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We study the asymptotic behavior at small diffusivity of the solutions, 𝑢𝜀, to a convection-diffusion equation in a rectangular domain
Ω. The diffusive equation is supplemented with a Dirichlet boundary condition, which is smooth along the edges and continuous
at the corners. To resolve the discrepancy, on 𝜕Ω, between 𝑢

𝜀 and the corresponding limit solution, 𝑢0, we propose asymptotic
expansions of 𝑢𝜀 at any arbitrary, but fixed, order. In order to manage some singular effects near the four corners ofΩ, the so-called
elliptic and ordinary corner correctors are added in the asymptotic expansions as well as the parabolic and classical boundary layer
functions.Then, performing the energy estimates on the difference of 𝑢𝜀 and the proposed expansions, the validity of our asymptotic
expansions is established in suitable Sobolev spaces.

1. Introduction

We consider a singularly perturbed convection-diffusion
equation in a rectangular domain Ω = (0, 1) × (0, 1):

𝐿
𝜀
𝑢
𝜀

:= −𝜀Δ𝑢
𝜀

− 𝜕
𝑥
𝑢
𝜀

= 𝑓 in Ω,

𝑢
𝜀

= 𝑔 on 𝜕Ω.

(1)

Here 𝜀 is a small but strictly positive diffusivity parameter,
and 𝑓 = 𝑓(𝑥, 𝑦) is a given smooth data with ‖𝐷

𝛼

𝑓‖
𝐿
2
(Ω)

≤

𝜅
𝛼
, independent of 𝜀, for some 𝛼’s as needed in the analysis

below. The function 𝑔 = 𝑔(𝑥, 𝑦) is assumed to be continuous
on 𝜕Ω and smooth on each edge of 𝜕Ω. Namely, defining the
restriction of 𝑔 to the edges of 𝜕Ω as follows:

𝑔
󵄨
󵄨
󵄨
󵄨𝑥=0

= 𝑔
1
(𝑦) , 𝑔

󵄨
󵄨
󵄨
󵄨𝑥=1

= 𝑔
2
(𝑦) ,

𝑔
󵄨
󵄨
󵄨
󵄨𝑦=0

= 𝑔
3
(𝑥) , 𝑔

󵄨
󵄨
󵄨
󵄨𝑦=1

= 𝑔
4
(𝑥) ,

(2)

we assume that

𝑔
1
(0) = 𝑔

3
(0) , 𝑔

1
(1) = 𝑔

4
(0) ,

𝑔
2
(0) = 𝑔

3
(1) , 𝑔

2
(1) = 𝑔

4
(1) ,

𝑔
𝑖
is smooth for 1 ≤ 𝑖 ≤ 4.

(3)

If these compatibility conditions were not satisfied, some
additional considerations would be necessary, which we do
not address here.

In what follows, we study the asymptotic behavior of the
solutions to (1) at small diffusivity 𝜀.

In a very nice related earlier work, [1], the asymptotic
behavior of the solutions of a convection-diffusion equation
similar to (1) was discussed. More precisely, in a rectangular
domain Ω̃ = (0, 𝑙

0
) × (0, 𝑙

1
), the authors considered

−𝜀
󸀠

Δ𝑢
𝜀
󸀠

− 𝑏𝜕
𝑥
𝑢
𝜀
󸀠

+ 𝑐𝑢
𝜀
󸀠

=
̃
𝑓 in Ω̃,

𝑢
𝜀
󸀠

= 𝑔 on 𝜕Ω̃,

(4)
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where 𝑏 > 0, 𝑐 ≥ 0 are constants and ̃
𝑓 is a given smooth

function in Ω̃.The function 𝑔, satisfying the analogue version
of (3) in Ω̃, is assumed to be continuous and piecewise
smooth on 𝜕Ω̃. By constructing, in [1], asymptotic expansions
of𝑢𝜀

󸀠

with respect to a small diffusivity 𝜀
󸀠, the boundary layers

of (4) were analyzed in a systematic way. The validity of their
asymptotic expansions was established using the maximum
principle.

Using a simple change of variables which maps Ω̃ to
Ω, and setting 𝑢

𝜀
󸀠

= 𝑢
𝜀

𝑒
𝜆𝑥 with a suitable 𝜆, one can

transform (4) to (1) where the two diffusivity parameters
𝜀 and 𝜀

󸀠, respectively, in (1) and (4) are compatible; that
is, 𝜀/𝜀󸀠 is of order one. Hence, via this transformation, our
analysis of (1) in this paper is applicable to (4) as well. Our
motivations for conducting the present study appear below. In
particular we significantly simplify the proofs of [1] andmake
the study suitable for more general equations or systems,
in particular, those which do not satisfy the maximum
principle.

In the boundary layer analysis associated with the
convection-diffusion equation (1) (or (4)), one of the most
important and difficult points is to resolve any possible
singularity near the four corners of the rectangular domainΩ.
Towards this end, we simplify and improve the method used
in [1]. More precisely, concerning the asymptotic expansion
of 𝑢
𝜀, we introduce the so-called elliptic boundary layer

corrector, appearing in Section 3.2, near the inflow boundary
at 𝑥 = 1 only, while in [1], it was used near both the
inflow and outflow boundaries at 𝑥 = 1 and 𝑥 = 0.
This simplification in the construction of the asymptotic
expansions is mainly based on an observation that the corner
singularities at (0, 0) and (0, 1) (where the flows go out)
can be handled by the ordinary corner corrector, appearing
in Section 3.4 (which is much easier to analyze than the
elliptic corrector). Using the energy estimates rather than
the maximum principle as in [1], we prove the validity
of our proposed asymptotic expansions in suitable Sobolev
spaces. Here we make use of the Hardy inequality (see,
e.g., [2]) in the estimates. As we said above, our energy
estimation approach can be easily extended to some higher
order equations or systems which do not admit a maximum
principle.

This paper is organized as follows. In Section 2, we
introduce a formal expansion of𝑢𝜀 as the sumof the outer and
inner expansions.The outer expansion (outside of the bound-
ary layers), which is easy to obtain, appears in Section 2.Then,
in Section 3, by performing the boundary layer analysis in a
systematic way, we construct the inner expansion (inside the
boundary layers). In Section 4, we state and prove the main
convergence result, Theorem 9, concerning the difference
between 𝑢

𝜀 and the proposed asymptotic expansion at a given
order. In addition, in the appendix, we prove Lemma 1 that
contains some delicate pointwise estimates on the parabolic
boundary layer correctors introduced in Section 3.1. The
study of the elliptic corrector and its approximation also
appears in the appendix.

Throughout this paper, we use the notation conventions
below.

Notation 1. 𝜅 := 𝜅(𝑓, 𝑔, Ω, 𝑛) is a constant depending on
the data, but independent of 𝜀; here 𝑛 ≥ 0 is the fixed (but
arbitrary) order of the asymptotic expansion, as it appears in
(6).

Notation 2. An e.s.t. is a function (or a constant) whose norm
in all Sobolev spaces𝐻𝑠 (and thus spaces𝐶𝑠) is exponentially
small with, for each 𝑠, a bound of the form 𝑐

1
𝑒
−𝑐
2
/𝜀
𝛾

, 𝑐
1
, 𝑐
2
, 𝛾 >

0, 𝑐
𝑖
, 𝛾 depending possibly on 𝑠.

Notation 3. For a fixed 𝜀 > 0, we define the energy norm of
𝐻
1

(Ω),

‖⋅‖
𝜀
:= √𝜀 ‖⋅‖

𝐻
1
(Ω)

+ ‖⋅‖
𝐿
2
(Ω)

. (5)

2. Asymptotic Expansions

To study the asymptotic behavior of 𝑢
𝜀, solution of (1), we

propose an asymptotic expansion 𝑢
𝜀 of the following type:

𝑢
𝜀

≅

𝑛

∑

𝑗=0

𝜀
𝑗

(𝑢
𝑗

+ Θ
𝑗

) . (6)

Here, at each order of 𝜀𝑗, 𝑗 ≥ 0, 𝑢𝑗 corresponds to the outer
expansion (outside of the boundary layer) of 𝑢𝜀. To balance
the discrepancy on the boundary 𝜕Ω of 𝑢𝜀 and of the 𝑢𝑗, 𝑗 ≥ 0,
we introduce the correctors Θ

𝑗, 𝑗 ≥ 0, which will contribute
mainly inside of the boundary layer:Θ𝑗 will be itself the sum
of several boundary layer functions as we will see below. The
asymptotic expansion (6) is made at order 𝑛 ≥ 0. As we will
see below, the expansion itself depends on 𝑛, but 𝑛, which is
set at the beginning of the study, can be chosen arbitrary large.

To determine the asymptotic expansion (6), we start with
the outer expansion for 𝑢

𝜀, 𝑢
𝜀

≅ ∑
𝑛

𝑗=0
𝜀
𝑗

𝑢
𝑗. Inserting this

expansion into (1), we formally find the equations for the 𝑢
𝑗:

−𝜕
𝑥
𝑢
0

= 𝑓,

−𝜕
𝑥
𝑢
𝑗

= Δ𝑢
𝑗−1

, 1 ≤ 𝑗 ≤ 𝑛.

(7)

We supplement these equations with the following inflow
boundary conditions (see (1)–(3)):

𝑢
0

= 𝑔
2
(𝑦) at 𝑥 = 1,

𝑢
𝑗

= 0 at 𝑥 = 1, 1 ≤ 𝑗 ≤ 𝑛.

(8)

While (7) are “natural”, the choice of the boundary conditions
in (8) is not obvious; it will be eventually justified by
the convergence theorem below. Then, by integrating the
equations in 𝑥, we find the smooth outer solutions 𝑢

𝑗 in the
following form:

𝑢
0

= ∫

1

𝑥

𝑓 (𝑥
1
, 𝑦) 𝑑𝑥

1
+ 𝑔
2
(𝑦) , (9)

𝑢
𝑗

= ∫

1

𝑥

Δ𝑢
𝑗−1

(𝑥
1
, 𝑦) 𝑑𝑥

1
, 1 ≤ 𝑗 ≤ 𝑛. (10)
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Under this construction of the outer expansion, we notice
that𝑢𝜀 ≅ ∑

𝑛

𝑗=0
𝜀
𝑗

𝑢
𝑗 satisfies the boundary condition (1)

2
along

the edge 𝑥 = 1 only, and not on the three other sides of
𝜕Ω, 𝑦 = 0, 𝑦 = 1, and 𝑥 = 0 (in general). Hence, we
expect boundary layers to occur near those edges, and the so-
called correctors (corresponding to the Θ

𝑗) will be necessary
to account for these discrepancies.

In Section 3, performing the boundary layer analysis, we
define, for each 0 ≤ 𝑗 ≤ 𝑛, the corrector Θ

𝑗 appearing in
(11) below.Then, in Section 4, using (6), (9), (10), and (11), we
prove our main result which is stated as Theorem 9.

3. Construction of the Correctors:
Boundary Layers Analysis

Wewant the boundary value of 𝑢𝜀 tomatch that of its approx-
imation. In general, the boundary values of the diffusive
solution 𝑢

𝜀 and the outer expansion ∑
𝑛

𝑗=0
𝜀
𝑗

𝑢
𝑗 match only at

𝑥 = 1, but not on the other sides of 𝜕Ω, 𝑦 = 0, 𝑦 = 1, and
𝑥 = 0. Hence, we expect that some boundary layers will occur
near those three edges. To resolve this inconsistency, we will
define a number of boundary layer functions on the sides and
corners of 𝜕Ω, following an analysis reminiscent of the theory
of the Prandtl boundary layer in [3–6].

For the moment, comparing 𝑢
𝜀 with a finite sum

∑
𝑛

𝑗=0
𝜀
𝑗

𝑢
𝑗, we infer from the definition of the 𝑢

𝑗 in (7)–(10)
that the values of these functions coincide on the segment
𝑥 = 1. In general, they will not coincide anywhere else on
𝜕Ω. First, to correct the inconsistency on the sides 𝑦 = 0, 1,
we will define the so-called parabolic correctors 𝜑

𝑗

= 𝜑
𝑗

𝑙
+

𝜑
𝑗

𝑢
. Then, to correct the inconsistency at 𝑥 = 0, we will

introduce the (classical) corrector 𝜃
𝑗. However, this will not

be enough because additional inconsistencies appear at the
corners ofΩ, and, as we shall see below, it will be necessary to
introduce additional correctors 𝜉

𝑗, 𝜁𝑗, and 𝜂
𝑗 to handle these

inconsistencies.
In summary, in the subsections below, we will define the

Θ
𝑗 in the form,

Θ
𝑗

= 𝜑
𝑗

+ 𝜉
𝑗

+ 𝜃
𝑗

+ 𝜁
𝑗

+ 𝜂
𝑗

, 0 ≤ 𝑗 ≤ 𝑛, (11)

where the role and location of each corrector are explained,
respectively, in Box 1 and Figure 1. The stretched variables of
the corrector functions, which will be introduced and used
in the following subsections, are indicated in the following
equation:

𝜑
𝑗

𝑙
= 𝜑
𝑗

𝑙
(𝑥,

𝑦

√𝜀

) , 𝜑
𝑗

𝑢
= 𝜑
𝑗

𝑢
(𝑥,

(1 − 𝑦)

√𝜀

) ,

𝜉
𝑗

𝑙
= 𝜉
𝑗

𝑙
(

(1 − 𝑥)

𝜀

,

𝑦

𝜀

) , 𝜉
𝑗

𝑢
= 𝜉
𝑗

𝑢
(

(1 − 𝑥)

𝜀

,

(1 − 𝑦)

𝜀

) ,

𝜃
𝑗

= 𝜃
𝑗

(

𝑥

𝜀

, 𝑦) ,

𝜁
𝑗

𝑙
= 𝜁
𝑗

𝑙
(

𝑥

𝜀

,

𝑦

√𝜀

) , 𝜁
𝑗

𝑢
= 𝜁
𝑗

𝑢
(

𝑥

𝜀

,

(1 − 𝑦)

𝜀

) ,

𝜂
𝑗

𝑙
= 𝜂
𝑗

𝑙
(

𝑥

𝜀

, 𝑦) , 𝜂
𝑗

𝑢
= 𝜂
𝑗

𝑢
(

𝑥

𝜀

, 𝑦) .

(12)

3.1. Parabolic Boundary Layers (PBL). At the bottom (or top)
boundary, that is, at 𝑦 = 0 (or 𝑦 = 1), to balance the
discrepancy of 𝑢

𝜀 and the outer expansion ∑
𝑛

𝑗=0
𝜀
𝑗

𝑢
𝑗, (see

the 𝑢
𝑗 as defined in (9) and (10)), we construct below the

parabolic boundary layer correctors 𝜑𝑗, 0 ≤ 𝑗 ≤ 𝑛.
We formally insert the asymptotic expansion 𝑢

𝜀

≅

∑
𝑛

𝑗=0
𝜀
𝑗

𝜑
𝑗 into (1). Using the arguments similar to those of

the Prandtl theory, we see that the thickness of the boundary
layer near 𝑦 = 0 or 𝑦 = 1 should be of order 𝜀

1/2. Then, by
collecting the terms at the same order of 𝜀𝑗, 0 ≤ 𝑗 ≤ 𝑛, we find
the equations of the parabolic boundary layer correctors:

−𝜀𝜕
2

𝑦
𝜑
𝑗

− 𝜕
𝑥
𝜑
𝑗

= 𝜕
2

𝑥
𝜑
𝑗−1 in Ω, 0 ≤ 𝑗 ≤ 𝑛, (13)

where we set 𝜑−1 = 0.
Along the boundaries 𝑦 = 0, 𝑦 = 1, and 𝑥 = 1, comparing

(1)
2
and the boundary values of the functions in (9) and (10),

we find the boundary conditions of 𝜑𝑗, 0 ≤ 𝑗 ≤ 𝑛, which read.

𝜑
𝑗

= 0 at 𝑥 = 1, 0 ≤ 𝑗 ≤ 𝑛,

𝜑
0

= 𝑔
3
(𝑥) − 𝑢

0

(𝑥, 0) at 𝑦 = 0,

𝜑
𝑗

= −𝑢
𝑗

(𝑥, 0) at 𝑦 = 0, 1 ≤ 𝑗 ≤ 𝑛,

𝜑
0

= 𝑔
4
(𝑥) − 𝑢

0

(𝑥, 1) at 𝑦 = 1,

𝜑
𝑗

= −𝑢
𝑗

(𝑥, 1) at 𝑦 = 1, 1 ≤ 𝑗 ≤ 𝑛.

(14)

We will show below how to actually construct 𝜑𝑗. For the
moment, comparing the functions 𝑢

𝜀 and ∑
𝑛

𝑗=0
𝜀
𝑗

(𝑢
𝑗

− 𝜑
𝑗

)

for some 𝑛 ≥ 0, we see that the boundary values of these
functions coincide at 𝑥 = 1 and 𝑦 = 0, 1. However this
has been achieved at the price of introducing some new
inconsistencies. Indeed we notice, in (14), that, for each 𝑗 ≥ 0,
the boundary conditions at𝑦 = 0 and𝑦 = 1 are not consistent
with that at 𝑥 = 1. That is, in general, for any 𝑖 ≥ 1,

𝜕
𝑖

𝑥
𝑢
0

(1, 0) − 𝜕
𝑖

𝑥
𝑔
3
(1) ̸= 0, 𝜕

𝑖

𝑥
𝑢
0

(1, 1) − 𝜕
𝑖

𝑥
𝑔
4
(1) ̸= 0,

𝜕
𝑖

𝑥
𝑢
𝑗

(1, 0) ̸= 0, 𝜕
𝑖

𝑥
𝑢
𝑗

(1, 1) ̸= 0, 𝑗 ≥ 1.

(15)

Due to this inconsistency of the boundary data, if we define
𝜑
𝑗, 0 ≤ 𝑗 ≤ 𝑛, as a solution of (13) with (14), some derivatives

of 𝜑𝑗, 0 ≤ 𝑗 ≤ 𝑛 get singular at the two corners (1, 𝑘), 𝑘 = 0, 1.
Therefore, to define smooth (smoother) correctors𝜑𝑗, 0 ≤ 𝑗 ≤

𝑛, we will modify the boundary conditions (14) as introduced
in (23).
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𝜑
𝑗

= 𝜑
𝑗

𝑙
+ 𝜑
𝑗

𝑢
is the parabolic boundary layer corrector near 𝑦 = 0 and 𝑦 = 1,

𝜉
𝑗

= 𝜉
𝑗

𝑙
+ 𝜉
𝑗

𝑢
is the elliptic corrector which resolves the compatibility issues, in the construction of 𝜑𝑗, at the corners (1, 0) and (1, 1),

𝜃
𝑗 is the ordinary boundary layer corrector near 𝑥 = 0,

𝜁
𝑗

= 𝜁
𝑗

𝑙
+ 𝜁
𝑗

𝑢
is the ordinary corner layer corrector which manages the effect of 𝜑𝑗 along 𝑥 = 0,

𝜂
𝑗

= 𝜂
𝑗

𝑙
+ 𝜂
𝑗

𝑢
is the supplementary corrector that manages the effects of 𝜃𝑗 and 𝜁

𝑗 along the edges 𝑦 = 0 and 𝑦 = 1.

Box 1: The different correctors.

𝑦

1

0 1 𝑥

𝜁
𝑗

𝑢 , 𝜂
𝑗

𝑢

𝜁
𝑗

𝑙
, 𝜂𝑗

𝑙

𝜃
𝑗

𝑢
𝑗

𝜑
𝑗

𝑢

𝜑
𝑗

𝑙

𝜉
𝑗

𝑢

𝜉
𝑗

𝑙

Figure 1: Location of the outer solution 𝑢
𝑗 and the boundary layer

correctors.

3.1.1. On Modification of Boundary Conditions for Smooth
Correctors at 𝑦 = 0, 1. Equation (13) with initial and bound-
ary conditions (14) is a parabolic problem (heat equation),
in which −𝑥 is the (positive) time like variable so that the
boundary conditions at 𝑥 = 1 are the analogue of the
initial conditions for an evolution problem, and the possible
inconsistencies in (15) correspond to the (analogue of ) the
compatibility conditions between the initial and boundary
values for a parabolic equation; see [7–9] and the references
therein.Due to the lack of consistency at the corners (1, 0) and
(1, 1), the correctors constructed as in (13) and (14) might get
singular derivatives at those corners. We will overcome this
difficulty by considering some corner functions at 𝑥 = 1 and
𝑦 = 0, 1, similar to what is done in [10, 11] or [12] for the
compatibility issue in parabolic problems; see [13] as well.

Defining 𝛿(𝑥) as a smooth cut-off function, independent
of 𝜀, such that

𝛿 (𝑥) =

{
{

{
{

{

0 for 0 ≤ 𝑥 ≤

1

2

,

1 for 𝑥 ≥

3

4

,

(16)

we set

𝛾
𝑗

𝑘
(𝑥) = 𝛾

𝑗

𝑘
(𝑥) 𝛿 (𝑥) , 𝑘 = 0, 1, (17)

where

𝛾
0

𝑘
(𝑥) =

2𝑛+1

∑

𝑖=1

(𝑥 − 1)
𝑖

𝑖!

[𝜕
𝑖

𝑥
𝑔
3+𝑘

(1) − 𝜕
𝑖

𝑥
𝑢
0

(1, 𝑘)] ,

𝛾
𝑗

𝑘
(𝑥) = −

2𝑛+1−2𝑗

∑

𝑖=1

(𝑥 − 1)
𝑖

𝑖!

𝜕
𝑖

𝑥
𝑢
𝑗

(1, 𝑘) , 1 ≤ 𝑗 ≤ 𝑛.

(18)

Note that the 𝛾
0

𝑘
, 𝑘 = 0, 1, depend on 𝑛, but this dependency

is not made explicit to make the notations (slightly) simpler.
Note also (comparing to (15)) that, at 𝑥 = 1, for each 𝑘 = 0, 1,

𝛾
𝑗

𝑘
(1) = 0, 0 ≤ 𝑗 ≤ 𝑛,

𝜕
𝑖

𝑥
𝛾
0

𝑘
(1) = 𝜕

𝑖

𝑥
𝑔
3+𝑘

(1) − 𝜕
𝑖

𝑥
𝑢
0

(1, 𝑘) , 1 ≤ 𝑖 ≤ 2𝑛 + 1,

𝜕
𝑖

𝑥
𝛾
𝑗

𝑘
(1) = −𝜕

𝑖

𝑥
𝑢
𝑗

(1, 𝑘) , 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑖 ≤ 2𝑛 + 1 − 𝑗.

(19)

We introduce the stretched variables,

𝑦 =

𝑦

√𝜀

, 𝑦 =

(1 − 𝑦)

√𝜀

. (20)

Then, using (13), (14), (17), and (20), we define the parabolic
corrector, 𝜑𝑗, 0 ≤ 𝑗 ≤ 𝑛, as

𝜑
𝑗

= 𝜑
𝑗

𝑙
+ 𝜑
𝑗

𝑢
= 𝜑
𝑗

𝑙
(𝑥, 𝑦) + 𝜑

𝑗

𝑢
(𝑥, 𝑦) , (21)

where 𝜑
𝑗

𝑙
and 𝜑

𝑗

𝑢
(lower and upper parts of 𝜑

𝑗, resp.) are
defined as the solutions of the 1D heat equations below.

For 0 ≤ 𝑗 ≤ 𝑛,

−𝜕
2

𝑦
𝜑
𝑗

𝑙
− 𝜕
𝑥
𝜑
𝑗

𝑙
= 𝜕
2

𝑥
𝜑
𝑗−1

𝑙
for (𝑦, 𝑥) ∈ R

+

× (0, 1) ,

𝜑
𝑗

𝑙
= ℎ
𝑗

0
(𝑥) at 𝑦 = 0,

𝜑
𝑗

𝑙
󳨀→ 0 as 𝑦 󳨀→ ∞,

𝜑
𝑗

𝑙
= 0 at 𝑥 = 1,

−𝜕
2

𝑦
𝜑
𝑗

𝑢
− 𝜕
𝑥
𝜑
𝑗

𝑢
= 𝜕
2

𝑥
𝜑
𝑗−1

𝑢
for (𝑦, 𝑥) ∈ R

+

× (0, 1) ,

𝜑
𝑗

𝑢
= ℎ
𝑗

1
(𝑥) at 𝑦 = 0,

𝜑
𝑗

𝑢
󳨀→ 0 as 𝑦 󳨀→ ∞,

𝜑
𝑗

𝑢
= 0 at 𝑥 = 1.

(22)

Here the ℎ
𝑗

𝑘
(𝑥), 0 ≤ 𝑗 ≤ 𝑛, 𝑘 = 0, 1, are defined by

ℎ
0

0
(𝑥) := 𝑔

3
(𝑥) − 𝑢

0

(𝑥, 0) − 𝛾
0

0
(𝑥) ,

ℎ
𝑗

0
(𝑥) := −𝑢

𝑗

(𝑥, 0) − 𝛾
𝑗

0
(𝑥) , 1 ≤ 𝑗 ≤ 𝑛,

ℎ
0

1
(𝑥) := 𝑔

4
(𝑥) − 𝑢

0

(𝑥, 1) − 𝛾
0

1
(𝑥) ,

ℎ
𝑗

1
(𝑥) := −𝑢

𝑗

(𝑥, 1) − 𝛾
𝑗

1
(𝑥) , 1 ≤ 𝑗 ≤ 𝑛.

(23)
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Note that the smooth boundary conditions ℎ
𝑗

𝑘
(𝑥), 0 ≤ 𝑗 ≤ 𝑛,

𝑘 = 0, 1, along 𝑦 or 𝑦 = 0 are compatible with the other 0
boundary (initial) conditions at 𝑥 = 1 in the sense that, for
each 0 ≤ 𝑗 ≤ 𝑛,

𝜕
𝑖

𝑥
ℎ
𝑗

𝑘
(1) = 0, 𝑘 = 0, 1, 0 ≤ 𝑖 ≤ 2𝑛 + 1 − 2𝑗. (24)

From [14–16] or [1], we recall the explicit expressions of
𝜑
𝑗

𝑙
= 𝜑
𝑗

𝑙
(𝑥, 𝑦), 0 ≤ 𝑗 ≤ 𝑛,

𝜑
0

𝑙
= √

2

𝜋

∫

∞

𝑦/√2(1−𝑥)

exp(−

𝑦
2

1

2

) ℎ
0

0
(𝑥 +

𝑦
2

2𝑦
2

1

) 𝑑𝑦
1
, (25)

𝜑
𝑗

𝑙
= √

2

𝜋

∫

∞

𝑦/√2(1−𝑥)

exp(−

𝑦
2

1

2

) ℎ
𝑗

0
(𝑥 +

𝑦
2

2𝑦
2

1

)𝑑𝑦
1

+

1

2√𝜋

∫

1−𝑥

0

∫

∞

0

1

√𝑥
1

{exp(−

(𝑦 − 𝑦
1
)
2

4𝑥
1

)

− exp(−

(𝑦 + 𝑦
1
)
2

4𝑥
1

)}

× 𝜕
2

𝑥
𝜑
𝑗−1

𝑙
(𝑥 + 𝑥

1
, 𝑦
1
) 𝑑𝑦
1
𝑑𝑥
1
.

(26)

The expressions of 𝜑
𝑗

𝑢
= 𝜑
𝑗

𝑢
(𝑥, 𝑦), 0 ≤ 𝑗 ≤ 𝑛, are identical

to (25) and (26) with ℎ
0

0
, ℎ𝑗
0
, and 𝑦, respectively, replaced by

ℎ
0

1
, ℎ
𝑗

1
and 𝑦.

3.1.2. Estimates on the Parabolic Boundary Layers. We now
state some pointwise estimates for the 𝜑

𝑗

𝑙
and 𝜑

𝑗

𝑢
, 0 ≤ 𝑗 ≤ 𝑛,

which are proved in the appendix.

Lemma 1. For each 0 ≤ 𝑗 ≤ 𝑛 and 𝑠 ≥ 0, one has the following
pointwise estimates:

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑠

𝜕
𝑖

𝑥
𝜕
𝑚

𝑦
𝜑
𝑗

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅𝜀
(𝑠−𝑚)/2 exp(−𝑐

y
√𝜀

) ,

0 ≤ 𝑖 + 𝑚 ≤ 2𝑛 + 2 − 2𝑗,

(27)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑠

𝜕
𝑖

𝑥
𝜕
𝑚

𝑦
𝜑
𝑗

𝑢

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅𝜀
(𝑠−𝑚)/2 exp(−𝑐

1 − 𝑦

√𝜀

) ,

0 ≤ 𝑖 + 𝑚 ≤ 2𝑛 + 2 − 2𝑗,

(28)

for a generic constant 𝑐 > 0 independent of 𝑥, 𝑦, and 𝜀.

From Lemma 1, it is easy to deduce the following 𝐿
𝑝

estimates.

Lemma 2. For each 0 ≤ 𝑗 ≤ 𝑛 and 𝑠 ≥ 0, one has, for 0 ≤

𝑖 + 𝑚 ≤ 2𝑛 + 2 − 2𝑗,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
𝑠

𝜕
𝑖

𝑥
𝜕
𝑚

𝑦
𝜑
𝑗

𝑙

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝
(Ω)

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
𝑠

𝜕
𝑖

𝑥
𝜕
𝑚

𝑦
𝜑
𝑗

𝑢

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝
(Ω)

𝜅𝜀
(𝑠−𝑚)/2+1/2𝑝

. (29)

Using (21) and (22), we find the equations for𝜑𝑗 = 𝜑
𝑗

𝑙
+𝜑
𝑗

𝑢
,

0 ≤ 𝑗 ≤ 𝑛:

−𝜀𝜕
2

𝑦
𝜑
𝑗

− 𝜕
𝑥
𝜑
𝑗

= 𝜕
2

𝑥
𝜑
𝑗−1 in Ω,

𝜑
𝑗

= ℎ
𝑗

0
(𝑥) + 𝜑

𝑗

𝑢

󵄨
󵄨
󵄨
󵄨
󵄨𝑦=0

at 𝑦 = 0,

𝜑
𝑗

= ℎ
𝑗

1
(𝑥) + 𝜑

𝑗

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨𝑦=1

at 𝑦 = 1,

𝜑
𝑗

= 0 at 𝑥 = 1.

(30)

Thanks to Lemma 1, we notice that

𝜑
𝑗

𝑢

󵄨
󵄨
󵄨
󵄨
󵄨𝑦=0

= e.s.t., 𝜑
𝑗

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨𝑦=1

= e.s.t., (31)

where e.s.t. denotes an exponentially small term with respect
to the (small) parameter 𝜀 as defined in Notation 2.

3.2. Elliptic Boundary Layers (EBL). In Section 3.1, to con-
struct the consistent parabolic boundary layer correctors 𝜑

𝑗,
0 ≤ 𝑗 ≤ 𝑛, we considered the modified boundary conditions
(23), including 𝛾

𝑗

𝑘
, instead of the natural boundary conditions

(14). Here, on the two sides 𝑦 = 0 and 𝑦 = 1 ofΩ, to cancel 𝛾𝑗
𝑘

which is exactly the difference of (14) and (23), we introduce
elliptic boundary layer correctors 𝜉𝑗, 0 ≤ 𝑗 ≤ 𝑛, which, like 𝛾

𝑗

𝑘

or 𝛾
𝑗

𝑘
, depend on the order 𝑛 of the asymptotic expansion in

(6).
Using (17), we define

𝜉
𝑗

= 𝜉
𝑗

𝑙
+ 𝜉
𝑗

𝑢
, 0 ≤ 𝑗 ≤ 𝑛, (32)

where 𝜉
𝑗

𝑙
and 𝜉
𝑗

𝑢
are the solutions of the elliptic systems below.

For 0 ≤ 𝑗 ≤ 𝑛,

−𝜀 𝜕
2

𝑥
𝜉
𝑗

𝑙
− 𝜀𝜕
2

𝑦
𝜉
𝑗

𝑙
− 𝜕
𝑥
𝜉
𝑗

𝑙
= 0 in Ω,

𝜉
𝑗

𝑙
= 𝛾
𝑗

0
(𝑥) at 𝑦 = 0,

𝜉
𝑗

𝑙
= 0 at 𝑥 = 0, 1, or 𝑦 = 1,

−𝜀 𝜕
2

𝑥
𝜉
𝑗

𝑢
− 𝜀 𝜕
2

𝑦
𝜉
𝑗

𝑢
− 𝜕
𝑥
𝜉
𝑗

𝑢
= 0 in Ω,

𝜉
𝑗

𝑢
= 𝛾
𝑗

1
(𝑥) at 𝑦 = 1,

𝜉
𝑗

𝑢
= 0 at 𝑥 = 0, 1, or 𝑦 = 0.

(33)

The systems (33) being elliptic equations, their well-
posedness are easy to verify, and hence, we omit the proof
here.

The equations satisfied by the elliptic correctors 𝜉𝑗 = 𝜉
𝑗

𝑙
+

𝜉
𝑗

𝑢
read as follows.
For 0 ≤ 𝑗 ≤ 𝑛,

−𝜀𝜕
2

𝑥
𝜉
𝑗

− 𝜀𝜕
2

𝑦
𝜉
𝑗

− 𝜕
𝑥
𝜉
𝑗

= 0 in Ω,

𝜉
𝑗

= 𝛾
𝑗

𝑘
(𝑥) at 𝑦 = 𝑘, 𝑘 = 0, 1,

𝜉
𝑗

= 0 at 𝑥 = 0, 1.

(34)
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In the error analysis below in Section 4, we will see that
no extra terms related to the 𝜉

𝑗 appear; see (65) below. This
is because the 𝜉

𝑗, as appearing in (34), satisfies the same
equation as for 𝑢

𝜀, supplemented with the (exact) boundary
conditions that we need. From this observation, as it will
be justified in Section 4, we notice that our main result in
Theorem 9 does not require any estimate on the 𝜉

𝑗.
As an extra informationwhichmight be useful elsewhere,

but not in this paper, by performing the energy estimate on
(34), we find that

󵄩
󵄩
󵄩
󵄩
󵄩
𝜉
𝑗
󵄩
󵄩
󵄩
󵄩
󵄩𝜀

≤ 𝜅𝜀
1/4

, 0 ≤ 𝑗 ≤ 𝑛. (35)

In the appendix, we introduce an explicit approximate 𝜉 of
𝜉. Then, thanks to the estimates on 𝜉, one can obtain some
pointwise estimates on 𝜉 as well; see Appendix B.

At this stage, the functions 𝑢
𝜀 and ∑

𝑛

𝑗=0
𝜀
𝑗

(𝑢
𝑗

+ 𝜑
𝑗

+ 𝜉
𝑗

)

match along the sides 𝑥 = 1 and 𝑦 = 0, 1 (with singular
derivatives of high orders for the 𝜑

𝑗). More precisely, from
(1), (8), (30), (31), and (34), we see that

𝑢
𝜀

−

𝑛

∑

𝑗=0

𝜀
𝑗

(𝑢
𝑗

+ 𝜑
𝑗

+ 𝜉
𝑗

) =

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

𝑔
1
+

𝑛

∑

𝑗=0

𝜀
𝑗

(𝑢
𝑗

+ 𝜑
𝑗

) at 𝑥 = 0,

0 at 𝑥 = 1,

𝑛

∑

𝑗=0

𝜀
𝑗

𝜑
𝑗

𝑢
= e.s.t. at 𝑦 = 0,

𝑛

∑

𝑗=0

𝜀
𝑗

𝜑
𝑗

𝑙
= e.s.t. at 𝑦 = 1.

(36)

We will now deal with the side 𝑥 = 0 and construct the
ordinary boundary layer 𝜃

𝑗 and the ordinary corner layer
functions (correctors) 𝜁𝑗.

3.3. Ordinary Boundary Layers (OBL). To handle the dis-
crepancy of 𝑢

𝜀 and ∑
𝑛

𝑗=0
𝜀
𝑗

𝑢
𝑗 at 𝑥 = 0, which is a part of

𝑢
𝜀

− ∑
𝑛

𝑗=0
𝜀
𝑗

(𝑢
𝑗

+ 𝜑
𝑗

+ 𝜉
𝑗

) appearing in (36), the so-called
ordinary boundary layer corrector 𝜃

𝑗 is introduced in this
section. We insert a formal expansion 𝑢

𝜀

≅ ∑
∞

𝑗=0
𝜀
𝑗

𝜃
𝑗 into

the diffusive equation (1). Then, using the stretched variable
𝑥 = 𝑥/𝜀, we find the equations of 𝜃𝑗:

−𝜀𝜕
2

𝑥
𝜃
𝑗

− 𝜕
𝑥
𝜃
𝑗

= 𝜀
−1

𝜕
2

𝑦
𝜃
𝑗−2 in Ω, 0 ≤ 𝑗 ≤ 𝑛, (37)

where we set 𝜃−1 = 𝜃
−2

= 0.
Themain role of the 𝜃

𝑗 is, at each order of 𝜀𝑗, to cancel the
error 𝑢𝜀 −∑

𝑛

𝑗=0
𝜀
𝑗

𝑢
𝑗 at 𝑥 = 0. Hence, we supplement (37) with

the boundary conditions

𝜃
0

= 𝑔
1
(𝑦) − 𝑢

0

(0, 𝑦) at 𝑥 = 0,

𝜃
𝑗

= −𝑢
𝑗

(0, 𝑦) at 𝑥 = 0, 1 ≤ 𝑗 ≤ 𝑛,

𝜃
𝑗

󳨀→ 0 as 𝑥 󳨀→ ∞, 0 ≤ 𝑗 ≤ 𝑛.

(38)

The explicit expressions of 𝜃
𝑗, 0 ≤ 𝑗 ≤ 𝑛, are inductively

shown to be of the form

𝜃
𝑗

= 𝑃
𝑘

(

𝑥

𝜀

, 𝑦) exp(

−𝑥

𝜀

) , 𝑗 = 2𝑘, 2𝑘 + 1, (39)

where 𝑃
𝑘

(𝑥/𝜀, 𝑦) is a polynomial in 𝑥/𝜀 of degree 𝑘 whose
coefficients, independent of 𝜀, are linear combinations of the
𝜕
𝑠

𝑢
𝑗−𝑠

(0, 𝑦)/𝜕𝑦
𝑠, 0 ≤ 𝑠 ≤ 𝑗, and 𝑃

𝑘

(0, 𝑦) = −𝑢
𝑗

(0, 𝑦).
According to (39), we deduce the following lemmas.

Lemma3. For each 0 ≤ 𝑗 ≤ 𝑛, one has the pointwise estimates:
󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑠

𝜕
𝑖

𝑥
𝜕
𝑚

𝑦
𝜃
𝑗
󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅𝜀
𝑠−𝑖 exp (−𝑐

𝑥

𝜀

) , 𝑠, 𝑖, 𝑚 ≥ 0, (40)

for a constant 𝑐 independent of 𝑥, 𝑦, and 𝜀.

Lemma 4. For each 0 ≤ 𝑗 ≤ 𝑛, one has
󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑠

𝜕
𝑖

𝑥
𝜕
𝑚

𝑦
𝜃
𝑗
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝
(Ω)

≤ 𝜅𝜀
𝑠−𝑖+(1/𝑝)

, 𝑠, 𝑖, 𝑚 ≥ 0. (41)

Thanks to Lemma 3, we notice that the effect of 𝜃𝑗 near
the boundary 𝑥 = 1 is exponentially small:

𝜃
𝑗

(1, 𝑦) = e.s.t., 0 ≤ 𝑗 ≤ 𝑛. (42)

From (36), (38), and (42), we infer that

𝑢
𝜀

−

𝑛

∑

𝑗=0

𝜀
𝑗

(𝑢
𝑗

+ 𝜑
𝑗

+ 𝜉
𝑗

+ 𝜃
𝑗

)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑛

∑

𝑗=0

𝜀
𝑗

𝜑
𝑗 at 𝑥 = 0,

𝑛

∑

𝑗=0

𝜀
𝑗

𝜃
𝑗

= e.s.t. at 𝑥 = 1,

𝑛

∑

𝑗=0

𝜀
𝑗

(𝜑
𝑗

𝑢
+ 𝜃
𝑗

) =

𝑛

∑

𝑗=0

𝜀
𝑗

𝜃
𝑗

+ e.s.t. at 𝑦 = 0,

𝑛

∑

𝑗=0

𝜀
𝑗

(𝜑
𝑗

𝑙
+ 𝜃
𝑗

) =

𝑛

∑

𝑗=0

𝜀
𝑗

𝜃
𝑗

+ e.s.t. at 𝑦 = 1.

(43)

3.4. Ordinary Corner Layers (OCL). To account for the value
∑
𝑛

𝑗=0
𝜀
𝑗

𝜑
𝑗 at 𝑥 = 0, which is exactly the difference of 𝑢𝜀 and

∑
𝑛

𝑗=0
𝜀
𝑗

(𝑢
𝑗

+𝜑
𝑗

+ 𝜉
𝑗

+ 𝜃
𝑗

) at 𝑥 = 0 (see (43)), we introduce the
ordinary corner layer correctors 𝜁𝑗, 0 ≤ 𝑗 ≤ 𝑛, in the form

𝜁
𝑗

= 𝜁
𝑗

𝑙
+ 𝜁
𝑗

𝑢
, (44)

where the 𝜁
𝑗

𝑙
(or 𝜁
𝑗

𝑢
) are the correctors near the corner (0, 0)

(or (0, 1)) as constructed below.
To define 𝜁

𝑗

𝑙
(or 𝜁
𝑗

𝑢
), we insert a formal expansion 𝑢

𝜀

≅

∑
∞

𝑗=0
𝜀
𝑗

𝜁
𝑗 into (1). Then, using the stretched variables 𝑥 = 𝑥/𝜀

and 𝑦 = 𝑦/√𝜀 near (0, 0) and using 𝑥 and 𝑦 = (1 − 𝑦)/√𝜀

near (1, 1), we collect the terms of order 𝜀
𝑗, 0 ≤ 𝑗 ≤ 𝑛. As a

result, we find the equations for 𝜁
𝑗

𝑙
(or 𝜁
𝑗

𝑢
):

−𝜀𝜕
2

𝑥
𝜁
𝑗

𝑘
− 𝜕
𝑥
𝜁
𝑗

𝑘
= 𝜕
2

𝑦
𝜁
𝑗−1

𝑘
in Ω, 0 ≤ 𝑗 ≤ 𝑛, 𝑘 = 𝑢 or 𝑙.

(45)
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Here, we set 𝜁−1
𝑘

= 0 for 𝑘 = 𝑙, 𝑢.
At each order of 𝜀

𝑗, 0 ≤ 𝑗 ≤ 𝑛, to cancel the error 𝜑
𝑗

near the corner (0, 0) or (0, 1), we supplement (45) with the
boundary conditions

𝜁
𝑗

𝑘
= −𝜑
𝑗

𝑘
(0, 𝑦) at 𝑥 = 0, 0 ≤ 𝑗 ≤ 𝑛, 𝑘 = 𝑙, 𝑢,

𝜁
𝑗

𝑘
󳨀→ 0 as 𝑥 󳨀→ ∞, 0 ≤ 𝑗 ≤ 𝑛, 𝑘 = 𝑙, 𝑢.

(46)

The explicit solutions 𝜁
𝑗

𝑙
of (45) and (46), 0 ≤ 𝑗 ≤ 𝑛, are

inductively found to be of the following form:

𝜁
𝑗

𝑙
= 𝑃
𝑗

(

𝑥

𝜀

,

𝑦

√𝜀

) exp(

−𝑥

𝜀

) , (47)

where𝑃
𝑗

(𝑥/𝜀, 𝑦/√𝜀) is a polynomial in 𝑥/𝜀 of degree 𝑗whose
coefficients, independent of 𝜀, are linear combinations of the
quantities 𝜀

𝑠

𝜕
2𝑠

𝜑
𝑗−𝑠

𝑙
(0, 𝑦/√𝜀)/𝜕𝑦

2𝑠, 0 ≤ 𝑠 ≤ 𝑗. In the same
manner, the explicit forms of the 𝜁

𝑗

𝑢
, 0 ≤ 𝑗 ≤ 𝑛 can be found

as well.
Using Lemma 1 and (47), we obtain the lemmas below.

Lemma 5. For each 0 ≤ 𝑗 ≤ 𝑛 and 𝑘, 𝑠 ≥ 0, one has the
pointwise estimates:

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑘

𝑦
𝑠

𝜕
𝑖

𝑥
𝜕
𝑚

𝑦
𝜁
𝑗

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅𝜀
𝑘−𝑖+((𝑠−𝑚)/2) exp(−𝑐(

𝑥

𝜀

+

𝑦

√𝜀

)) ,

0 ≤ 𝑖 + 𝑚 ≤ 2𝑛 + 2 − 2𝑗,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑘

𝑦
𝑠

𝜕
𝑖

𝑥
𝜕
𝑚

𝑦
𝜁
𝑗

𝑢

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅𝜀
𝑘−𝑖+((𝑠−𝑚)/2) exp(−𝑐(

𝑥

𝜀

+

1 − 𝑦

√𝜀

)) ,

0 ≤ 𝑖 + 𝑚 ≤ 2𝑛 + 2 − 2𝑗,

(48)

for a generic constant 𝑐 > 0 independent of 𝑥, 𝑦, and 𝜀.

Lemma 6. For each 0 ≤ 𝑗 ≤ 𝑛 and 𝑘, 𝑠 ≥ 0, one has, for
0 ≤ 𝑖 + 𝑚 ≤ 2𝑛 + 2 − 2𝑗,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘

𝑦
𝑠

𝜕
𝑖

𝑥
𝜕
𝑚

𝑦
𝜁
𝑗

𝑙

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝
(Ω)

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘

𝑦
𝑠

𝜕
𝑖

𝑥
𝜕
𝑚

𝑦
𝜁
𝑗

𝑢

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝
(Ω)

≤ 𝜅𝜀
𝑘−𝑖+((𝑠−𝑚)/2)+(3/2𝑝)

.

(49)

Thanks to (46) and Lemma 5, we estimate the values of
𝜁
𝑗, 0 ≤ 𝑗 ≤ 𝑛, along the sides 𝑥 = 1, 𝑦 = 0, and 𝑦 = 1:

𝜁
𝑗

=

{
{

{
{

{

e.s.t. at 𝑥 = 1,

𝜁
𝑗

𝑙
(𝑥, 0) + e.s.t. at 𝑦 = 0,

𝜁
𝑗

𝑢
(𝑥, 0) + e.s.t. at 𝑦 = 1.

(50)

Now from (43), (46), and (50), we observe that

𝑢
𝜀

−

𝑛

∑

𝑗=0

𝜀
𝑗

(𝑢
𝑗

+ 𝜑
𝑗

+ 𝜉
𝑗

+ 𝜃
𝑗

+ 𝜁
𝑗

)

=

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

0 at 𝑥 = 0,

𝑛

∑

𝑗=0

𝜀
𝑗

(𝜃
𝑗

+ 𝜁
𝑗

) = e.s.t. at 𝑥 = 1,

𝑛

∑

𝑗=0

𝜀
𝑗

(𝜑
𝑗

𝑢
+ 𝜃
𝑗

+ 𝜁
𝑗

) =

𝑛

∑

𝑗=0

𝜀
𝑗

(𝜃
𝑗

+ 𝜁
𝑗

𝑙
) + e.s.t. at 𝑦 = 0,

𝑛

∑

𝑗=0

𝜀
𝑗

(𝜑
𝑗

𝑙
+ 𝜃
𝑗

+ 𝜁
𝑗

) =

𝑛

∑

𝑗=0

𝜀
𝑗

(𝜃
𝑗

+ 𝜁
𝑗

𝑢
) + e.s.t. at 𝑦 = 1.

(51)

3.5. Supplementary Correctors. Now, our task is to handle, at
each order 0 ≤ 𝑗 ≤ 𝑛, the effects of 𝜃𝑗 and 𝜁

𝑗 along the top
and bottom boundaries 𝑦 = 0, 1. To this end, using (51), we
construct the supplementary correctors 𝜂𝑗 in the form

𝜂
𝑗

= 𝜂
𝑗

𝑙
+ 𝜂
𝑗

𝑢
, 0 ≤ 𝑗 ≤ 𝑛, (52)

where

𝜂
𝑗

𝑙
= − (1 − 𝑦) (𝜃

𝑗

+ 𝜁
𝑗

𝑙
) (𝑥, 𝑦 = 0) ,

𝜂
𝑗

𝑢
= −𝑦 (𝜃

𝑗

+ 𝜁
𝑗

𝑢
) (𝑥, 𝑦 = 1) .

(53)

From Lemmas 3 and 5, it is easy to verify the lemmas
below.

Lemma 7. For each 0 ≤ 𝑗 ≤ 𝑛 and 𝑠 ≥ 0, one has the pointwise
estimates:

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑠

𝜕
𝑖

𝑥
𝜕
𝑚

𝑦
𝜂
𝑗
󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅𝜀
𝑠−𝑖 exp (−𝑐

𝑥

𝜀

) , 0 ≤ 𝑖 + 𝑚 ≤ 2𝑛 + 2 − 2𝑗,

(54)

for a constant 𝑐 independent of 𝑥, 𝑦, and 𝜀.

Lemma 8. For each 0 ≤ 𝑗 ≤ 𝑛 and 𝑠 ≥ 0, one has

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑠

𝜕
𝑖

𝑥
𝜕
𝑚

𝑦
𝜂
𝑗
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝
(Ω)

≤ 𝜀
𝑠−𝑖+(1/𝑝)

, 0 ≤ 𝑖 + 𝑚 ≤ 2𝑛 + 2 − 2𝑗.

(55)

Using (3), (14), (17), (22), (23), (38), and (46), we find that,
near the corner (0, 0),

(𝜃
0

+ 𝜁
0

𝑙
) (0, 0) = 𝑔

1
(0) − 𝑢

0

(0, 0) − 𝜑
0

𝑙
(0, 0)

= 𝑔
1
(0) − 𝑢

0

(0, 0) − (𝑔
3
(0) − 𝑢

0

(0, 0)) = 0.

(56)

More generally, one can verify that

(𝜃
𝑗

+ 𝜁
𝑗

𝑙
) (0, 0) = 0, (𝜃

𝑗

+ 𝜁
𝑗

𝑢
) (0, 1) = 0, 0 ≤ 𝑗 ≤ 𝑛.

(57)
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Using (42), (50), and (57), we infer from (52) and (53) that,
for 0 ≤ 𝑗 ≤ 𝑛,

𝜂
𝑗

=

{
{
{
{

{
{
{
{

{

0 at 𝑥 = 0,

e.s.t. at 𝑥 = 1,

− (𝜃
𝑗

+ 𝜁
𝑗

𝑙
) at 𝑦 = 0,

− (𝜃
𝑗

+ 𝜁
𝑗

𝑢
) at 𝑦 = 1.

(58)

Now, we finally obtain from (51) and (58) that

𝑢
𝜀

−

𝑛

∑

𝑗=0

𝜀
𝑗

(𝑢
𝑗

+ 𝜑
𝑗

+ 𝜉
𝑗

+ 𝜃
𝑗

+ 𝜁
𝑗

+ 𝜂
𝑗

)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

0 at 𝑥 = 0,

𝑛

∑

𝑗=0

𝜀
𝑗

(𝜃
𝑗

+ 𝜁
𝑗

+ 𝜂
𝑗

) = e.s.t. at 𝑥 = 1,

𝑛

∑

𝑗=0

𝜀
𝑗

(𝜑
𝑗

𝑢
+ 𝜃
𝑗

+ 𝜁
𝑗

+ 𝜂
𝑗

)

=

𝑛

∑

𝑗=0

𝜀
𝑗

(𝜃
𝑗

+ 𝜁
𝑗

𝑙
+ 𝜂
𝑗

) + e.s.t. = e.s.t. at 𝑦 = 0,

𝑛

∑

𝑗=0

𝜀
𝑗

(𝜑
𝑗

𝑙
+ 𝜃
𝑗

+ 𝜁
𝑗

+ 𝜂
𝑗

)

=

𝑛

∑

𝑗=0

𝜀
𝑗

(𝜃
𝑗

+ 𝜁
𝑗

𝑢
+ 𝜂
𝑗

) + e.s.t. = e.s.t. at 𝑦 = 1.

(59)

The e.s.t. on the right hand side of (59)
2,3,4

are caused,
respectively, by (𝜃

𝑗

+ 𝜁
𝑗

+ 𝜂
𝑗

) at 𝑥 = 1, (𝜑𝑗
𝑢
+ 𝜁
𝑗

𝑢
) at 𝑦 = 0,

and (𝜑
𝑗

𝑙
+ 𝜁
𝑗

𝑙
) at 𝑦 = 1.

4. Asymptotic Error Analysis: The Main Result

We define

𝜌 := (𝑢
𝜀

−

𝑛

∑

𝑗=0

𝜀
𝑗

(𝑢
𝑗

+ Θ
𝑗

))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜕Ω

= (the right-hand side of (59)) ,

(60)

where Θ
𝑗

= 𝜑
𝑗

+ 𝜉
𝑗

+ 𝜃
𝑗

+ 𝜁
𝑗

+ 𝜂
𝑗 as defined in (11).

We construct an extension 𝜌 of 𝜌 in the form

𝜌 (𝑥, 𝑦) := 𝑟 + (1 − 𝑥) (𝜌 − 𝑟)
󵄨
󵄨
󵄨
󵄨𝑥=0

+ 𝑥 (𝜌 − 𝑟)
󵄨
󵄨
󵄨
󵄨𝑥=1

+(1 − 𝑦) (𝜌 − 𝑟)
󵄨
󵄨
󵄨
󵄨𝑦=0

+ 𝑦 (𝜌 − 𝑟)
󵄨
󵄨
󵄨
󵄨𝑦=1

,

(61)

where

𝑟 (𝑥, 𝑦) := (1 − 𝑥) (1 − 𝑦) 𝜌
󵄨
󵄨
󵄨
󵄨𝑥=𝑦=0

+ 𝑥 (1 − 𝑦) 𝜌
󵄨
󵄨
󵄨
󵄨𝑥=1,𝑦=0

+ (1 − 𝑥) 𝑦𝜌
󵄨
󵄨
󵄨
󵄨𝑥=0,𝑦=1

+ 𝑥𝑦𝜌
󵄨
󵄨
󵄨
󵄨𝑥=𝑦=1

.

(62)

Then one can verify that 𝜌|
𝜕Ω

= 𝜌 and

𝜌 is an e.s.t. in Ω. (63)

We set

𝑤
𝜀𝑛

:= 𝑢
𝜀

−

𝑛

∑

𝑗=0

𝜀
𝑗

(𝑢
𝑗

+ Θ
𝑗

) − 𝜌. (64)

Then, using (1), (7), (11), (30), (34), (37), (45), (53), and (60),
the equation of 𝑤

𝜀𝑛
reads

𝐿
𝜀
𝑤
𝜀𝑛

= 𝜀
𝑛+1

(Δ𝑢
𝑛

+ 𝜕
2

𝑥
𝜑
𝑛

+ 𝜕
2

𝑦
𝜃
𝑛

+ Ξ
𝑛

1
)

+ 𝜀
𝑛

(𝜕
2

𝑦
𝜃
𝑛−1

+ 𝜀𝜕
2

𝑦
𝜁
𝑛

+ Ξ
𝑛

2
) + e.s.t. in Ω,

𝑤
𝜀𝑛

= 0 on 𝜕Ω,

(65)

where

Ξ
1
= (1 − 𝑦) 𝜕

2

𝑦
𝜃
𝑛

(𝑥, 𝑦 = 0) + 𝑦 𝜕
2

𝑦
𝜃
𝑛

(𝑥, 𝑦 = 1) ,

Ξ
2
= (1 − 𝑦) (𝜕

2

𝑦
𝜃
𝑛−1

+ 𝜀𝜕
2

𝑦
𝜁
𝑛

𝑙
) (𝑥, 𝑦 = 0)

+ 𝑦 (𝜕
2

𝑦
𝜃
𝑛−1

+ 𝜀𝜕
2

𝑦
𝜁
𝑛

𝑢
) (𝑥, 𝑦 = 1) .

(66)

We multiply (65) by 𝑒
𝑥

𝑤
𝜀𝑛

and integrate over Ω. Then,
using Lemmas 1, 3, and 5 and the Hardy inequality (see, e.g.,
[2]), we find that

𝜀
󵄨
󵄨
󵄨
󵄨
𝑤
𝜀𝑛

󵄨
󵄨
󵄨
󵄨

2

𝐻
1 +

1 − 𝜀

2

󵄨
󵄨
󵄨
󵄨
𝑤
𝜀𝑛

󵄨
󵄨
󵄨
󵄨

2

𝐿
2

≤ 𝜅𝜀
𝑛+1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

Ω

(Δ𝑢
𝑛

+ 𝜕
2

𝑥
𝜑
𝑛

+ 𝜕
2

𝑦
𝜃
𝑛

+ Ξ
𝑛

1
)𝑤
𝜀𝑛
𝑑𝑥 𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝜅𝜀
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

Ω

𝑥 (𝜕
2

𝑦
𝜃
𝑛−1

+ 𝜀𝜕
2

𝑦
𝜁
𝑛

+ Ξ
𝑛

2
) (

𝑤
𝜀𝑛

𝑥

)𝑑𝑥𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜅𝜀
2𝑛+2

+

1

4

󵄨
󵄨
󵄨
󵄨
𝑤
𝜀𝑛

󵄨
󵄨
󵄨
󵄨

2

𝐿
2 +

𝜀

2

󵄨
󵄨
󵄨
󵄨
𝑤
𝜀𝑛

󵄨
󵄨
󵄨
󵄨

2

𝐻
1 .

(67)

Thanks to the elliptic regularity theory and (67), we also
find that

󵄩
󵄩
󵄩
󵄩
𝑤
𝜀𝑛

󵄩
󵄩
󵄩
󵄩𝐻
2
(Ω)

≤ 𝜅
󵄩
󵄩
󵄩
󵄩
Δ𝑤
𝜀𝑛

󵄩
󵄩
󵄩
󵄩𝐿
2
(Ω)

≤ 𝜅𝜀
−1󵄩

󵄩
󵄩
󵄩
𝜕
𝑥
𝑤
𝜀𝑛

+ lower order terms󵄩󵄩󵄩
󵄩𝐿
2
(Ω)

≤ 𝜅𝜀
𝑛−(1/2)

.

(68)

Finally, from (63), (64), (67), and (68), we obtain the
convergence result on the difference of 𝑢𝜀 and the proposed
asymptotic expansions that we summarize in Theorem 9.

Theorem 9. For each fixed 𝑛 ≥ 0, as the diffusivity parameter
𝜀 vanishes, the difference between the solution 𝑢

𝜀 of (1) and
its asymptotic expansion (6) converges to zero in the following
sense:

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑢
𝜀

−

𝑛

∑

𝑗=0

𝜀
𝑗

(𝑢
𝑗

+ Θ
𝑗

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝜀

≤ 𝜅𝜀
𝑛+1

, (69)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑢
𝜀

−

𝑛

∑

𝑗=0

𝜀
𝑗

(𝑢
𝑗

+ Θ
𝑗

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐻
2
(Ω)

≤ 𝜅𝜀
𝑛−(1/2)

. (70)
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Remark 10. Due to the continuity of 𝑔 as appearing in (3), 𝜉0
can be omitted in (11) for 𝑗 = 0 at order 𝜀0.Then one can verify
that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝜀

− (𝑢
0

+ 𝜑
0

+ 𝜃
0

+ 𝜁
0

+ 𝜂
0

)

󵄩
󵄩
󵄩
󵄩
󵄩𝜀

≤ 𝜅𝜀
3/4

, (71)

which gives a convergence estimate that a factor of 𝜀
1/4 is

worse than what is stated in (69) for 𝑛 = 0.

Appendix

A. Proof of Lemma 1

To prove (27), for 𝑦 = 𝑦/√𝜀, since 𝑦
𝑠 exp(−𝑐𝑦) ≤

𝜅𝜀
𝑠/2 exp(−𝑐

0
𝑦), for all 𝑦, 0 < 𝑐

0
< 𝑐, it suffices to prove that

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑖

𝑥
𝜕
𝑚

𝑦
𝜑
𝑗

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅 exp(−𝑐

𝑦

√1 − 𝑥

) ,

0 ≤ 𝑖 + 𝑚 ≤ 2𝑛 + 2 − 2𝑗, 𝑖, 𝑚 ≥ 0.

(A.1)

Note that (28) would follow similarly. Since ℎ
𝑗

(𝑥) = ℎ
𝑗

0
(𝑥) =

−𝑢
𝑗

(𝑥, 𝑖) − 𝛾
𝑗

0
(𝑥) for 𝑗 ≥ 1 and 𝑔

3
(𝑥) − 𝑢

0

(𝑥, 0) − 𝛾
0

0
(𝑥) for

𝑗 = 0; thanks to (3), we note that 𝜕
𝑘

𝑥
ℎ
𝑗

(1) = 0 for 0 ≤ 𝑘 ≤

2𝑛 + 1 − 2𝑗.
Now, to prove (A.1), we use an induction on 𝑗.

(1) We begin with 𝑗 = 0.

From (25), since 𝜕
𝑘

𝑥
ℎ
0

(1) = 0 for 0 ≤ 𝑘 ≤ 2𝑛 + 1,
differentiating 𝜑

0

𝑙
in 𝑥 we find that

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑖

𝑥
𝜑
0

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
= √

2

𝜋

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

∞

𝑦/√2(1−𝑥)

exp(−

𝑦
2

1

2

) 𝜕
𝑖

𝑥
ℎ
0

(𝑥 +

𝑦
2

2𝑦
2

1

)𝑑𝑦
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜅∫

∞

𝑦/√2(1−𝑥)

exp(−

𝑦
2

1

2

)𝑑𝑦
1
, 0 ≤ 𝑖 ≤ 2𝑛 + 2.

(A.2)

Using exp(−𝑦
2

1
/2) ≤ 𝜅 exp(−𝑐𝑦

1
), for all 𝑦

1
≥ 0, for some

𝑐 > 0, (A.1) for 𝑚 = 0 is proved. Since −𝜑
0

𝑙𝑦 𝑦
− 𝜑
0

𝑙𝑥
= 0, for

𝑚 = 2(𝑘 + 1), 𝑘 ≥ 0, from (A.2) we easily find that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕
𝑖

𝑥
𝜕
2(𝑘+1)

𝑦
𝜑
0

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑖+𝑘+1

𝑥
𝜑
0

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅 exp(−𝑐

𝑦

√1 − 𝑥

) ,

0 ≤ 𝑖 + 𝑘 + 1 ≤ 2𝑛 + 2;

(A.3)

thus (A.3) holds for 0 ≤ 𝑖 + 𝑚 = 𝑖 + 2(𝑘 + 1) ≤ 𝑘 + 1 + 2𝑛 + 2,
and this implies that (A.1) holds for𝑚 = 2(𝑘+1), 𝑘 ≥ 0, 𝑗 = 0.

Since 𝜕
𝑖+1

𝑥
ℎ
0

(1) = 0, 0 ≤ 𝑖+1 ≤ 2𝑛+1, we now notice that

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑖

𝑥
𝜕
𝑦
𝜑
0

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
= √

2

𝜋

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

∞

𝑦/√2(1−𝑥)

exp(−

𝑦
2

1

2

) 𝜕
𝑖+1

𝑥
ℎ
0

× (𝑥 +

𝑦
2

2𝑦
2

1

)

𝑦

𝑦
2

1

𝑑𝑦
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜅𝑦∫

∞

𝑦/√2(1−𝑥)

exp(−

𝑦
2

1

2

)𝑑 (−𝑦
−1

1
) ,

0 ≤ 𝑖 + 1 ≤ 2𝑛 + 2.

(A.4)

Integrating by parts in the last integral, we deduce that
󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑖

𝑥
𝜕
𝑦
𝜑
0

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜅(√1 − 𝑥 exp(−

𝑦
2

4 (1 − 𝑥)

)

+𝑦∫

∞

𝑦/√2(1−𝑥)

exp(−

𝑦
2

1

2

)𝑑𝑦
1
)

≤ 𝜅(exp(−𝑐

𝑦

√1 − 𝑥

) + 𝑦 exp(−𝑐

𝑦

√1 − 𝑥

))

≤ (since 𝑡 exp (−𝑐𝑡) ≤ 𝜅 exp (−𝑐
0
𝑡) ,

∀𝑡 ≥ 0, for some 0 < 𝑐
0
< 𝑐)

≤ 𝜅 exp(−𝑐
0

𝑦

√1 − 𝑥

) , 0 ≤ 𝑖 + 1 ≤ 2𝑛 + 2.

(A.5)

Hence, for𝑚 = 2𝑘 + 1, 𝑘 ≥ 0, using −𝜑
0

𝑙𝑦𝑦
− 𝜑
0

𝑙𝑥
= 0 again, we

note from (A.5) that
󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑖

𝑥
𝜕
2𝑘+1

𝑦
𝜑
0

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑖+𝑘

𝑥
𝜕
𝑦
𝜑
0

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅 exp(−𝑐

𝑦

√1 − 𝑥

) ,

0 ≤ 𝑖 + 𝑘 + 1 ≤ 2𝑛 + 2;

(A.6)

thus (A.6) holds for 0 ≤ 𝑖 + 𝑚 = 𝑖 + 2𝑘 + 1 ≤ 𝑘 + 2𝑛 + 2, and
this proves (A.1) for 𝑚 = 2𝑘 + 1, 𝑘 ≥ 0, 𝑗 = 0. Hence, (A.1) is
proved for 𝑗 = 0.

(2) We now assume that (A.1) holds at any order less than
or equal to 𝑗 − 1, and we want to prove it at the order
𝑗.

At order 𝑗 ≥ 1, we perform the analysis as follows.
We first note that the homogeneous solution of 𝜑𝑗

𝑙
, that is

the first integral of (26) for 𝜑𝑗
𝑙
, can be similarly estimated.We

just replace ℎ
0

0
(𝑥) by ℎ

𝑗

0
(𝑥) in the above analysis.

Since 𝜕
𝑘

𝑥
ℎ
𝑗

(1) = 0 for 0 ≤ 𝑘 ≤ 2𝑛+1−2𝑗, the first integral
is then estimated as in (A.1) for 𝑗 = 0. We just replace the
above 2𝑛 + 2 by 2𝑛 + 2 − 2𝑗. We now estimate the particular
solution of 𝜑𝑗

𝑙
, that is, the second integral of (26) denoted by

𝐼. For simplicity in the analysis below, we write that

𝐽 = exp(−

(𝑦 − 𝑦
1
)
2

4𝑥
1

) − exp(−

(𝑦 + 𝑦
1
)
2

4𝑥
1

) . (A.7)
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Using the induction assumption at order 𝑗 − 1, from (A.1) for
𝑗 − 1, we note that for 0 ≤ 2 + 𝑖 ≤ 2𝑛 + 2 − 2(𝑗 − 1), that is,
0 ≤ 𝑖 ≤ 2𝑛 + 2 − 2𝑗,

𝜕
2+𝑖

𝑥
𝜑
𝑗−1

𝑙
(1
−

, 𝑦
1
) = 0, (A.8)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
2+𝑖

𝑥
𝜑
𝑗−1

𝑙
(𝑥 + 𝑥

1
, 𝑦
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅 exp(−𝑐

𝑦
1

√1 − 𝑥 − 𝑥
1

)

≤ 𝜅 exp(−𝑐

𝑦
1

√1 − 𝑥

) .

(A.9)

Thanks to (A.8), differentiating 𝐼, the second integral of (26),
we find that

𝜕
𝑖

𝑥
𝐼 =

1

2√𝜋

∫

1−𝑥

0

∫

∞

0

𝐽

√𝑥
1

𝜕
2+𝑖

𝑥
𝜑
𝑗−1

𝑙
(𝑥 + 𝑥

1
, 𝑦
1
) 𝑑𝑦
1
𝑑𝑥
1
,

0 ≤ 𝑖 ≤ 2𝑛 + 2 − 2𝑗.

(A.10)

Since 0 ≤ 𝑥
1

≤ 1 − 𝑥 ≤ 1, |𝐽| ≤ 2 exp(−(𝑦 − 𝑦
1
)
2

/4𝑥
1
) ≤

2 exp(−(𝑦−𝑦
1
)
2

/4(1−𝑥)), from (A.9) we find that for 0 ≤ 𝑖 ≤

2𝑛 + 2 − 2𝑗,

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑖

𝑥
𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅∫

1−𝑥

0

1

√𝑥
1

𝑑𝑥
1

× ∫

∞

0

exp(−

(𝑦 − 𝑦
1
)
2

4 (1 − 𝑥)

) exp(−𝑐

𝑦
1

√1 − 𝑥

)𝑑𝑦
1

≤ (setting 𝛽 = 2𝑐√1 − 𝑥)

≤ 𝜅∫

∞

0

exp(−

(𝑦
1
− 𝑦 + 𝛽)

2

4 (1 − 𝑥)

−

𝛽

2 (1 − 𝑥)

𝑦 +

𝛽
2

4 (1 − 𝑥)

)𝑑𝑦
1

≤ 𝜅 exp(−𝑐

𝑦

√1 − 𝑥

)∫

∞

0

exp(−

(𝑦
1
− 𝑦 + 𝛽)

2

4 (1 − 𝑥)

)𝑑𝑦
1

≤ 𝜅 exp(−𝑐

𝑦

√1 − 𝑥

) .

(A.11)

This proves (A.1) for 𝑚 = 0, 𝑗 ≥ 1.
For 𝑚 = 2(𝑘 + 1), 𝑘 ≥ 0, thanks to the induction

assumption on 𝑗 − 1, from (A.1) we note that for 0 ≤ 𝑖 + 𝑠 +

2 + 2(𝑘 − 𝑠) ≤ 2𝑛 + 2 − 2(𝑗 − 1),

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕
𝑖+𝑠+2

𝑥
𝜕
2(𝑘−𝑠)

𝑦
𝜑
𝑗−1

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜅 exp(−𝑐

𝑦

√1 − 𝑥

) , (A.12)

from (A.11) we also note that

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑖+𝑘+1

𝑥
𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅 exp(−𝑐

𝑦

√1 − 𝑥

) ,

for 0 ≤ 𝑖 + 𝑘 + 1 ≤ 2𝑛 + 2 − 2𝑗.

(A.13)

Since −𝐼
𝑦𝑦

− 𝐼
𝑥
= 𝜑
𝑗−1

𝑙𝑥𝑥
, we thus find that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕
𝑖

𝑥
𝜕
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𝑦
𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑖+𝑘+1

𝑥
𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
+

𝑘

∑

𝑠=0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕
𝑖+𝑠+2

𝑥
𝜕
2(𝑘−𝑠)

𝑦
𝜑
𝑗−1

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜅 exp(−𝑐

𝑦

√1 − 𝑥

) ,

for 0 ≤ 𝑖 + 2 (𝑘 + 1) ≤ 2𝑛 + 2 − 2𝑗.

(A.14)

This proves (A.1) for 𝑚 = 2(𝑘 + 1), 𝑘 ≥ 0, 𝑗 ≥ 1.
Since 𝜕

𝑦
exp(−(𝑦−𝑦

1
)
2

/4𝑥
1
) = −𝜕

𝑦
1

exp(−(𝑦−𝑦
1
)
2

/4𝑥
1
),

differentiating (A.10) in 𝑦 we observe that
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𝜕
𝑖

𝑥
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𝑦
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∫
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𝑙
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≤ (integrating by parts in 𝑦
1
)

≤ 𝜅
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(A.15)

where 𝐽 = exp(−(𝑦 − 𝑦
1
)
2

/4𝑥
1
) + exp(−(𝑦 + 𝑦

1
)
2

/4𝑥
1
) ≤

2 exp(−(𝑦 − 𝑦
1
)
2

/4(1 − 𝑥)). Here, we note that 𝜕
𝑦
𝐽 = −𝜕

𝑦
1

𝐽.
Thanks to the induction assumption on 𝑗 − 1, from (A.1) we
thus note that for 0 ≤ 2 + 𝑖 + 1 ≤ 2𝑛 + 2 − 2(𝑗 − 1), that is,
0 ≤ 𝑖 ≤ 2𝑛 + 1 − 2𝑗,
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≤ 𝜅 exp(−𝑐

𝑦
1

√1 − 𝑥

) , (A.16)

and for 0 ≤ 2+ 𝑖 ≤ 2𝑛+2−2(𝑗−1), that is, 0 ≤ 𝑖 ≤ 2𝑛+2−2𝑗,
󵄨
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󵄨
󵄨
󵄨
𝜕
2+𝑖

𝑥
𝜕
𝑦
1

𝜑
𝑗−1

𝑙
(𝑥 + 𝑥

1
, 0)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅. (A.17)

As in (A.11) we similarly find that for 0 ≤ 𝑖 ≤ 2𝑛 + 1 − 2𝑗,

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑖

𝑥
𝜕
𝑦
𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅 exp(−𝑐

𝑦

√1 − 𝑥

) . (A.18)

Hence, for𝑚 = 2𝑘+1, 𝑘 ≥ 0, using the induction assumption
at order 𝑗 − 1, from (A.1) we note that for 0 ≤ 𝑖 + 𝑠 + 2 + 2(𝑘 −

𝑠) − 1 ≤ 2𝑛 + 2 − 2(𝑗 − 1),

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕
𝑖+𝑠+2

𝑥
𝜕
2(𝑘−𝑠)−1

𝑦
𝜑
𝑗−1

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜅 exp(−𝑐

𝑦

√1 − 𝑥

) , (A.19)

from (A.18) we also note that

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑖+𝑘

𝑥
𝜕
𝑦
𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜅 exp(−𝑐

𝑦

√1 − 𝑥

) ,

for 0 ≤ 𝑖 + 𝑘 ≤ 2𝑛 + 1 − 2𝑗.

(A.20)
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Using −𝐼
𝑦𝑦

− 𝐼
𝑥
= 𝜑
𝑗−1

𝑙𝑥𝑥
again we thus find that

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑖

𝑥
𝜕
2𝑘+1

𝑦
𝐼

󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑖+𝑘

𝑥
𝜕
𝑦
𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
+

𝑘−1

∑

𝑠=0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕
𝑖+𝑠+2

𝑥
𝜕
2(𝑘−𝑠)−1

𝑦
𝜑
𝑗−1

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜅 exp(−𝑐

𝑦

√1 − 𝑥

) , for 0 ≤ 𝑖 + 2𝑘 + 1 ≤ 2𝑛 + 2 − 2𝑗.

(A.21)

This proves (A.1) for 𝑚 = 2𝑘 + 1, 𝑘 ≥ 0, 𝑗 ≥ 1. Hence, the
lemma is proved.

B. Study of the Elliptic Corner
Correctors 𝜉

𝑗

= 𝜉
𝑗

𝑙
+ 𝜉
𝑗

𝑢

For each 0 ≤ 𝑗 ≤ 𝑛, using the stretched variables

𝑋 =

1 − 𝑥

2𝜀

, 𝑌 =

𝑦

2𝜀

, (B.1)

one can define an approximation 𝜉

𝑗

𝑙
of 𝜉𝑗
𝑙
as a solution of the

system,

−𝜕
2

𝑋
𝜉

𝑗

𝑙
− 𝜕
2

𝑌
𝜉

𝑗

𝑙
+ 2𝜕
𝑋
𝜉

𝑗

𝑙
= 0,

𝜉

𝑗

𝑙
= 0 at 𝑋 = 0,

𝜉

𝑗

𝑙
= 𝛾
𝑗

0
(1 − 2𝜀𝑋) at 𝑌 = 0,

𝜉

𝑗

𝑙
󳨀→ 0 at 𝑋

2

+ 𝑌
2

󳨀→ ∞, 𝑌 > 0.

(B.2)

The explicit expression of 𝜉
𝑗

is given as (see [1])

𝜉

𝑗

𝑙
=

𝑌

𝜋

∫

∞

0

[

𝐾
1
(𝑠
1
)

𝑠
1

−

𝐾
1
(𝑠
2
)

𝑠
2

]

× 𝛾
𝑗

0
(1 − 2𝜀𝑠) exp (− (𝑠 − 𝑋)) 𝑑𝑠,

(B.3)

where 𝐾
1
is the modified Bessel function of the second kind

of the first order, and

𝑠
1
= √(𝑋 − 𝑠)

2

+ 𝑌
2
, 𝑠

2
= √(𝑋 + 𝑠)

2

+ 𝑌
2
. (B.4)

Using an appropriate barrier function and the maximum
principle (see [1]), one can verify that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜉

𝑗

𝑙
(𝑋, 𝑌)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜅 exp (−𝑐 (√𝑋
2
+ 𝑌
2
− 𝑋)) , (B.5)

for a constant 𝑐 independent of 𝜀. An approximation 𝜉

𝑗

𝑢
of 𝜉𝑗
𝑢

can be constructed in the same manner.
Using (33) and (B.5), we notice that 𝜉𝑗 − (𝜉

𝑗

𝑙
+ 𝜉

𝑗

𝑢
) = e.s.t.

at 𝑦 = 0, 1. We deduce from (17), (18), and (B.2)
2
that 𝛾𝑗
𝑘
(1) =

0, and hence 𝜉
𝑗

− (𝜉

𝑗

𝑙
+ 𝜉

𝑗

𝑢
) = 0 at 𝑥 = 1. Moreover, using

Lemma B.1 below, we see that 𝜉𝑗−(𝜉

𝑗

𝑙
+𝜉

𝑗

𝑢
) = 0 at 𝑥 = 0.Then,

using these observations, thanks to the maximum principle,
we find that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜉
𝑗

− (𝜉

𝑗

𝑙
+ 𝜉

𝑗

𝑢
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= e.s.t., 0 ≤ 𝑗 ≤ 𝑛, (B.6)

which implies that the elliptic corrector 𝜉
𝑗, 0 ≤ 𝑗 ≤ 𝑛,

satisfies the pointwise estimates similar to (B.5) as for its
approximation 𝜉

𝑗

= 𝜉

𝑗

𝑙
+ 𝜉

𝑗

𝑢
.

Lemma B.1. There exists a positive constant 𝜅, independent of
𝜀, such that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜉

𝑗

(𝑋, 𝑌)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜅min {𝑈 (𝑋) , 𝑈 (𝑌)} , 0 ≤ 𝑗 ≤ 𝑛, (B.7)

where

𝑈 (𝑍) =

{
{

{
{

{

1 if 0 ≤ 𝑍 ≤ 𝑎,

1 − 4(𝑍 − 𝑎)
2 if 𝑎 < 𝑍 ≤ 𝑏,

0 if 𝑍 > 𝑏,

(B.8)

and 𝑎 = 3/8𝜀, 𝑏 = 𝑎 + (1/2).

To prove Lemma B.1, we will recall below the weak
maximum principle (see, e.g., [17]).

We consider an operator 𝐿 of the form,

𝐿𝑢 =

𝑚

∑

𝑖,𝑗=1

𝐷
𝑖
(𝑎
𝑖𝑗

𝐷
𝑗
𝑢) +

𝑚

∑

𝑖=1

(𝐷
𝑖
(𝑏
𝑖

𝑢) + 𝑐
𝑖

𝐷
𝑖
𝑢) + 𝑑𝑢, (B.9)

where the coefficients 𝑎
𝑖𝑗, 𝑏𝑖, 𝑐𝑖, and 𝑑 are assumed to be

measurable functions in a domainΩ
𝑚

⊂ R𝑚, and𝐷
𝑖
denotes

𝜕/𝜕𝑥
𝑖
, 1 ≤ 𝑖 ≤ 𝑚.

We assume that 𝐿 is strictly elliptic in Ω
𝑚
, that is, there

exists 𝜆 > 0, such that
𝑚

∑

𝑖,𝑗=1

𝑎
𝑖𝑗

𝜉
𝑖
𝜉
𝑗
≥ 𝜆

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

, ∀𝜉 ∈ R
𝑚

, (B.10)

and that 𝐿 has bounded coefficients, that is, for some
constants Λ and ] ≥ 0, we have
𝑚

∑

𝑖,𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
󵄨
󵄨
󵄨
󵄨
󵄨

2

≤ Λ
2

, 𝜆
−2

𝑚

∑

𝑖=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖
󵄨
󵄨
󵄨
󵄨
󵄨

2

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
󵄨
󵄨
󵄨
󵄨
󵄨

2

) + 𝜆
−1

|𝑑| ≤ ]
2

.

(B.11)

We also assume that

∫

Ω
𝑚

(𝑑V −

𝑚

∑

𝑖=1

𝑏
𝑖

𝐷
𝑖
V) ≤ 0, ∀V ≥ 0, V ∈ C

1

𝑐
(Ω
𝑚
) . (B.12)

We say that a weakly differentiable function 𝑢 satisfies
𝐿𝑢 = 0, (≥0 or ≤0), in the weak sense, if

∫

Ω
𝑚

(

𝑚

∑

𝑖,𝑗=1

𝑎
𝑖𝑗

𝐷
𝑗
𝑢𝐷
𝑖
V +

𝑚

∑

𝑖=1

(𝑏
𝑖

𝑢𝐷
𝑖
V − 𝑐
𝑖

𝐷
𝑖
𝑢V) − 𝑑𝑢V) = 0,

(≤ 0 or ≥ 0) ,

(B.13)
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for all nonnegative functions V ∈ C1
𝑐
(Ω
𝑚
), provided that

𝑎
𝑖𝑗

𝐷
𝑗
𝑢 + 𝑏
𝑖

𝑢 and 𝑐
𝑖

𝐷
𝑖
𝑢 + 𝑑𝑢, 1 ≤ 𝑖 ≤ 𝑚, are locally integrable.

Now we state the following maximum principle.

Lemma B.2. Under the conditions (B.10), (B.11), and (B.12), if
𝑢 ∈ 𝐻

1

(Ω
𝑚
) satisfies 𝐿𝑢 ≥ 0, or 𝐿𝑢 ≤ 0, in the weak sense,

then one has, respectively,

sup
Ω
𝑚

𝑢 ≤ sup
𝜕Ω
𝑚

𝑢
+ or inf

Ω
𝑚

𝑢 ≥ inf
𝜕Ω
𝑚

𝑢
−

. (B.14)

Thanks to Lemma B.2, we can now prove Lemma B.1.

Proof of Lemma B.1. Given 𝜀
0

> 0, thanks to (B.2)
4
, we may

choose a regionΩ
0
= {(𝑋, 𝑌) ∈ [0,∞)×[0,∞) | 𝑋

2

+𝑌
2

≤

𝑅
2

} with 𝑅 sufficiently large so that |𝜉

𝑗

| < 𝜀
0
on the circle

𝑋
2

+ 𝑌
2

= 𝑅
2, 𝑋,𝑌 > 0. We then define the barrier function

𝑈̃ = 𝑈̃ (𝑋, 𝑌) = 𝐶𝑈 (𝑋) + 𝜀
0
, (𝑋, 𝑌) ∈ [0,∞) × [0,∞) ,

(B.15)

where 𝑈(𝑋) is given in (B.8). Here, 𝐶 is a positive constant
and it will be determined below. Note that 𝑈̃(𝑋, 𝑌) ∈ 𝐻

1

(Ω
0
).

Going back to the elliptic problem (B.2) and writing the
elliptic operator 𝐿 as

𝐿𝜉

𝑗

:= 𝜉

𝑗

𝑋𝑋
+ 𝜉

𝑗

𝑌𝑌
− 2𝜉

𝑗

𝑋
, (B.16)

we find that the operator 𝐿 satisfies (B.10), (B.11), and (B.12).
We also find that for V ∈ C1

𝑐
(Ω
0
), V ≥ 0,

∫

Ω
0

(𝑈̃
𝑋
V
𝑋

+ 𝑈̃
𝑌
V
𝑌
+ 2𝑈̃
𝑋
V)

= ∫∫

𝑅

0

𝐶 (𝑈
𝑋
V
𝑋

+ 2𝑈
𝑋
V) 𝑑𝑋𝑑𝑌 ≥ 0.

(B.17)

Indeed, if 0 ≤ 𝑋 ≤ 𝑎 or𝑋 > 𝑏 (𝑎, 𝑏 as in (B.8)), since𝑈
𝑋

= 0,
we only have to consider the case 𝑎 < 𝑅 ≤ 𝑏. For this 𝑅, since
𝑈 ∈ 𝐻

2

(Ω
0
), we note that ∫𝑅

0

(𝑈
𝑋
V
𝑋
+2𝑈
𝑋
V)𝑑𝑋 = ∫

𝑅

0

(−𝑈
𝑋𝑋

+

2𝑈
𝑋
)V𝑑𝑋 = ∫

𝑅

𝑎

(−𝑈
𝑋𝑋

+ 2𝑈
𝑋
)V𝑑𝑋 ≥ 0 for all non-negative

V ∈ C1
𝑐
(Ω
0
).

Since 𝐿(±𝜉

𝑗

) = 0, we thus find that 𝐿(𝑈̃ ± 𝜉

𝑗

) ≤ 0 in the
weak sense.

Thanks to the cut-off function 𝛿(𝑥), choosing 𝐶 =

max
𝑥∈[1/2,1]

|𝛾
𝑗

(𝑥)|, we find that

𝑈̃ (𝑋, 0) = 𝐶𝑈 (𝑋) + 𝜀
0
≥

󵄨
󵄨
󵄨
󵄨
󵄨
𝛾
𝑗

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜒
[1/2,1]

(𝑥)

=

󵄨
󵄨
󵄨
󵄨
󵄨
𝛾
𝑗

(1 − 2𝜀𝑋)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜒
[0,1/4𝜀]

(𝑋) ≥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
𝑗

(𝑋)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜉

𝑗

(𝑋, 0)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

𝑈̃ (0, 𝑌) = 𝐶 + 𝜀
0
≥ 0 =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜉

𝑗

(0, 𝑌)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

𝑈̃ (𝑋, 𝑌) ≥ 𝜀
0
>

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜉

𝑗

(𝑋, 𝑌)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

on 𝜕Ω
0
with 𝑋

2

+ 𝑌
2

= 𝑅
2

, 𝑋, 𝑌 > 0.

(B.18)

Thus, we note that 𝑈̃ ± 𝜉

𝑗

≥ 0 on 𝜕Ω
0
. Using Lemma B.2 we

conclude that, for (𝑋, 𝑌) ∈ Ω
0
,

(𝑈̃ ± 𝜉

𝑗

) (𝑋, 𝑌) ≥ inf
Ω
0

(𝑈̃ ± 𝜉

𝑗

) ≥ inf
𝜕Ω
0

(𝑈̃ ± 𝜉

𝑗

)

−

= 0.

(B.19)

Hence, we have
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜉

𝑗

(𝑋, 𝑌)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑈̃ (𝑋, 𝑌) = 𝐶𝑈 (𝑋) + 𝜀
0
. (B.20)

Letting 𝑅 → ∞, we deduce that |𝜉
𝑗

(𝑋, 𝑌)| ≤ 𝐶𝑈(𝑋). Sim-
ilarly, we can conclude that |𝜉

𝑗

(𝑋, 𝑌)| ≤ 𝐶𝑈(𝑌). This proves
the lemma.
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