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The vanadium redox flow battery (VRB) is a nonlinear system with unknown dynamics and disturbances. The flowrate of the elec-
trolyte is an important control mechanism in the operation of a VRB system. Too low or too high flowrate is unfavorable for the
safety and performance of VRB.This paper presents a neural network predictive control scheme to enhance the overall performance
of the battery. A radial basis function (RBF) network is employed to approximate the dynamics of the VRB system. The genetic
algorithm (GA) is used to obtain the optimum initial values of the RBF network parameters.The gradient descent algorithm is used
to optimize the objective function of the predictive controller. Compared with the constant flowrate, the simulation results show
that the flowrate optimized by neural network predictive controller can increase the power delivered by the battery during the
discharge and decrease the power consumed during the charge.

1. Introduction

Because of the energy crisis, utilization of renewable energy
sources such as wind and solar energy for electric power sup-
ply has received more and more attention in recent years.
However, the intermittent nature of most renewable energy
makes it highly dependent on reliable and economical energy
storage systems. All-vanadium redox flow battery (VRB) is a
promising candidate for the storage of renewable energy.
Compared with other redox batteries such as zinc bromine
battery and lead acid battery, VRB has many attractive fea-
tures, including long cycle life, high energy conversion effi-
ciency, flexible design, and low cost [1]. Moreover, the pro-
blem of electrolytes cross-contamination is avoided by using
the same element in both half cells.The potential applications
of VRB include load leveling, uninterruptible power supply
(UPS), and renewable energy storage [2]. Thus, it has good
application and development prospects.

The flowrate of the electrolyte is an important control
mechanism in the operation of a vanadium redox flowbattery

system. At low flowrates, the electrolyte is provided insuf-
ficiently for the chemical reaction and stagnant regions can
form in the electrode. The higher electrolyte flowrate will in-
crease the VRB performance. But on the other hand, if the
flowrate is too high, there is a risk of leakage, and the pump
consumption will increase, which will reduce the system effi-
ciency [3, 4]. In order to enhance system efficiency, the opti-
mal electrolyte flow rate should be determined.

Until recently, most researches are focused on the key
materials of VRB, and there is little information available in
the literature about the optimization of the electrolyte flow-
rate. An optimal strategy of electrolyte flowrate is proposed
in [3] to improve the system efficiency and keep the high
capacity simultaneously. At the beginning of the charge/
discharge process, VRB operates at the lower flowrate, and
then increases to higher flowrate when the voltage increases/
decrease to certain value. Energy efficiency, system efficiency,
and capacity at different operating modes are compared and
the optimal electrolyte flowrate is determined. Amultiphysics
model of the VRB is proposed in [5]. The battery power is
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represented during the charge/discharge as a function of flow
rate, states of charge (SOC), and the stack current. The opti-
mal flow rates are obtained by maximizing the power deliv-
ered during the discharge and minimizing the power con-
sumed during the charge. However, these optimal strategies
suffer from a serious drawback in the form of deterioration in
the performance when the system is operated under wide
range operating conditions or subjected to disturbance. To
overcome these drawbacks, controllers based on robust con-
trol techniques must have been used.

Model predictive control (MPC) is an application of opti-
mal control theory. In model predictive control, process
model is utilized to predict the future response of a plant. An
optimal control sequence is determined by solving a finite
horizon optimization problem online at each sampling in-
stant and the first control in this sequence is applied to the
plant [6]. Because of its ability to handle the multivariable/
nonlinear nature of the dynamics, constraints, and optimality
in an integrated fashion [7], MPC technology can now be
found in a wide variety of application areas including chemi-
cals, food processing, automotive, and aerospace applications
[8]. The performance of model predictive controller relies
upon the accuracy of the model on which it is based. How-
ever, the VRB suffers aging, reactant crossover, and load dis-
turbance that cause no well-known effects on the system dy-
namics; it is difficult to establish accurate mathematical
model. Moreover, the mathematical model is too complex for
online optimization, and a simpler model is therefore re-
quired. An attractive approach to tackle these problems is to
use neural networks as nonlinear models of the dynamic be-
havior of the process [9]. This is because multilayer networks
have a capability to learn and uniformly approximate nonlin-
ear functions to a prospected accuracy [10].

In this paper, a nonlinear model predictive control
scheme is proposed to maximize the power delivered by the
battery during the discharge and minimize the power con-
sumed during the charge.

2. VRB System Process Description

TheVRB system consisted of two key elements: the cell stack,
where electrochemical reaction occurred and the tanks of
electrolytes, where energy is stored. The electrolytes were
pumped from the tanks to the stack by a circulation system.
A schematic diagram of a vanadium redox flow batter is given
in Figure 1.

The main electrode reactions for the VRB are as follows:

cathode : V3+ + e−  V2+ (1)

anode : VO2+ + H
2
O  VO+

2
+ e− + 2H+ (2)

A multiphysics model of a VRB system with 19 cells is
introduced in [11], which is composed of the electrochemical
model and the mechanical model.
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Figure 1: A schematic diagram of a vanadium redox flow battery.

2.1. Electrochemical Model. The equilibrium potential of the
individual cells can be approximated using the Nernst equa-
tion (assuming unit activity coefficients) as follows:

𝐸cell = 𝐸
0
+

𝑅𝑇

𝐹

ln(

𝐶V2+𝐶V5+𝐶
2

H+

𝐶V3+𝐶V4+
) , (3)

where 𝐸
0 is the standard potential; 𝑇 is the cell temperature;

𝐶
𝑖
is the molar concentration of species 𝑖 in the cells. For sim-

plicity, they assuming that the concentration inside the cell
and tank is uniform and the time delay of electrolyte flow is
negligible, the concentration inside the cell and tank is given
by [12]
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(4)

where 𝐶tank
𝑖

is the concentration inside the tank, 𝑉cell is the
volume of the cell, 𝑉tank is the volume of the tank, 𝐼(𝑡) is the
current, 𝑄(𝑡) is the electrolyte flowrate, and 𝑏 is a sign factor
that depends on the considered vanadium species 𝑖 (−1 for
V2+ and V5+ ions and 1 for V3+ and V4+ ions).

The H+ quantity in the catholyte increases by 1M (after
the migration) when 1M of vanadium V5+ is produced. So,
the H+ concentration in the catholyte at any state of charge is

𝐶H+ = 𝐶H+ ,discharged + 𝐶VO+
2

, (5)

where 𝐶H+,discharged is the protons concentration when the
electrolyte is completely discharged.
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Assuming that each individual cell composing the stack
has the same charging characteristics, the equilibrium voltage
𝑈eq of stack can be written as follows:

𝑈eq = 𝐸cell ⋅ 𝑁cell, (6)

where 𝑁cell is the number of cells.
The stack voltage 𝑈stack is decreased when current flows

through the stack because of several types of internal losses,
such as activation, concentration, and Ohmic losses. But
these internal losses are difficult to measure; here, we replace
them with equivalent resistance 𝑅eq, ch/disch:

𝑈loss = 𝜂act + 𝜂conc + 𝜂ohm = 𝐼 ⋅ 𝑅eq, ch/disch. (7)

So stack voltage 𝑈stack is given by

𝑈stack = 𝑈eq − 𝑈loss. (8)

Then the power of stack can be calculated as

𝑃stake = 𝑈stack ⋅ 𝐼. (9)

2.2. Mechanical Model. The circulation system pumps the
electrolytes from the tanks through the stack and back in the
tanks.The power consumed by pumps is expressed as follows:

𝑃mech = 2

(Δ𝑃pipes + Δ𝑃stack)𝑄 (𝑡)

𝜂pump
, (10)

where 𝜂pumps is the pump efficiency, Δ𝑃pipes is the pressure
drop in the pipes which can be obtained from the extended
Bernoulli equation. The pressure drop in the stack Δ𝑃stack is
proportional to the flowrate 𝑄(𝑡):

Δ𝑃stack = 𝑄 (𝑡)
̃
𝑅, (11)

where ̃
𝑅 is the hydraulic resistance obtained from FEM sim-

ulations [13].

2.3. Battery Power. In practice, 𝑃mech is provided from the
external power source during the charge and from the stack
during the discharge [5]. By convention, the stack current is
defined as positive during the discharge and negative during
the charge. Thus, the battery power 𝑃VRB is given by

𝑃VRB = 𝑃stake − 𝑃mech. (12)

3. Design of Nonlinear Model
Predictive Controllers

The schematic of the neural network predictive control
(NNPC) system developed in this research is shown in
Figure 2. The main steps of the NNPC algorithm are listed as
follows.

(1) Measure the input and output of the VRB system.
(2) Use the previous calculated control inputs and the

neural network identifier to compute the cost func-
tion.
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system

Figure 2: Schematics of the NNPC system.

(3) Use the optimization algorithm to calculate a new
control vector.

(4) Repeat steps (2) and (3) till the desired optimal result
is achieved.

(5) Apply the first element of the control vector to the
VRB system.

(6) Update the parameters of the NN with the new train-
ing set.

(7) Repeat steps (1)–(6) for each time step.

3.1. Predictive Model Based on RBF Neural Network. Accord-
ing to previous section, the battery power can be expressed as
follows

𝑃VRB = 𝑔 (𝑄, 𝐼, 𝑇, 𝑡) . (13)

Suppose the stack current and temperature keep constant for
a certain amount of time. So, there is only one control vari-
able: the flowrate𝑄. The following NARXmodel can be used
to represent the VRB system:

𝑦 (𝑡) = 𝑓 (𝑦 (𝑡 − 1) , 𝑦 (𝑡 − 2) , 𝑢 (𝑡 − 1) , 𝑢 (𝑡 − 2)) , (14)

where 𝑦 is the battery power, 𝑢 is the flowrate, and 𝑓(⋅) is an
unknown nonlinear function that needs to be identified. Ra-
dial basis function (RBF) networks having one hidden layer
were proven to be universal approximator [14]. Because of the
advantages of easy design and good generalization, a RBFnet-
work is used to identify the nonlinear function𝑓(⋅) in this pa-
per. The structure of the RBF network is shown in Figure 3.

A Gaussian function is used as the activation function. So
at the hidden layer, the output of RBF unit 𝑖 is

𝜑
𝑖
(𝑥) = exp(−





𝑥 − 𝑐
𝑖






2

2𝜎
2

𝑖

) (𝑖 = 1, 2, . . . , 5) , (15)

where 𝑥(𝑡) = [𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2)]
𝑇 is the

input of RBF network. 𝑐
𝑖
and 𝜎
𝑖
are the center andwidth of the

𝑖th unit, respectively.
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Figure 3: The structure of the RBF network.

The network output is calculated by

𝑦 =

5

∑

𝑖=1

𝑤
𝑖
𝜑
𝑖
(𝑥) , (16)

where 𝑤
𝑖
is the weight value on the connection between RBF

unit 𝑖 and network output. The one-step ahead prediction is
given by

𝑦 (𝑡 + 1) = 𝑓
𝑁𝑁

(𝑦 (𝑡) , 𝑦 (𝑡 − 1) , 𝑢 (𝑡) , 𝑢 (𝑡 − 1)) . (17)

The 𝑗-step ahead prediction of the system’s output is calcu-
lated by feeding back themodel outputs (instead of the future
system’s outputs which do not exist) to the input nodes of the
network [15].

Consider the following:

𝑦 (𝑡 + 𝑗) = 𝑓
𝑁𝑁

(𝑦 (𝑡 + 𝑗 − 1) , 𝑦 (𝑡 + 𝑗 − 2) ,

𝑢 (𝑡 + 𝑗 − 1) , 𝑢 (𝑡 + 𝑗 − 2)) .

(18)

The computational burden of the optimization problem
showed in next subsection increases with the complexity of
RBF network structure. In order to simplify the RBF network
structure and simultaneously ensure the approximation accu-
racy, in this study, genetic algorithm (GA) is adopted to ob-
tain the optimum initial values of the RBF network parame-
ters before training the RBF network. These parameters in-
clude the output weights, the centers, and widths of the hid-
den unit.

3.2. The Objective Function Optimization Algorithm. There
are different forms of the objective function under different
control requirements. In this study, our purpose is to maxi-
mize the power delivered by the battery during the discharge

and minimize the power consumed during the charge while
ensuring the control signal is smooth. Noticing that the bat-
tery power is positive during the discharge and negative dur-
ing the charge, the objective function is given as follows:

min 𝐽(𝑡) = −

𝑛

∑

𝑗=1

𝑦 (𝑡 + 𝑗) +

1

2

𝑚

∑

𝑖=1

𝜆Δ𝑢
2
(𝑡 + 𝑖 − 1) (19)

subject to constraints

𝑢min ≤ 𝑢 (𝑡 + 𝑖 − 1) ≤ 𝑢max (𝑖 = 1, 2, . . . , 𝑚) ,

𝑦min ≤ 𝑦 (𝑡 + 𝑗) ≤ 𝑦max (𝑗 = 1, 2, . . . , 𝑛) ,

(20)

where Δ𝑢(𝑡 + 𝑖 − 1) = 𝑢(𝑡 + 𝑖 − 1) − 𝑢(𝑡 + 𝑖 − 2), 𝜆 > 0 is weight
coefficient, and 𝑛 and 𝑚 are the predictive horizon and con-
trol horizon, respectively. The vector of the control variables
is obtained from the minimization of the objective function
over the specified horizon.The control vector is available only
within the control horizon andmaintains constant afterward,
that is, 𝑢(𝑡+𝑖) = 𝑢(𝑡+𝑚−1) for 𝑖 = 𝑚, . . . , 𝑛−1. Only the first
element of the optimized control sequence is implemented on
the process.

Since the function 𝜑 is nonlinear, an analytical solution of
the objective function is not possible. Stochastic optimization
algorithms such as genetic algorithm and simulated anneal-
ing suffer from the drawback of slow convergence, which
make them not suitable for online control. Since the objective
function surface is simple, the gradient based method is an
appropriate choice. Based on the gradient based method, for
a given iterative step 𝑖, the control vector can be calculated as
follows:

𝑢
𝑘
(𝑡 + 𝑖 − 1) = 𝑢

𝑘−1
(𝑡 + 𝑖 − 1) + Δ𝑢

𝑘
(𝑡 + 𝑖 − 1)

(𝑖 = 1, 2, . . . , 𝑚) ,

Δ𝑢
𝑘
(𝑡 + 𝑖 − 1) = −𝜂

𝜕𝐽

𝜕𝑢 (𝑡 + 𝑖 − 1)

+ 𝛼Δ𝑢
𝑘−1

(𝑡 + 𝑖 − 1) ,

(21)

where 𝜂 is the learning rate and 𝛼Δ𝑢
𝑘−1

(𝑡+ 𝑖−1) is referred to
as the additional momentum term. The initial value of 𝑢(𝑡 +

𝑖 − 1) in the iteration at each sampling period is defined as

𝑢
0
(𝑡 + 𝑖 − 1) = 𝑢 (𝑡 − 1) . (22)

Constraints on control sequence can be handled as follows:
when any one of the 𝑢(𝑡+𝑖) reaches its limit, this control input
is then set to be equal to its limit [16].

The derivative of the objective function at time 𝑡 + ℎ − 1,

ℎ = 1, 2, . . . , 𝑚 can be written as follows:

𝜕𝐽

𝜕𝑢 (𝑡 + ℎ − 1)

= −

𝑛

∑

𝑗=1

𝜕𝑦 (𝑡 + 𝑗)

𝜕𝑢 (𝑡 + ℎ − 1)

+

𝑚

∑

𝑖=0

𝜆Δ𝑢 (𝑡 + 𝑖)

𝜕Δ𝑢 (𝑡 + 𝑖)

𝜕𝑢 (𝑡 + ℎ − 1)

.

(23)
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Table 1: The characteristics of the VRB stack.

Name Value
Number of cells 𝑁cells 19
𝑅charge 0.037Ω

𝑅discharge 0.039Ω

Electrolyte vanadium concentration 2mol/L
Initial 𝐻+ concentration 5mol/L
Tank size 𝑉tk 83 L
Flow resistance ̃

𝑅 14186843 Pa/m3

Cell temperature 𝑇 298K
Standard potential 𝐸0 1.255V

The partial derivative can be calculated by the chain rule:

𝜕𝑦 (𝑡 + 𝑗)

𝜕𝑢 (𝑡 + ℎ − 1)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
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𝑁𝑁

𝜕𝑥
3

, 𝑗 = ℎ,

𝜕𝑓
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𝜕𝑥
1
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1

𝜕𝑢 (𝑡 + ℎ − 1)

+
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𝑁𝑁

𝜕𝑥
4
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2
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2
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, ℎ + 2 ≤ 𝑗 ≤ 𝑛,

(24)

where 𝑥(𝑡 + 𝑗) = [𝑦(𝑡 + 𝑗 − 1), 𝑦(𝑡 + 𝑗 − 2), 𝑢(𝑡 + 𝑗 − 1),

𝑢(𝑡 + 𝑗 − 2)]
𝑇 is the input vector at time 𝑡 + 𝑗:

𝜕𝑓
𝑁𝑁

𝜕𝑥
𝑙

=

5

∑

𝑖=1

𝑤
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exp(−
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2

𝑖

, 𝑙 = 1, 2, 3, 4,

(25)

where 𝑥
𝑙
represents the network input vector of 𝑦 and 𝑢.

𝜕Δ𝑢(𝑡 + 𝑖)/𝜕𝑢(𝑡 + ℎ − 1) can be given by

𝜕Δ𝑢 (𝑡 + 𝑖 − 1)

𝜕𝑢 (𝑡 + ℎ − 1)

=

{
{

{
{

{

1, 𝑖 = ℎ,

−1, 𝑖 = ℎ + 1,

0, else.
(26)

4. Simulation

To investigate the performance of the proposed controller, a
19 cells, 2.5 kW, 6 kWh VRB is simulated. Its main character-
istics are listed in Table 1 [5].

4.1. Identification. In order to reduce the online computing
time, the RBF network was trained offline before being ap-
plied to online control. The multiphysics model developed in
Section 2 was used for train data generation. An input-output
data set to train the RBF network was obtained by randomly
changing the manipulated variable, 𝑄, within the range of
0.05–0.7 and normalized between −1 and +1. The sampling

0 1000 2000 3000 4000 5000 6000 7000 8000
1800

1900

2000

2100

2200

2300

2400

2500

Po
w

er
 (w

)

Time (s)

Physical model
RBF model

Figure 4: Physical model and RBFmodel outputs for battery power
during the discharge at 100A.

time is set as 5 s. 1026 samples were used for the training,
while 513 samples were used for validation. The initial values
of the RBF network parameters were optimized by GA. After
the optimum initial values were obtained, the Levenberg-
Marquardt algorithmwas used as training algorithm to adjust
the network parameters. Rootmean square error (RMSE)was
employed to evaluate the accuracy of RBF network model.
The training was terminated after 500 iterations; the obtained
value of RMSE is 1.6591. Figure 4 shows the validation results.
From the results of Figure 4, it can be observed that the RBF
network can accurately represent the VRB dynamics.

The RBF network trained offline works well when there
are no disturbances. However, it can not accurately represent
the VRB dynamics when VRB system is subjected to uncer-
tainty. So, the RBF network requires to train online to adapt
with the change in the process. Newest 100 samples were used
for training.

4.2. Control Results. Normally, in a charge-discharge cycle,
the battery is charged at constant current, the battery SoC in-
creases from 2.5% (discharged) to 97.5%, and then it is dis-
charged at constant current until it reached its initial SoC [11].
The predictive horizon and the control horizons for NMPC
are chosen as 4 and 1, respectively. The parameter 𝜆 is set to
10000.The lower limit and upper limit of flowrate are 0.05 L/s
and 2 L/s, respectively. In normal working condition, the bat-
tery is charged/discharged at constant current. Assuming at
𝑡 = 5000 s, a disturbance on generator speed causes the charge
current to change from 100A to 95A, and at 𝑡 = 12000 s,
a load disturbance causes the discharge current to change
from 100A to 110A. Figure 5 shows the battery power during
a charge-discharge cycle when influenced by a series of step
changes in stack current.The corresponding optimal flowrate
that is shown in Figures 6 and 7 shows the comparison of bat-
tery power during a charge-discharge cycle at different flow-
rate. Comparedwith the battery power at𝑄 = 0.3, the average
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Figure 5: Battery power during a charge-discharge cycle.
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Figure 6: Optimal flowrate during a charge-discharge cycle.

power consumed during the charge at optimal flowrate
decreased by 10.80W, and the average power delivered by the
battery during the discharge increased by 10.62W.

5. Conclusions

The electrolyte flowrate of VRB system was optimized online
using model predictive control based on artificial neural net-
works. An RBF network is built to predict the future battery
power. In order to reduce the computational burden of the
optimization problem, the hidden layer nodes were chosen as
5. The RBF network model was found to be valid for wide
flowrate variation with random load disturbances. The gra-
dient descent algorithm method is used to realize the opti-
mization procedure. Simulation result at different flowrate
indicates that the proposed controller can enhance the output
power of battery during the discharge and reduce the operat-
ing cost during the charge. Future works will focus on control
strategy for VRB and wind farm combined system.
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