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This paper is contributed to explore all possible single peak solutions for the𝐾∗(4, 1) equation 𝑢
𝑡
= 𝑢
𝑥
𝑢
2

+2𝛼(𝑢𝑢
𝑥𝑥𝑥
+2𝑢
𝑥
𝑢
𝑥𝑥
). Our

procedure shows that the 𝐾∗(4, 1) equation either has peakon, cuspon, and smooth soliton solutions when sitting on a nonzero
constant pedestal lim

𝜉→±∞
𝑢 = 𝐴 ̸= 0 or possesses compacton solutions only when lim

𝜉→±∞
𝑢 = 𝐴 = 0. We present a new smooth

soliton solution in an explicit form. Mathematical analysis and numeric graphs are provided for those soliton solutions of the
𝐾
∗

(4, 1) equation.

1. Introduction

It is well known that the study of nonlinear wave equations
and their solutions is of great importance in many areas of
physics.

In 1993, Cooper et al. [1] considered the following gener-
alized KdV equation (GKdV):

𝐾
∗

(𝑙, 𝑝) : 𝑢
𝑡
= 𝑢
𝑥
𝑢
𝑙−2

+ 𝛼 [2𝑢
𝑥𝑥𝑥
𝑢
𝑝

+ 4𝑝𝑢
𝑝−1

𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑝 (𝑝 − 1) 𝑢
𝑝−2

(𝑢
𝑥
)

3

] ,

(1)

where 𝑙, 𝑝 ∈ 𝑍+. These equations are derived from Lagran-
gian

𝐿 (𝑙, 𝑝) = ∫[

1

2

𝜓
𝑥
𝜓
𝑡
−

(𝜓
𝑥
)

𝑙

𝑙 (𝑙 − 1)

+ 𝛼(𝜓
𝑥
)

𝑝

(𝜓
𝑥𝑥
)

2

]𝑑𝑥, (2)

where 𝑢(𝑥, 𝑡) is defined by 𝑢(𝑥, 𝑡) = 𝜓
𝑥
(𝑥, 𝑡). These equations

have the same terms as the following equations, considered
by Rosenau and Hyman [2]:

𝐾 (𝑚, 𝑛) : 𝑢
𝑡
+ (𝑢
𝑚

)
𝑥
+ (𝑢
𝑛

)
𝑥𝑥𝑥
= 0, 𝑚, 𝑛 > 1, (3)

but relative weights of the terms are quite different leading
to the possibility that the integrability properties might be
different. Cooper et al. [1] investigatedHamiltonian structure
and integrability properties for this class of KdV equations.

By using bifurcation theory of dynamical systems, when
𝑙, 𝑝 ≥ 2, Tang and Li [3] investigated the bifurcation behavior
for traveling wave solutions of (1). In [4], by using sine-
cosinemethod and extended tanhmethod, some new solitary
patterns solutions and compactons solutions are formally
derived. In [5], by using analyticmethods from the dynamical
systems theory, some new exact explicit parametric rep-
resentations of breaking loop-solutions under some fixed
parameter conditions are formally derived.

In the development of soliton theory, there exist many
different approaches to searching for exact solutions of
nonlinear partial differential equations, such as mapping
method [6], fan-expansion method [7], and (𝐺

󸀠

/𝐺)-
expansion method [8]. In particular, it is very interesting
to investigate the traveling wave solutions on a constant
pedestal. Qiao and Zhang [9] discussed the traveling wave
solutions for the Camassa-Holm equation on the nonzero
constant pedestal lim

𝜉→±∞
𝑢 = 𝐴 ̸= 0 and found new soliton

solutions, which are smooth and cusped. Later, Zhang and
Qiao [10] investigated the Degasperis-Procesi equation
under the boundary condition lim

𝜉→±∞
𝑢 = 𝐴 and obtained

all possible single peak soliton solutions of the Degasperis-
Procesi equation. Recently, Chen and Li [11] studied osmosis
𝐾(2, 2) equation with a nonzero constant pedestal and
obtained smooth, peaked, and cusped soliton solutions of
the osmosis 𝐾(2, 2) equation. More recently, Zhang et al.
[12] studied the 𝐾(2, 2) equation under an inhomogeneous
boundary condition and obtained compacton solutions,
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loop soliton solutions, cusped soliton solutions, and smooth
soliton solutions.

In the literature [1, 3–5], the authors did not investigate
the existence of peakon soliton for the 𝐾∗(𝑙, 𝑝) equation. We
are thus interested in an important question that should be
investigated: does the𝐾∗(𝑙, 𝑝) equation have peakon soliton?
Wehope to answer this problem in this paper. Assume that 𝑙 =
4, 𝑝 = 1. Then, (1) becomes (simply called𝐾∗(4, 1) equation)

𝑢
𝑡
= 𝑢
𝑥
𝑢
2

+ 2𝛼 (𝑢𝑢
𝑥𝑥𝑥
+ 2𝑢
𝑥
𝑢
𝑥𝑥
) . (4)

We will study single peak solitary solutions of 𝐾∗(4, 1)
equation under inhomogeneous boundary condition

lim
𝜉→±∞

𝑢 = 𝐴. (5)

Peakon, compacton, cuspon, and smooth soliton solutions
are obtained. Our method is based on phase portrait analysis
technique under an inhomogeneous boundary condition.

2. Asymptotic Behavior of Solutions

In this section, we first introduce some notations. Let 𝐶𝑘(Ω)
denote the set of all 𝑘 times continuously differential func-
tions on the open set Ω. 𝐿𝑝loc(𝑅) refers to the set of all
functions whose restriction on any compact subset is 𝐿𝑝
integrable. 𝐻1loc(𝑅) stands for 𝐻1loc(𝑅) = {𝑢 ∈ 𝐿

2

loc(𝑅) |

𝑢
󸀠

∈ 𝐿
2

loc(𝑅)}. Assume that 𝑠𝑛(𝑥, 𝑘), 𝑐𝑛(𝑥, 𝑘), 𝑑𝑛(𝑥, 𝑘) are the
Jacobian elliptic functions with the modulus 𝑘,𝐾(𝑘) is the
first kind of complete elliptic integral, 𝐸(𝜙, 𝑘) is the normal
elliptic integral of the 2nd kind, and∏(𝜙, 𝛼2, 𝑘) is the normal
elliptic integral of the 3rd kind [13].

Let us consider the traveling wave solution of 𝐾∗(4, 1)
equation (4) through a generic setting 𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 =
𝑥 − 𝑐𝑡, where 𝑐 is wave speed. Substituting it into (4) yields

−𝑐𝑢
󸀠

=

1

3

(𝑢
3

)

󸀠

+ 𝛼 [2(𝑢𝑢
󸀠󸀠

)

󸀠

+ ((𝑢
󸀠

)

2

)

󸀠

] , (6)

where “󸀠” is the derivative with respect to 𝜉. Taking the
integration twice on both sides leads to

(𝑢
󸀠

)

2

=

𝑢
4

+ 6𝑐𝑢
2

+ 12𝑔
1
𝑢 + 12𝑔

2

−12𝛼𝑢

, (7)

where 𝑔
1
, 𝑔
2
∈ 𝑅 are two integration constants. Let us solve

(7) with the boundary condition (5). From (7) we obtain that

(𝑢
󸀠

)

2

=

1

12𝛼

[−𝑢
3

− 6𝑐𝑢 −

3𝐴
2

(𝐴
2

+ 2𝑐)

𝑢

+ 4𝐴 (𝐴
2

+ 3𝑐)]

=

(𝑢 − 𝐴)
2

(𝑢
2

+ 2𝐴𝑢 + 3𝐴
2

+ 6𝑐)

−12𝛼𝑢

.

(8)

If 𝐴2 + 3𝑐 < 0, then (8) reduces to

(𝑢
󸀠

)

2

=

(𝑢 − 𝐴)
2

(𝑢 − 𝐵
1
) (𝑢 − 𝐵

2
)

−12𝛼𝑢

, (9)

where

𝐵
1
= −𝐴 + √−2 (𝐴

2
+ 3𝑐), 𝐵

2
= −𝐴 − √−2 (𝐴

2
+ 3𝑐).

(10)

Obviously, 𝐵
1
≥ 𝐵
2
. We assume that 𝛼 > 0 throughout the

paper since there are similar results for the case 𝛼 < 0.

Definition 1. A function 𝑢(𝜉) is said to be a single peak soliton
solution for𝐾∗(4, 1) equation (4) if𝑢(𝜉) satisfies the following
conditions:

(A1) 𝑢(𝜉) is continuous on R and has a unique peak
point 𝜉

0
, where 𝑢(𝜉) attains its global maximum or

minimum value;
(A2) 𝑢(𝜉) ∈ 𝐶3(𝑅 − {𝜉

0
}) satisfies (8) on 𝑅 − {𝜉

0
};

(A3) lim
𝜉→±∞

𝑢(𝜉) = 𝐴.

Definition 2. A wave function 𝑢 is called a peakon if 𝑢
is smooth locally on either side of 𝜉

0
and lim

𝜉↑𝜉0
𝑢
󸀠

(𝜉) =

−lim
𝜉↓𝜉0
𝑢
󸀠

(𝜉) = 𝑎, 𝑎 ̸= 0, 𝑎 ̸= ±∞.

Definition 3. A wave function 𝑢 is called a cuspon if 𝑢
is smooth locally on either side of 𝜉

0
and lim

𝜉↑𝜉0
𝑢
󸀠

(𝜉) =

−lim
𝜉↓𝜉0
𝑢
󸀠

(𝜉) = +∞ (or −∞).
Without loss of generality, one assumes that 𝜉

0
= 0.

Lemma 4. Equation (4) has trivial solution 𝑢 ≡ 𝐴, if one of
the following three conditions holds:

(i) 𝐴 ≥ 0, 𝑐 > 0;
(ii) 𝐴 > √−𝑐, 𝑐 < 0;
(iii) −√−𝑐 ≤ 𝐴 < 0, 𝑐 < 0.

Proof. (i) If 𝐴 ≥ 0, 𝑐 > 0, then 𝑢 ≥ 0, 2(𝐴2 + 3𝑐) > 0,
lim
𝜉→±∞

𝑢(𝜉) = 𝐴, and

(𝑢
󸀠

)

2

=

(𝑢 − 𝐴)
2

[(𝑢 + 𝐴)
2

+ 2 (𝐴
2

+ 3𝑐)]

−12𝛼𝑢

≤ 0.
(11)

The fact that (𝑢󸀠)2 ≥ 0 implies that 𝑢󸀠 = 0 and 𝑢 ≡ 𝐴.
If 𝐴 = 0, 𝑐 > 0, then 2(𝐴2 + 3𝑐) > 0, lim

𝜉→±∞
𝑢(𝜉) = 0,

and (𝑢󸀠)2 = 𝑢(𝑢2 + 6𝑐)/ − 12𝛼 ≤ 0. The fact that (𝑢󸀠)2 ≥ 0
implies that 𝑢󸀠 = 0 and 𝑢 ≡ 𝐴.

(ii) If 𝐴 ≥ √−3𝑐, 𝑐 < 0, then 𝑢 > 0, 2(𝐴2 + 3𝑐) ≥ 0,
lim
𝜉→±∞

𝑢(𝜉) = 𝐴 > 0, and

(𝑢
󸀠

)

2

=

(𝑢 − 𝐴)
2

[(𝑢 + 𝐴)
2

+ 2 (𝐴
2

+ 3𝑐)]

−12𝛼𝑢

≤ 0.
(12)

The fact that (𝑢󸀠)2 ≥ 0 implies that 𝑢󸀠 = 0 and 𝑢 ≡ 𝐴.
If√−𝑐 < 𝐴 < √−3𝑐, 𝑐 < 0, then 2(𝐴2 + 3𝑐) < 0, 𝐴 > 𝐵

1
=

−𝐴 + √−2(𝐴
2
+ 3𝑐) > 𝐵

2
, lim
𝜉→±∞

𝑢(𝜉) = 𝐴 > 0, and

(𝑢
󸀠

)

2

=

(𝑢 − 𝐴)
2

(𝑢 − 𝐵
1
) (𝑢 − 𝐵

2
)

−12𝛼𝑢

≤ 0. (13)

The fact that (𝑢󸀠)2 ≥ 0 implies that 𝑢󸀠 = 0 and 𝑢 ≡ 𝐴.
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(iii) If −√−𝑐 ≤ 𝐴 < 0, 𝑐 < 0, then 2(𝐴2 + 3𝑐) < 0, 𝐵
2
≤

𝐴 < 𝐵
1
, lim
𝜉→±∞

𝑢(𝜉) = 𝐴 < 0, and

(𝑢
󸀠

)

2

=

(𝑢 − 𝐴)
2

(𝐵
1
− 𝑢) (𝑢 − 𝐵

2
)

12𝛼𝑢

≤ 0. (14)

The fact that (𝑢󸀠)2 ≥ 0 implies 𝑢󸀠 = 0 and 𝑢 ≡ 𝐴.

Theorem 5. Suppose that 𝑢(𝜉) is a single peak solitary wave
solution for (4) at the peak point 𝜉

0
= 0. If 𝐴 < 0, 𝑐 > 0 or

0 ≤ 𝐴 ≤ √−𝑐, 𝑐 < 0 or −√−3𝑐 ≤ 𝐴 < −√−𝑐, 𝑐 < 0, then
𝑢(0) = 0 or 𝑢(0) = 𝐵

1
or 𝑢(0) = 𝐵

2
.

Proof. If 𝑢(0) ̸= 0, then 𝑢(𝜉) ̸= 0 for any 𝜉 ∈ 𝑅 since 𝑢(𝜉) ∈
𝐶
3

(𝑅 − {0}). Differentiating both sides of (8) yields 𝑢(𝜉) ∈
𝐶
∞

(𝑅).
(i) If 𝐴 ≥ 0, 𝑐 > 0 or 𝐴 > √−𝑐, 𝑐 < 0 or −√−𝑐 ≤ 𝐴 < 0,
𝑐 < 0, from Lemma 4, we know that (4) has trivial
solution 𝑢 ≡ 𝐴.

(ii) For 𝐴 = 0, 𝑐 < 0, we have (𝑢󸀠)2 = 𝑢(√−6𝑐 −

𝑢)(𝑢 + √−6𝑐)/12𝛼, if 𝑢(0) ̸= 0, then, according to the
definition of peak point, we have 𝑢󸀠(0) = 0; thus,
𝑢(0) = 𝐵

1
= √−6𝑐 or 𝑢(0) = 𝐵

2
= −√−6𝑐.

(iii) For 𝐴 < 0, 𝑐 > 0 or 0 < 𝐴 ≤ √−𝑐, 𝑐 < 0

or −√−3𝑐 ≤ 𝐴 < −√−𝑐, 𝑐 < 0, if 𝑢(0) ̸= 0, then
𝑢(𝜉) ∈ 𝐶

∞

(𝑅). According to the definition of peak
point, we have 𝑢󸀠(0) = 0.Thus, 𝑢(0) = 𝐵

1
or 𝑢(0) = 𝐵

2

since 𝑢(0) = 𝐴 contradicts the fact that 0 is the unique
peak point.

Theorem 6. Suppose that 𝑢(𝜉) is a single peak solitary wave
solution for (4) at the peak point 𝜉

0
= 0. When 𝐴 < 0, 𝑐 > 0

or 0 ≤ 𝐴 ≤ √−𝑐, 𝑐 < 0 or −√−3𝑐 ≤ 𝐴 < −√−𝑐, 𝑐 < 0, then
we have the following classification and asymptotic behavior of
solutions.

(i) If 𝑢(0) = 𝐵
2
and𝐴 < 𝐵

2
< 0 or 𝑢(0) = 𝐵

1
and 0 < 𝐴 <

𝐵
1
, then 𝑢(𝜉) is a smooth solitary wave solution.

(ii) If 𝐴 = 0,𝑐 < 0, 𝑢(0) = 𝐵
1
, then 𝑢(𝜉) is a compacton

solution [2].
(iii) If 𝑢(0) = 0 and𝐴 = −√−2𝑐, then 𝑢(𝜉) gives the peakon

solution
𝑢 (𝜉) = √−2𝑐

×
[

[

2 − 3tanh2(tanh−1
√3 + √2

√3 − √2

+

1

4

√
√−2𝑐

𝛼

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
)
]

]

.

(15)

(iv) If 𝑢(0) = 0 and 𝐴 ̸= − √−2𝑐, 𝑐 < 0 and 𝐴 < 0, 𝑐 > 0
or 0 < 𝐴 ≤ √−𝑐 or −√−3𝑐 ≤ 𝐴 < −√−𝑐, then 𝑢(𝜉) is
a cuspon soliton solution and

𝑢 (𝜉) = −(

3

2ℎ
1
(0)

)

2/3

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨

2/3

+ 𝑂 (

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
) , 𝜉 󳨀→ 0,

𝑢
󸀠

(𝜉) = −

2

3

(

3

2ℎ
1
(0)

)

2/3

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨

−1/3

+ 𝑂 (1) , 𝜉 󳨀→ 0,

(16)

or

𝑢 (𝜉) = (

3

2ℎ
2
(0)

)

2/3

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2/3

+ 𝑂 (
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
) , 𝜉 󳨀→ 0,

𝑢
󸀠

(𝜉) =

2

3

(

3

2ℎ
2
(0)

)

2/3

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨

−1/3

+ 𝑂 (1) , 𝜉 󳨀→ 0.

(17)

Proof. (i) From the process of proving Theorem 5, we know
that if 𝑢(0) = 𝐵

1
> 0 or 𝑢(0) = 𝐵

2
< 0, then 𝑢(0) ̸= 0; thus,

𝑢(𝜉) is a smooth solitary wave solution.
(ii) If 𝐴 = 0, then 𝐵

2
= −√−6𝑐, 𝑢(0) = 𝐵

1
= √−6𝑐, (9)

becomes

𝑢
󸀠

=
√
𝑢 (√−6𝑐 − 𝑢) (𝑢 − √−6𝑐)

12𝛼

sign (𝜉) . (18)

Integrating both sides of (18) on the interval (0, √−6𝑐] leads
to a compacton solution with compact support

𝑢 (𝜉) =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

√−6𝑐(1 − 𝑠𝑛
2

(

1

4

√
2√−6𝑐

3𝛼

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
,

√2

2

)) ,

if 󵄨󵄨󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
≤ 4√

3𝛼

2√−6𝑐

𝐾(

√2

2

) ,

0, if 󵄨󵄨󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
> 4√

3𝛼

2√−6𝑐

𝐾(

√2

2

) .

(19)

The profile of compacton is shown in Figure 2(b).

Remark 1. To the best of our knowledge, the solution (19) of
(4) has not been reported in the literature.

(iii) If 𝑢(0) = 0 and 𝐴 = −√−2𝑐, then (9) becomes

𝑢
󸀠

=

(𝑢 + √−2𝑐)√2√−6𝑐 − 𝑢

2√3𝛼

sign (𝜉) . (20)

Integrating both sides of (20) on the interval (−√−2𝑐, 0] leads
to a peakon solution

𝑢 (𝜉) = √−2𝑐
[

[

2 − 3tanh2(tanh−1√2
3

+

1

4

√
√−2𝑐

𝛼

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
)
]

]

,

(21)

with the following properties:

𝑢 (0) = 0, 𝑢 (±∞) = 𝐴,

𝑢
󸀠

(0+) = 𝑐
√
√−2𝑐

−12𝑐𝛼

, 𝑢
󸀠

(0−) = −𝑐
√
√−2𝑐

−12𝑐𝛼

.

(22)

The profile of peakon solution is shown in Figure 2(e).
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Remark 2. To the best of our knowledge, the solution (21) of
(4) has not been reported in the literature.

(iv) If 𝑢(0) = 0, 𝐴 ̸= 0, and 𝐴 ̸= − √−2𝑐, then 𝑢2 + 2𝐴𝑢 +
3(𝐴
2

+ 2𝑐) does not contain the factor 𝑢. From (9) we obtain

𝑢
󸀠

= (𝑢 − 𝐴)

√𝑢
2
+ 2𝐴𝑢 + 3 (𝐴

2
+ 2𝑐)

2√3𝛼√−𝑢

sign (𝜉) ,

𝐴 < 0, 𝑐 > 0, or − √−3𝑐 ≤ 𝐴 < −√−2𝑐,

𝑢
󸀠

= − (𝑢 − 𝐴)

√− (𝑢
2
+ 2𝐴𝑢 + 3 (𝐴

2
+ 2𝑐))

2√3𝛼√𝑢

sign (𝜉) ,

0 < 𝐴 ≤ √−𝑐.

(23)

Let ℎ
1
(𝑢) = 2√3𝛼/(𝑢 − 𝐴)√𝑢

2
+ 2𝐴𝑢 + 3(𝐴

2
+ 2𝑐), then

ℎ
1
(0) = −(2/𝐴)√𝛼/(𝐴

2
+ 2𝑐) and

∫√−𝑢ℎ
1
(𝑢) 𝑑𝑢 = ∫ sign (𝜉) 𝑑𝜉. (24)

Inserting ℎ
1
(𝑢) = ℎ

1
(0) + 𝑂(𝑢) into (24) and using the initial

condition 𝑢(0) = 0, we obtain

−

2

3

(−𝑢)
3/2

ℎ
1
(0) (1 + 𝑂 (1)) =

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
. (25)

Thus,

𝑢 = −

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨

2/3

(

3

2ℎ
1
(0)

)

2/3

(1 + 𝑂 (1))
−2/3

, 𝜉 󳨀→ 0, (26)

which implies that 𝑢 = 𝑂(|𝜉|3/2). Therefore, we have

𝑢 (𝜉) = −(

3

2ℎ
1
(0)

)

2/3

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨

2/3

+ 𝑂 (

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
) , 𝜉 󳨀→ 0, (27)

𝑢
󸀠

(𝜉) = −

2

3

(

3

2ℎ
1
(0)

)

2/3

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨

−1/3

+ 𝑂 (1) , 𝜉 󳨀→ 0. (28)

Thus, 𝑢(𝜉) ∉ 𝐻1loc(𝑅).
Let ℎ
2
(𝑢) = 2√3𝛼/(𝐴 − 𝑢)√−(𝑢

2
+ 2𝐴𝑢 + 3(𝐴

2
+ 2𝑐));

then ℎ
2
(0) = (2/𝐴)√𝛼/(−𝐴

2
− 2𝑐) and

∫√𝑢ℎ
2
(𝑢) 𝑑𝑢 = ∫ sign (𝜉) 𝑑𝜉. (29)

Inserting ℎ
2
(𝑢) = ℎ

2
(0) + 𝑂(𝑢) into (29) and using the initial

condition 𝑢(0) = 0, we obtain

2

3

(𝑢)
3/2

ℎ
2
(0) (1 + 𝑂 (1)) =

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
. (30)

Thus,

𝑢 =

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨

2/3

(

3

2ℎ
2
(0)

)

2/3

(1 + 𝑂 (1))
−2/3

, 𝜉 󳨀→ 0, (31)

which implies that 𝑢 = 𝑂(|𝜉|3/2). Therefore, we have

𝑢 (𝜉) = (

3

2ℎ
2
(0)

)

2/3

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2/3

+ 𝑂 (
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
) , 𝜉 󳨀→ 0,

𝑢
󸀠

(𝜉) =

2

3

(

3

2ℎ
2
(0)

)

2/3

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨

−1/3

+ 𝑂 (1) , 𝜉 󳨀→ 0.

(32)

Thus, 𝑢(𝜉) ∉ 𝐻1loc(𝑅).

3. Smooth, Peaked, and Cusped Single Peak
Solitary Wave Solutions

Theorem 6 gives a classification for all single peak solitary
wave solutions for (4). In this section, we will present all
possible soliton solutions for (4). We shall discuss the four
cases: Case 1: 𝐴 < 0, 𝑐 > 0; Case 2: 𝐴 = 0, 𝑐 < 0; Case 3:
0 < 𝐴 ≤ √−𝑐, 𝑐 < 0 or −√−3𝑐 ≤ 𝐴 < −√−𝑐, 𝑐 < 0.

Case 1 (𝐴 < 0, 𝑐 > 0, 𝑢(0) = 0). In this case, according to
Theorem 5 and standard phase portrait analytical technique
(see Figure 1(a)), we have 𝐴 < 𝑢 ≤ 0 and

𝑢
󸀠

= − sign (𝐴) 𝑢 − 𝐴
𝑢

×
√
−𝑢 (𝑢

2

+ 2𝐴𝑢 + 3𝐴
2

+ 6𝑐)

12𝛼

sign (𝜉) .

(33)

Integrating both sides of (33) on the interval (𝐴, 0] leads to

∫

0

𝑢

𝑢 𝑑𝑢

(𝑢 − 𝐴)√−𝑢 [(𝑢 + 𝐴)
2

+ 2 (𝐴
2
+ 3𝑐)]

= −

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨

2√3𝛼

. (34)

Thus we obtain the implicit solution 𝑢(𝜉) defined by

𝐹 (𝑢) ≡ 𝑐𝑛
−1

(Φ (𝑢) , 𝑘) −

1

1 − 𝛼
1

× [∏(𝜙,

𝛼
2

1

𝛼
2

1
− 1

, 𝑘) − 𝛼
1
𝑓
1
]

=

(𝐴 − 𝛿)

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨

2√3𝛼𝛿

,

(35)

where Φ(𝑢) = (𝛿 + 𝑢)/(𝛿 − 𝑢), 𝜙 = arccosΦ(𝑢), 𝑓
1
=

√(1−𝛼
2

1
)/(𝑘
2
(1 − 𝛼

2

1
) + 𝛼
2

1
) arctan(√(𝑘2(1−𝛼2

1
)+𝛼
2

1
)/(1 − 𝛼

2

1
)

𝑠𝑑(𝑢
1
, 𝑘)), 𝛼

1
= Φ(𝐴), 𝑘2 = (√𝛿 + 𝐴)/2√𝛿, 𝛿 = √3(𝐴2 + 2𝑐).

In view of 𝜙(𝑢) = ((𝑢 −

𝐴)/𝑢)√−𝑢(𝑢
2
+ 2𝐴𝑢 + 3𝐴

2
+ 6𝑐)/12𝛼 < 0, we know that

𝐹(𝑢) is strictly decreasing on (𝐴, 0] with 𝐹
1
(𝑢) = 𝐹

(𝐴,0]
(𝑢),

which gives a unique cuspon soliton solution 𝑢
1
(𝜉) satisfying

𝑢
1
(0) = 0, lim

𝜉→±∞
𝑢
1
(𝜉) = 𝐴, 𝑢󸀠

1
(0+) = −∞, 𝑢󸀠

1
(0−) = +∞.

The profile of cuspon soliton solution is shown in Figure 2(a).

Case 2 (𝐴 = 0, 𝑐 < 0, 𝑢(0) = 𝐵
1
= √−6𝑐). In this case,

by the standard phase portrait analysis (see Figure 1(b)), we
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Figure 1: The phase portraits of (8) on the (𝑢, 𝑢󸀠) plane.

have 0 < 𝑢 ≤ √−6𝑐 and then obtain a compacton solution
(see (19)). The profile of compacton is shown in Figure 2(b).

Case 3 (0 < 𝐴 ≤ √−𝑐, 𝑐 < 0 or −√−3𝑐 ≤ 𝐴 < −√−𝑐, 𝑐 < 0).
By virtue of Theorem 5, any single peak soliton solution for
(4) must satisfy the following initial and boundary values
problem:

(𝑢
󸀠

)

2

=

(𝑢 − 𝐴)
2

(𝐵
1
− 𝑢) (𝑢 − 𝐵

2
)

12𝛼𝑢

,

𝑢 (0) ∈ {0, 𝐵
1
, 𝐵
2
} ,

lim
𝜉→±∞

𝑢 (𝜉) = 𝐴.

(36)

Equation (36) implies

(𝐵
1
− 𝑢) (𝑢 − 𝐵

2
)

𝑢

≥ 0, (37)

(𝐵
1
− 𝐴) (𝐴 − 𝐵

2
)

𝐴

≥ 0. (38)

(i) When 𝐴 > 0, from (37) we obtain

(−2 +

1

𝐴

√−2 (𝐴
2
+ 3𝑐)) (2 +

1

𝐴

√−2 (𝐴
2
+ 3𝑐)) ≥ 0.

(39)
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Figure 2: The profiles of waves for 𝛼 = 1. (a) 𝐴 = −2, 𝑐 = 4, (b) 𝐴 = 0, 𝑐 = −2, (c) 𝛽 = 0, 𝐴 = −3, 𝑐 = −3, (d) −1 < 𝛽 < 0, 𝐴 = −2.1, 𝑐 = −2,
(e) 𝛽 = −1, 𝐴 = −2, 𝑐 = −2, (f) −2 < 𝛽 < −1, 𝐴 = −2.1, 𝑐 = −4, (g) 𝛽 = 2, 𝐴 = 2, 𝑐 = −4, (h) 𝛽 > 2, 𝐴 = 1, 𝑐 = −4.

(ii) When 𝐴 < 0, from (37) we obtain

(−2 +

1

𝐴

√−2 (𝐴
2
+ 3𝑐)) (2 +

1

𝐴

√−2 (𝐴
2
+ 3𝑐)) ≤ 0.

(40)

Since 𝐴2 + 3𝑐 ≤ 0, 𝐴 ̸= 0, introducing the constant 𝛽 =

(1/𝐴)√−2(𝐴
2
+ 3𝑐) yields

(−2 + 𝛽) (2 + 𝛽) ≥ 0, 𝐴 > 0,

(−2 + 𝛽) (2 + 𝛽) ≤ 0, 𝐴 < 0,

(41)

which implies that for 𝐴 > 0

𝛽 ≥ 2 (42)

and for 𝐴 < 0

−2 ≤ 𝛽 ≤ 0. (43)
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From the standard phase portrait analysis (see Figures
1(c)–1(h)), we know that if 𝑢(𝜉) is a single peak soliton
solution of (4), then

𝑢
󸀠

= − sign (𝐴) 𝑢 − 𝐴
2𝑢

√
𝑢 (𝐵
1
− 𝑢) (𝑢 − 𝐵

2
)

3𝛼

sign (𝜉) . (44)

In the following part , let us separate seven cases to discuss.
(1) 𝛽 = −1. In this case, by the standard phase portrait

analysis (see Figure 1(e)), we have

−√−2𝑐 = 𝐴 < 𝐵
2
= 0 < 𝐵

1
= 2√−2𝑐. (45)

(i) 𝑢(0) = 𝐵
2
= 0. If 𝑢(0) = 𝐵

2
, then 𝐴 < 𝑢 ≤ 𝐵

2
. In

this case, by the standard phase portrait analysis (see
Figure 1(e)), we obtain a peakon solution (see (21)).
The profile of peakon solution is shown in Figure 2(e).

(ii) 𝑢(0) = 𝐵
1
. In this case there is no single peak solitary

wave solution for the boundary condition 𝑢(±∞) =
−√−2𝑐.

(2) −2 < 𝛽 < −1. In this case, by the standard phase
portrait analysis (see Figure 1(f)), we have

𝐴 < 𝐵
2
< 0 < 𝐵

1
. (46)

(i) 𝑢(0) = 𝐵
2
. If 𝑢(0) = 𝐵

2
, then 𝐴 < 𝑢 ≤ 𝐵

2
. Integrating

both sides of (47) on the interval (𝐴, 𝐵
2
] leads to

𝑄 (𝑢) ≡ ∏(𝜙,

𝐴

𝐴 − 𝐵
2

, √

𝐵
1

𝐵
1
− 𝐵
2

)

=

𝐴 − 𝐵
2

4𝐵
2

√

𝐵
1
− 𝐵
2

3𝛼

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
,

(47)

where 𝜙 = arcsin√(𝐵
2
− 𝑢)/ − 𝑢.

From 𝜙(𝑢) < 0, we know that 𝑄(𝑢) is strictly
decreasing on the interval (𝐴, 𝐵

2
], 𝑄
1
(𝑢) = 𝑄

(𝐴,𝐵2]
(𝑢)

has the inverse denoted by

𝑢
2
(𝜉) = 𝐵

2
sec2 (Π−1 (𝐴 − 𝐵2

4𝐵
2

√

𝐵
1
− 𝐵
2

3𝛼

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
,

𝐴

𝐴 − 𝐵
2

, √

𝐵
1

𝐵
1
− 𝐵
2

)) .

(48)

Corresponding to the homoclinic orbit to the saddle
point (𝐴, 0) shown in Figure 1(f),𝑢

2
(𝜉) gives a smooth

soliton solution satisfying

𝑢
2
(0) = 𝐵

2
, lim

𝜉→±∞

𝑢
2
(𝜉) = 𝐴, 𝑢

󸀠

2
(0) = 0. (49)

The profile of smooth soliton solution is shown in Figure 2(f).

Remark 3. To the best of our knowledge, the solution (48) of
(4) has not been reported in the literature.

(ii) 𝑢(0) = 𝐵
1
or 𝑢(0) = 0. In this case there is no

single peak solitary wave solution for the boundary
condition 𝑢(±∞) = 𝐴.

(3)−1 < 𝛽 < 0. In this case, by the standard phase portrait
analysis (see Figure 1(d)), we have

𝐴 < 0 < 𝐵
2
< 𝐵
1
. (50)

(i) 𝑢(0) = 0. If 𝑢(0) = 0, then 𝐴 < 𝑢 ≤ 0. Integrating
both sides of (44) on the interval (𝐴, 0] leads to

𝑊(𝑢) ≡ ∏(arcsin𝜔
1
,

𝐴 − 𝐵
2

𝐴

, 𝑘)

− 𝑠𝑛
−1

(𝜔
1
, 𝑘) =

𝐵
2
− 𝐴

4𝐵
2

√

𝐵
1

3𝛼

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
,

(51)

where 𝜔
1
= √−𝑢/(𝐵

2
− 𝑢), 𝑘 = √(𝐵

1
− 𝐵
2
)/𝐵
1
.

From ((𝑢 − 𝐴)/2𝑢)√𝑢(𝐵
1
− 𝑢)(𝑢 − 𝐵

2
)/3𝛼 < 0, we

know that𝑊(𝑢) is strictly decreasing on (𝐴, 0],

𝑊
1
(𝑢) = 𝑊

(𝐴,0]
(𝑢) (52)

has the inverse denoted by 𝑢
3
(𝜉) = 𝑊

−1

1
(((𝐵
2
−

𝐴)/4𝐵
2
)√𝐵
1
/3𝛼|𝜉|), and 𝑢

3
(𝜉) gives a cuspon soliton

solution satisfying

𝑢
3
(0) = 0, lim

𝜉→±∞

𝑢
3
(𝜉) = 𝐴,

𝑢
󸀠

3
(0+) = −∞, 𝑢

󸀠

3
(0−) = +∞.

(53)

The profile of cuspon soliton solution is shown in
Figure 2(d).

(ii) 𝑢(0) = 𝐵
2
or 𝑢(0) = 𝐵

1
. In this case there is no

single peak solitary wave solution for the boundary
condition 𝑢(±∞) = 𝐴.

(4) 𝛽 = −2. In this case, we have 𝐴 = 𝐵
1
= −√−𝑐, by

virtue of Lemma 4(iii), (4) has trivial solution 𝑢 ≡ 𝐴.
(5) 𝛽 = 0. In this case, by the standard phase portrait

analysis (see Figure 1(c)), we have
−√−3𝑐 = 𝐴 < 0 < 𝐵

2
= 𝐵
1
= √−3𝑐. (54)

(i) 𝑢(0) = 0. If 𝑢(0) = 0, then 𝐴 < 𝑢 ≤ 0. Integrating
both sides of (44) on the interval (𝐴, 0] leads to

𝑍 (𝑢) ≡ (tanh−1
√−𝑢

(−3𝑐)
1/4

− arctan
√−𝑢

(−3𝑐)
1/4

) =

(−3𝑐)
1/4

2√3𝛼

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
.

(55)

From 𝜙(𝑢) < 0, we know that 𝑍(𝑢) is strictly
decreasing on (𝐴, 0],

𝑍
1
(𝑢) = 𝑍

(𝐴,0]
(𝑢) (56)
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has the inverse denoted by 𝑢
4
(𝜉) = 𝑍

−1

1
(((−3𝑐)

1/4

/

2√3𝛼)|𝜉|), and 𝑢
4
(𝜉) gives a cuspon soliton solution

satisfying

𝑢
4
(0) = 0, lim

𝜉→±∞

𝑢
4
(𝜉) = 𝐴,

𝑢
󸀠

4
(0+) = −∞, 𝑢

󸀠

4
(0−) = +∞.

(57)

The profile of cuspon soliton solution is shown in
Figure 2(c).

(ii) 𝑢(0) = 𝐵
2
= 𝐵
1
. In this case, there is no single peak

solitary wave solution for the boundary condition
𝑢(±∞) = 𝐴.

(6) 𝛽 = 2. In this case, by the standard phase portrait
analysis (see Figure 1(g)), we have

−3√−𝑐 = 𝐵
2
< 𝐴 = 𝐵

1
= √−𝑐. (58)

(i) 𝑢(0) = 0. If 𝑢(0) = 0, then 0 ≤ 𝑢 < 𝐴. Integrating
both sides of (44) on the interval [0, 𝐴) leads to

Ψ (𝑢) ≡ − 𝑑𝑛(𝑠𝑛
−1

(√

√−𝑐 − 𝑢

√−𝑐

,

1

2

) ,

1

2

)

× 𝑐𝑠(𝑠𝑛
−1

(√

√−𝑐 − 𝑢

√−𝑐

,

1

2

) ,

1

2

)

− 𝐸(arcsin(√
√−𝑐 − 𝑢

√−𝑐

) ,

1

2

)

=

1

2

(

−𝑐

9𝛼
2

)

1/4

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
.

(59)

In view of 𝜙(𝑢) < 0, we know that Ψ(𝑢) is strictly
decreasing on [0, 𝐴) and

Ψ
1
(𝑢) = Ψ

[0,𝐴)
(𝑢) (60)

has the inverse which is denoted by 𝑢
5
(𝜉) =

Ψ
−1

1
(((−3𝑐)

1/4

/2√3𝛼)|𝜉|), where 𝑢
5
(𝜉) gives a cuspon

soliton solution satisfying

𝑢
5
(0) = 0, lim

𝜉→±∞

𝑢
5
(𝜉) = 𝐴,

𝑢
󸀠

5
(0+) = +∞, 𝑢

󸀠

5
(0−) = −∞.

(61)

The profile of cuspon soliton solution is shown in
Figure 2(g).

(ii) 𝑢(0) = 𝐵
2
. In this case there is no single peak solitary

wave solution for the boundary condition 𝑢(±∞) =
𝐴.

(7) 𝛽 > 2. In this case, by the standard phase portrait
analysis (see Figure 1(h)), we have

𝐵
2
< 0 < 𝐴 < 𝐵

1
. (62)

(i) 𝑢(0) = 0. If 𝑢(0) = 0, then 0 ≤ 𝑢 < 𝐴. This case is
completely similar to the case of 𝛽 = 2, 𝑢(0) = 0.

(ii) 𝑢(0) = 𝐵
1
. If 𝑢(0) = 𝐵

1
, then 𝐴 < 𝑢 ≤ 𝐵

1
. Integrating

both sides of (44) on the interval (𝐴, 𝐵
1
] leads to

Γ (𝑢) ≡ − 𝑠𝑛
−1

(𝜔
2
, 𝑘) +

𝐴

𝐴 − 𝐵
1

×∏(arcsin𝜔
2
,

𝐵
1

𝐵
1
− 𝐴

, 𝑘)

=

1

4

√

𝐵
1
− 𝐵
2

3𝛼

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
,

(63)

where 𝜔
2
= √(𝐵

1
− 𝑢)/𝐵

1
, 𝑘 = √𝐵

1
/(𝐵
1
− 𝐵
2
).

In view of 𝜙(𝑢) > 0, we know that Γ(𝑢) is strictly
increasing on [0, 𝐴) and

Γ
1
(𝑢) = Γ

[0,𝐴)
(𝑢) (64)

has the inverse which is denoted by 𝑢
6
(𝜉) =

Γ
−1

1
(((−3𝑐)

1/4

/2√3𝛼)|𝜉|), where 𝑢
6
(𝜉) gives a smooth

soliton solution satisfying

𝑢
6
(0) = 0, lim

𝜉→±∞

𝑢
6
(𝜉) = 𝐴, 𝑢

󸀠

6
(0) = 0. (65)

The profile of smooth soliton solution is shown in
Figure 2(h).

(iii) 𝑢(0) = 𝐵
2
. In this case there is no single peak solitary

wave solution for the boundary condition 𝑢(±∞) =
𝐴.

Let us summarize our results in the following theorem.

Theorem 7. Suppose that 𝑢(𝜉) is a single peak soliton for (4)
at the peak point 𝜉

0
= 0, which satisfies the boundary condition

(5). Then we have the following conclusions.
(i) 𝐴 < 0, 𝑐 > 0. If𝑢(0) = 0, (4) has cuspon soliton solution

which can be expressed as

𝑢 (𝜉) = 𝐹
−1

(𝐴,0]
(

(𝐴 − 𝛿)

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨

2√3𝛼𝛿

) , (66)

where 𝛿 = √3(𝐴2 + 2𝑐). It satisfies

𝑢 (0) = 0, lim
𝜉→±∞

𝑢 (𝜉) = 𝐴, (67)

𝑢
󸀠

(0+) = −∞, 𝑢
󸀠

(0−) = +∞. (68)
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(ii) 𝐴 = 0, 𝑐 < 0. If 𝑢(0) = 𝐵
1
= √−6𝑐, the only possible

quasi single peak soliton is compacton:

𝑢 (𝜉) =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

√−6𝑐(1 − 𝑠𝑛
2

(

1

4

√
2√−6𝑐

3𝛼

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
,

√2

2

)) ,

if 󵄨󵄨󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
≤ 4√

3𝛼

2√−6𝑐

𝐾(

√2

2

) ,

0, if 󵄨󵄨󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
> 4√

3𝛼

2√−6𝑐

𝐾(

√2

2

) ,

(69)

with the following properties:

𝑢 (0) = √−6𝑐, 𝑢
󸀠

(0) = 0. (70)

(iii) 0 < 𝐴 ≤ √−𝑐, 𝑐 < 0, or −√−3𝑐 ≤ 𝐴 < −√−𝑐, 𝑐 < 0.

(1) 𝛽 = −1. If 𝛽 = −1, then 𝑢(0) = 0 = 𝐵
2
, and (4) has

peakon soliton solution which can be expressed as

𝑢 (𝜉) = √−2𝑐
[

[

2 − 3tanh2(tanh−1√2
3

+

1

4

√
√−2𝑐

𝛼

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
)
]

]

,

(71)

with the following properties:

𝑢 (0) = 0, 𝑢 (±∞) = 𝐴,

𝑢
󸀠

(0+) = 𝑐
√
√−2𝑐

−12𝑐𝛼

, 𝑢
󸀠

(0−) = −𝑐
√
√−2𝑐

−12𝑐𝛼

.

(72)

(2) −2 < 𝛽 < −1. If 𝑢(0) = 𝐵
2
, (4) has smooth soliton

solution which can be expressed as

𝑢 (𝜉) = 𝐵
2
sec2 (Π−1 (𝐴 − 𝐵2

4𝐵
2

√

𝐵
1
− 𝐵
2

3𝛼

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
,

𝐴

𝐴 − 𝐵
2

, √

𝐵
1

𝐵
1
− 𝐵
2

)) ,

(73)

with the following properties:

𝑢 (0) = 𝐵
2
, lim
𝜉→±∞

𝑢 (𝜉) = 𝐴, 𝑢
󸀠

(0) = 0. (74)

(3) −1 < 𝛽 < 0. If 𝑢(0) = 0, (4) has cuspon soliton solution
which can be expressed as

𝑢 (𝜉) = 𝑊
−1

1
(

𝐵
2
− 𝐴

4𝐵
2

√

𝐵
1

3𝛼

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
) , (75)

with the following properties:

𝑢 (0) = 0, lim
𝜉→±∞

𝑢 (𝜉) = 𝐴,

𝑢
󸀠

(0+) = −∞, 𝑢
󸀠

(0−) = +∞.

(76)

(4) 𝛽 = 0. If𝑢(0) = 0, (4) has cuspon soliton solutionwhich
can be expressed as

𝑢 (𝜉) = 𝑍
−1

1
(

(−3𝑐)
1/4

2√3𝛼

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
) , (77)

with the following properties:
𝑢 (0) = 0, lim

𝜉→±∞

𝑢 (𝜉) = 𝐴,

𝑢
󸀠

(0+) = −∞, 𝑢
󸀠

(0−) = +∞.

(78)

(5) 𝛽 = 2. If𝑢(0) = 0, (4) has cuspon soliton solutionwhich
can be expressed as

𝑢 (𝜉) = Ψ
−1

1
(

(−3𝑐)
1/4

2√3𝛼

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
) , (79)

with the following properties:
𝑢 (0) = 0, lim

𝜉→±∞

𝑢 (𝜉) = 𝐴,

𝑢
󸀠

(0+) = +∞, 𝑢
󸀠

(0−) = −∞.

(80)

(6) 𝛽 > 2.

(i) 𝑢(0) = 0. If 𝑢(0) = 0, then 0 ≤ 𝑢 < 𝐴. This case is
completely similar to the case of 𝛽 = 2, 𝑢(0) = 0.

(ii) 𝑢(0) = 𝐵
1
. If 𝑢(0) = 𝐵

1
, (4) has cuspon soliton

solution which can be expressed as

𝑢 (𝜉) = Γ
−1

1
(

(−3𝑐)
1/4

2√3𝛼

󵄨
󵄨
󵄨
󵄨
𝜉

󵄨
󵄨
󵄨
󵄨
) , (81)

with the following properties:

𝑢 (0) = 0, lim
𝜉→±∞

𝑢 (𝜉) = 𝐴, 𝑢
󸀠

(0) = 0. (82)

4. Conclusion

In this paper, we study the single peak solitary wave solutions
of𝐾∗(4, 1) equation under inhomogeneous boundary condi-
tion. The conditions of the existence of peakon, compacton,
cuspon, and smooth soliton solutions are given by using
phase portrait analytical technique. We have obtained all
peakon, compacton, cuspon, and smooth soliton solutions of
𝐾
∗

(4, 1) equation and analyzed their analytic and dynamical
behavior. We have gotten a new type of smooth soliton,
which is expressed in terms of trigonometric functions (see
(48)), for 𝐾∗(4, 1) equation. New peaked solitons and new
type of smooth soliton solutions are expected to apply in
nonlinear shallow-water wave theory and Newton motion
theory because they have a very close relation. Actually, the
ODE (8) has a physical meaning and coincides with the
Newton equation of a particle in the potential

𝑉 (𝑢) =

𝑢
3

+ (6𝑐 − 𝐴
2

) 𝑢

−12𝛼

+

𝐴
2

(3𝐴
2

+ 6𝑐)

12𝛼𝑢

.
(83)

We solve the Newton equation (𝑢󸀠)2 = 𝑉(𝑢) − 𝑉(𝐴), for all
possible single peak solitary wave solutions, where 𝑉(𝐴) =
−𝐴(3𝐴

2

+ 6𝑐)/6𝛼.
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