𝑓
𝑥
∈ 𝐹
𝑋
. Also for each 𝑥 ∈ 𝑋, obviously

(𝑓
𝑥
)
−1

2
{0} =↓ 𝑥. The specialization order ≤

𝐷
induced on 𝐹

𝑋

by the 𝑇
0
-quasimetric 𝐷 is defined by 𝑓 ⪯ 𝑔 if and only if

𝐷(𝑓, 𝑔) = 0 whenever 𝑓, 𝑔 ∈ 𝐹
𝑋
. Hence we have for any

𝑓, 𝑔 ∈ 𝐹
𝑋
,

𝐷(𝑓, 𝑔) = sup
𝑥∈𝑋

(𝑔
2
(𝑥) −̇𝑓

2
(𝑥)) = 0 (10)

if and only if

𝜓 (𝑓) = 𝑓
−1

2
{0} ⊆ 𝑔

−1

2
{0} = 𝜓 (𝑔) . (11)

(Of course this means exactly that 𝑔
2
≤ 𝑓
2
with respect

to the usual pointwise order on real-valued functions.) In
particular𝜓 is injective. Furthermore for𝐴 ⊆ 𝑋with𝐴𝑢ℓ = 𝐴

we define 𝑓
2
: 𝑋 → {0, 1} so that 𝐴 = 𝑓

−1

2
{0} and 𝑓

1
(𝑥) =

sup
𝑦∈𝑋

(𝑑(𝑦, 𝑥)−̇𝑓
2
(𝑦)) whenever 𝑥 ∈ 𝑋. Then 𝑓 = (𝑓

1
, 𝑓
2
) ∈

𝐹
𝑋
according to Lemma 37 and 𝜓(𝑓) = 𝐴, and hence 𝜓 is

surjective.
We conclude that the set 𝐹

𝑋
can be identified with the

ground set of the Dedekind-MacNeille completion of𝑋, and
𝜓 : (𝐹

𝑋
, ≤
𝐷
) → (𝐷𝑀(𝑋), ⊆) is an order isomorphism satis-

fying 𝜓(𝑓
𝑥
) =↓ 𝑥.

Remark 39. Given a partially ordered set (𝑋, ≤) equipped
with its natural 𝑇

0
-quasimetric 𝑑 and its 𝑞-hyperconvex hull

𝑄
(𝑋,𝑑)

, the subspace 𝑆 identified above with𝐷𝑀(𝑋) in𝑄
(𝑋,𝑑)

is obviously characterized by the property that it is the largest
subspace of 𝑄

(𝑋,𝑑)
containing 𝑒(𝑋) and such that the 𝑇

0
-

quasimetric𝐷 restricted to 𝑆 × 𝑆 attains only values in {0, 1}.

Example 40. Let 𝑋 = {0, 1} be equipped with the dis-
crete order = . As we have observed above, the natural 𝑇

0
-

quasimetric on𝑋 is the discretemetric. Furthermore (𝑄
𝑋
, 𝐷)

can be identified with the set𝑌 = [0, 1]×[0, 1] equipped with
the 𝑇
0
-quasimetric

𝐷((𝛼
1
, 𝛼
2
) , (𝛽
1
, 𝛽
2
)) = (𝛼

1
−̇𝛽
1
) ∨ (𝛼

2
−̇𝛽
2
) (12)

whenever (𝛼
1
, 𝛼
2
), (𝛽
1
, 𝛽
2
) ∈ 𝑌, where 0 is identified with

(0, 1) and 1 is identified with (1, 0) (see [6, Example 4]). Of
course theDedekind-MacNeille completion of (𝑋, 𝑑) consists
only of the four corner points of𝑌 endowed with the induced
specialization order on 𝑌 (see Example 𝑃

2
in [9, page 169]).

Problem 1. Given a 𝑇
0
-quasimetric space (𝑋, 𝑑), compare the

set of the endpoints of (𝑋, 𝑑) with the set of the endpoints of
(𝑄
𝑋
, 𝐷).

In this paper we established that these two sets are equal
if 𝜏(𝑑𝑠) is compact.

7. Extended 𝑇
0
-Quasimetrics

Given a partially ordered set (𝑋, ≤), in the last three sections
weworkedwith the natural𝑇

0
-quasimetric𝑑 of𝑋.The choice

of the value 1 in the definition of the natural 𝑇
0
-quasimetric

looked rather arbitrary. A more canonical approach can be
given if one uses extended 𝑇

0
-quasimetrics.

Remark 41. Let (𝑋, ≤) be a partially ordered set. For each
𝑥, 𝑦 ∈ 𝑋, we set 𝜌(𝑥, 𝑦) = 0 if 𝑥 ≤ 𝑦 and 𝜌(𝑥, 𝑦) = ∞

otherwise (see, e.g., [8, Section 2.1]). Obviously, 𝜌 is an
extended 𝑇

0
-quasimetric on𝑋.

We note however that, for any 𝑎 ∈ [0,∞], we have
∞ + 𝑎 = ∞, but 1 + 1 = 2 (so that {0, 1} is not closed
under the operation of addition +). Therefore we obtain
distinct theories of collinearity by considering (𝑋, 𝑑) or
(𝑋, 𝜌), respectively. For our purposes the 𝑇

0
-quasimetric 𝑑

seems to lead to a more interesting theory. We finally show
how our characterizations of endpoints and startpoints (see
Lemma 11 andCorollary 12) have to bemodified to be applied
to our new setting.

Proposition 42. Let (𝑋, ≤) be a partially ordered set, 𝜌 its
natural extended 𝑇

0
-quasimetric, and 𝑥, 𝑦 ∈ 𝑋. Then 𝑥 is

an endpoint with witness 𝑦 in (𝑋, 𝜌) if and only if one has
{𝑥} = 𝑋\ ↑ 𝑦.

Furthermore𝑥 is a startpoint with witness𝑦 in (𝑋, 𝜌) if and
only if one has {𝑥} = 𝑋\ ↓ 𝑦.

Proof. Suppose that 𝑥 is an endpoint with witness𝑦 in (𝑋, 𝜌).
Therefore 𝜌(𝑦, 𝑥) = ∞, and, for all 𝑎 ∈ 𝑋, 𝜌(𝑦, 𝑥) + 𝜌(𝑥, 𝑎) =
𝜌(𝑦, 𝑎) implies that 𝑥 = 𝑎. Hence 𝑥 ∈ 𝑋\ ↑ 𝑦. Consider any
𝑎 ∈ 𝑋\ ↑ 𝑦. Thus∞ = 𝜌(𝑦, 𝑥) + 𝜌(𝑥, 𝑎) = 𝜌(𝑦, 𝑎), which by
our assumption implies that 𝑥 = 𝑎. Therefore {𝑥} = 𝑋\ ↑ 𝑦.

For the converse suppose that {𝑥} = 𝑋\ ↑ 𝑦. Then
𝜌(𝑦, 𝑥) = ∞. Let 𝑎 ∈ 𝑋 be such that 𝜌(𝑦, 𝑥) + 𝜌(𝑥, 𝑎) =

𝜌(𝑦, 𝑎). Then 𝜌(𝑦, 𝑎) = ∞ and 𝑎 ∈ 𝑋\ ↑ 𝑦 = {𝑥}.
Consequently 𝑎 = 𝑥. Thus 𝑥 is an endpoint with witness 𝑦
in (𝑋, 𝜌). The dual result is proved analogously.
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Example 43. Let us consider the set Z of the integers
equipped with its usual linear order, and let 𝑑 be its natural
𝑇
0
-quasimetric and, 𝜌 its natural extended 𝑇

0
-quasimetric

respectively.Then (Z, 𝜌) does not have any endpoints nor any
startpoints by Proposition 42, while in (Z, 𝑑) each point is an
endpoint and a startpoint (see Corollary 24).

8. Conclusion

We showed that for any join compact 𝑇
0
-quasimetric space

(𝑋, 𝑑) the set of endpoints (resp., startpoints) of (𝑋, d) is
equal to the set of endpoints (resp., startpoints) of its 𝑞-
hyperconvex hull (𝑄

𝑋
, 𝐷). We also specialized some of our

earlier results on endpoints contained in [6] to two-valued
𝑇
0
-quasimetric spaces. In particular we observed that in the

case of a complete lattice 𝑋 and its natural 𝑇
0
-quasimetric

𝑑 the startpoints (resp., endpoints) of (𝑋, 𝑑) are exactly
the completely join-irreducible (resp., the completely meet-
irreducible) elements. For a partially ordered set we finally
explored the connection between its Dedekind-MacNeille
completion and the 𝑞-hyperconvex hull of its natural 𝑇

0
-

quasimetric space.
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