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We investigate the periodic solutions of second-order difference problem with potential indefinite in sign. We consider the
compactness condition of variational functional and local linking at 0 by introducing new number 𝜆

∗
. By using Morse theory,

we obtain some new results concerning the existence of nontrivial periodic solution.

1. Introduction

We consider the second-order discrete Hamiltonian systems

Δ
2

𝑥
𝑛−1

+𝑊


(𝑛, 𝑥
𝑛
) = 0, 𝑥

𝑛+𝑇
= 𝑥
𝑛
, (1)

where 𝑇 ≥ 2 is a given integer, 𝑛 ∈ Z, 𝑥
𝑛
∈ R𝑁, Δ𝑥

𝑛
=

𝑥
𝑛+1

− 𝑥
𝑛
, Δ2𝑥
𝑛
= Δ(Δ𝑥

𝑛
), 𝑊 stands for the gradient of𝑊

with respect to the second variable. 𝑊 ∈ 𝐶
2

(Z × R𝑁,R) is
𝑇-periodic in the first variable and has the form 𝑊(𝑛, 𝑥) =

(1/2)𝑎|𝑥|
2

+ 𝐻(𝑛, 𝑥), where 𝑎 = 4 sin2(𝑚𝜋/𝑇) for some 𝑚 ∈

𝑍[0, 𝑟], 𝑟 = [𝑇/2], [⋅] stands for the greatest-integer function.
For integers 𝑎 ≤ 𝑏, the discrete interval {𝑎, 𝑎 + 1, . . . , 𝑏} is
denoted by 𝑍[𝑎, 𝑏].

In this paper we consider that𝐻 is sign changing, that is,

𝐻(𝑛, 𝑥) = 𝑏 (𝑛) (
1

𝑠
|𝑥|
𝑠

+ 𝐺
𝑠
(𝑛, 𝑥))

≜
1

𝑠
𝑏 (𝑛) |𝑥|

𝑠

+ 𝐺
𝑠
(𝑛, 𝑥) ,

(2)

Ω
+
= {𝑛 ∈ 𝑍[1, 𝑇]|𝑏(𝑛) > 0)}, Ω

−
= {𝑛 ∈ 𝑍[1, 𝑇]|𝑏(𝑛) < 0)}

are two nonempty subsets of 𝑍[1, 𝑇], where 𝑠 > 1, 𝑏(⋅) is a 𝑇-
periodic real function,𝐺

𝑠
∈ 𝐶
1

(Z×R𝑁,R), and𝐺
𝑠
(𝑛, 0) = 0.

Consider the second-order Hamiltonian system

�̈� (𝑡) + 𝑊


(𝑡, 𝑥) = 0, 𝑥 (0) = 𝑥 (𝑇) ,

�̇� (0) = �̇� (𝑇) ,

(3)

where 𝑊 ∈ 𝐶
2

(R × R𝑁,R) is 𝑇-periodic in 𝑡, 𝑊(𝑡, 𝑥) =

(1/2)(𝐴(𝑡)𝑥, 𝑥) + 𝐻(𝑡, 𝑥). Here 𝐴(⋅) is a continuous, 𝑇-
periodic matrix-value function.

Systems (1) and (3) have been investigated by many
authors using various methods, see [1–5]. The dynamical
behavior of differential and difference equations was studied
by using various methods, and many interesting results have
obtained, see [6–10] and references therein.The critical point
theory [11–14] is a useful tool to investigate differential equa-
tions. Morse theory [15–19] has also been used to solve the
asymptotically linear problem. By minimax methods in criti-
cal point theory, Tang andWu [4], Antonacci [20, 21] consid-
ered the problem (3) with potential indefinite in sign, where
𝐻 is superquadratic at zero and infinity. By using Morse
theory, Zou and Li [10] study the existence of 𝑇-periodic
solution of (3), where 𝐻 is asymptotically superquadratic
and sign changing. Moroz [19] studies system (3) where𝐻 is
asymptotically subquadratic and sign changing.Motivated by
[5, 10, 19], we investigate periodic solutions for asymptotically
superquadratic or subquadratic discrete system (1).

By expression of 𝐻(𝑛, 𝑥), system (1) possesses a trivial
solution 𝑥 = 0. Here we are interested in finding the nonzero
𝑇-periodic solution of (1), andwedivide the problem into two
cases: 𝑠 > 2 and 1 < 𝑠 < 2. For 𝑠 = 2, one can refer to [22].
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Case 1 (asymptotically superquadratic case: 𝑠 > 2). In this
case, we replace 𝑝 with 𝑠 in (2). Letting 𝑔

𝑝
(𝑛, 𝑥) = 𝐺



𝑝
(𝑛, 𝑥),

we rewrite (1) as

Δ
2

𝑥
𝑛−1

+ 𝑎𝑥
𝑛
+ 𝑏 (𝑛)

𝑥𝑛

𝑝−2

𝑥
𝑛
+ 𝑔
𝑝
(𝑛, 𝑥
𝑛
) = 0,

𝑥
𝑛+𝑇

= 𝑥
𝑛
.

(4)

Furthermore, for all (𝑛, 𝑥) ∈ Z × R𝑁, we assume that 𝑔
𝑝

satisfies

(A1) 𝑔
𝑝
(𝑛, 𝑥) = 𝑜(|𝑥|) as |𝑥| → ∞ uniformly in 𝑛,

(A2) 𝑔
𝑝
(𝑛, 𝑥) = 𝑜(|𝑥|

𝑝−1

) as |𝑥| → 0 uniformly in 𝑛.

Case 2 (asymptotically subquadratic case: 1 < 𝑠 < 2). Here
we replace 𝑞 with 𝑠 in (2). Letting 𝑔

𝑞
(𝑛, 𝑥) = 𝐺



𝑞
(𝑛, 𝑥), we

rewrite (1) as

Δ
2

𝑥
𝑛−1

+ 𝑎𝑥
𝑛
+ 𝑏 (𝑛)

𝑥𝑛

𝑞−2

𝑥
𝑛
+ 𝑔
𝑞
(𝑛, 𝑥
𝑛
) = 0,

𝑥
𝑛+𝑇

= 𝑥
𝑛
.

(5)

For all (𝑛, 𝑥) ∈ Z ×R𝑁, we assume that 𝑔
𝑞
satisfies

(B1) 𝑔
𝑞
(𝑛, 𝑥) = 𝑜(|𝑥|

𝑞−1

) as |𝑥| → ∞ uniformly in 𝑛,
(B2) 𝑔

𝑞
(𝑛, 𝑥) = 𝑜(|𝑥|) as |𝑥| → 0 uniformly in 𝑛.

Before stating the main results, we introduce space 𝐸
𝑇
=

{𝑥 = {𝑥
𝑛
} ∈ 𝑆|𝑥

𝑛+𝑇
= 𝑥
𝑛
, 𝑛 ∈ Z}, where 𝑆 = {𝑥 =

{𝑥
𝑛
}|𝑥
𝑛

∈ R𝑁, 𝑛 ∈ Z}. For any 𝑥, 𝑦 ∈ 𝑆, 𝑎, 𝑏 ∈ R,
we define 𝑎𝑥 + 𝑏𝑦 = {𝑎𝑥

𝑛
+ 𝑏𝑦
𝑛
}
𝑛∈Z. Then 𝑆 is a linear

space. Let ⟨𝑥, 𝑦⟩
𝐸𝑇

= ∑
𝑇

𝑛=1
(𝑥
𝑛
, 𝑦
𝑛
), ‖𝑥‖

𝐸𝑇
= (∑
𝑇

𝑛=1
|𝑥
𝑛
|
2

)
1/2

,
for all 𝑥, 𝑦 ∈ 𝐸

𝑇
, where (⋅, ⋅) and | ⋅ | are the usual inner

product and norm in R𝑁, respectively. Obviously, 𝐸
𝑇
is a

Hilbert space with dimension 𝑁𝑇 and homeomorphism to
R𝑁𝑇. For 𝑟 > 1, let ‖𝑥‖

𝑟
= (∑
𝑇

𝑛=1
|𝑥
𝑛
|
𝑟

)
1/𝑟

, 𝑥 ∈ 𝐸
𝑇
. Moreover,

for simplicity, we write ⟨𝑥, 𝑦⟩ and ‖𝑥‖ instead of ⟨𝑥, 𝑦⟩
𝐸𝑇

and
‖𝑥‖
𝐸𝑇
, respectively.

Lemma 1. There exist positive numbers 𝑎
1
, 𝑎
2
, such that 𝑎

1
‖

𝑥‖
𝑟
≤‖ 𝑥 ‖≤ 𝑎

2
‖ 𝑥‖
𝑟
.

Inspired by [10, 19], one introduces two numbers as follows:

𝜆
∗
(𝑝) = inf

‖𝑥‖=1

{‖Δ𝑥‖
2

|

𝑇

∑

𝑛=1

𝑏 (𝑛)
𝑥𝑛


𝑝

= 0} ,

𝜆
∗
(𝑞) = inf

‖𝑥‖=1

{‖Δ𝑥‖
2

|

𝑇

∑

𝑛=1

𝑏 (𝑛)
𝑥𝑛


𝑞

= 0} .

(6)

Theorem 2. If 𝑎 < 𝜆
∗
(𝑝), then (4) has a nonzero 𝑇-periodic

solution.

Theorem 3. If 𝑎 < 𝜆
∗
(𝑞), then (5) has a nonzero 𝑇-periodic

solution.

Thispaper is divided into four sections. Section 2 contains
some preliminaries, and the proofs of Theorems 2 and 3 are
given in Sections 3 and 4, respectively.

2. Preliminaries

2.1. Variational Functional and (PS) Condition. For seeking
𝑇-periodic solution of (1), we consider variational functional
𝐽
𝑝

associated with (4) as 𝐽
𝑝
(𝑥) = (1/2)∑

𝑇

𝑛=1
|Δ𝑥
𝑛
|
2

−

(1/2)𝑎∑
𝑇

𝑛=1
|𝑥
𝑛
|
2

− 1/𝑝∑
𝑇

𝑛=1
𝑏(𝑛)|𝑥

𝑛
|
𝑝

− ∑
𝑇

𝑛=1
𝐺
𝑝
(𝑛, 𝑥
𝑛
), that

is

𝐽
𝑝
(𝑥) =

1

2
‖Δ𝑥‖
2

−
1

2
𝑎‖𝑥‖
2

−
1

𝑝

𝑇

∑

𝑛=1

𝑏 (𝑛)
𝑥𝑛


𝑝

−

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
𝑛
) , 𝑥 ∈ 𝐸

𝑇
.

(7)

Moreover, 𝑇-periodic solution of (5) is associated with the
critical point of functional

𝐽
𝑞
(𝑥) =

1

2
‖Δ𝑥‖
2

−
1

2
𝑎‖𝑥‖
2

−
1

𝑞

𝑇

∑

𝑛=1

𝑏 (𝑛)
𝑥𝑛


𝑞

−

𝑇

∑

𝑛=1

𝐺
𝑞
(𝑛, 𝑥
𝑛
) , 𝑥 ∈ 𝐸

𝑇
.

(8)

We say that a𝐶1-functional 𝜑 on Hilbert space𝑋 satisfies
the Palais-Smale (PS) condition if every sequence {𝑥(𝑗)} in𝑋,
such that {𝜑(𝑥(𝑗))}, is bounded and 𝜑(𝑥(𝑗)) → 0 as 𝑗 → ∞

contains a convergent subsequence.

Lemma 4. Functional 𝐽
𝑝
satisfies (PS) condition if 𝑎 < 𝜆

∗
(𝑝).

Proof. Let {𝑥(𝑗)} ⊂ 𝐸
𝑇
be the (PS) sequence for functional 𝐽

𝑝
,

such that 𝐽
𝑝
(𝑥
(𝑗)

) is bounded, and 𝐽
𝑝
(𝑥
(𝑗)

) → 0 as 𝑗 → ∞.
Hence, for any 𝜀 > 0, there exist𝑁

𝜀
> 0 and constant 𝑐

1
> 0,

such that

⟨𝐽


𝑝
(𝑥
(𝑗)

) , 𝑥
(𝑗)

⟩

≤ 𝜀


𝑥
(𝑗)


for 𝑗 ≥ 𝑁
𝜀
,


𝐽
𝑝
(𝑥
(𝑗)

)

≤ 𝑐
1
.

(9)

To prove that 𝐽
𝑝
satisfies (PS) condition, it suffices to show

that ‖𝑥(𝑗)‖ is bounded in 𝐸
𝑇
. Suppose not that there exists a

subsequence {𝑥(𝑗𝑘)}, ‖ 𝑥(𝑗𝑘) ‖→ ∞ as 𝑘 → ∞. For simplicity,
we write as {𝑥(𝑗)} instead of {𝑥(𝑗𝑘)}. Without loss of generality,
we assume that there exists 𝑘 ∈ 𝑍[1, 𝑇], such that


𝑥
(𝑗)

𝑛


→ ∞ as 𝑗 → ∞ for 𝑛 ∈ 𝑍 [1, 𝑘] ,

𝑥
(𝑗)

𝑛
are bounded for 𝑛 ∈ 𝑍 [𝑘 + 1, 𝑇] .

(10)

Therefore for all 𝑛 ∈ [1, 𝑇], by assumption (A1), there exists
𝑐
2
> 0 such that


𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)

≤ 𝜀


𝑥
(𝑗)

𝑛



2

+ 𝑐
2
,


𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)

≤ 𝜀


𝑥
(𝑗)

𝑛


+ 𝑐
2

(11)
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for large 𝑗. By the previous argument, it follows that



𝑇

∑

𝑛=1

(𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) , 𝑥
(𝑗)

𝑛
)



≤

𝑇

∑

𝑛=1


𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)



𝑥
(𝑗)

𝑛



≤ 𝜀

𝑥
(𝑗)


2

+ 𝑐
2
𝑇

𝑥
(𝑗)

.

(12)

By (7), we have

𝑝𝐽
𝑝
(𝑥
(𝑗)

) − ⟨𝐽


𝑝
(𝑥
(𝑗)

) , 𝑥
(𝑗)

⟩

= (
𝑝

2
− 1) (


Δ𝑥
(𝑗)


2

− 𝑎

𝑥
(𝑗)


2

) − 𝑝

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)

+

𝑇

∑

𝑛=1

(𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) , 𝑥
(𝑗)

𝑛
) .

(13)

In terms of (9) and (11), for large 𝑗, it follows that

(
𝑝

2
− 1) (


Δ𝑥
(𝑗)


2

− 𝑎

𝑥
(𝑗)


2

)

≤ 𝑝𝑐
1
+ 𝜀


𝑥
(𝑗)

+ (𝑝 + 1) 𝜀


𝑥
(𝑗)


2

+ 𝑝𝑐
2
𝑇 + 𝑐
2
𝑇

𝑥
(𝑗)

.

(14)

Set 𝑦(𝑗)
𝑛

= 𝑥
(𝑗)

𝑛
/‖𝑥
(𝑗)

‖. Dividing by ‖𝑥(𝑗)‖
2

in the previous
formula, it follows that


Δ𝑦
(𝑗)


2

≤ 𝑎 +
2

𝑝 − 2
((𝑝 + 1) 𝜀 +

𝑐
2
𝑇 + 𝜀
𝑥
(𝑗)


+
𝑝𝑐
2
𝑇 + 𝑝𝑐

1

𝑥
(𝑗)

2

)

(15)

for large 𝑗. Therefore, by 𝜀 being chosen arbitrarily, there is a
subsequence that converges to 𝑦0 ∈ 𝐸

𝑇
such that


Δ𝑦
0


2

≤ 𝑎,

𝑦
0

= 1. (16)

On the other hand, we have

𝐽
𝑝
(𝑥
(𝑗)

) −
1

2
⟨𝐽


𝑝
(𝑥
(𝑗)

) , 𝑥
(𝑗)

⟩

= (
1

2
−
1

𝑝
)

𝑇

∑

𝑛=1

𝑏 (𝑛)

𝑥
(𝑗)

𝑛



𝑝

−

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)

+
1

2

𝑇

∑

𝑛=1

(𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) , 𝑥
(𝑗)

𝑛
) .

(17)

Then, by (9) and (11), for large 𝑗, we get


(
1

2
−
1

𝑝
)

𝑇

∑

𝑛=1

𝑏 (𝑛)

𝑥
(𝑗)

𝑛



𝑝



=



𝐽
𝑝
(𝑥
(𝑗)

) −
1

2
⟨𝐽


𝑝
(𝑥
(𝑗)

) , 𝑥
(𝑗)

⟩ +

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)

−
1

2

𝑇

∑

𝑛=1

(𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) , 𝑥
(𝑗)

𝑛
)



≤ 𝑐
1
+
𝜀

2


𝑥
(𝑗)

+𝜀

𝑥
(𝑗)


2

+𝑐
2
𝑇+

1

2
(𝜀

𝑥
(𝑗)


2

+𝑐
2
𝑇

𝑥
(𝑗)

) .

(18)

By dividing by ‖𝑥
(𝑗)

‖
𝑝

in the previous formula, then by
𝑝 > 2, we have ∑𝑇

𝑛=1
𝑏(𝑛)|𝑦

(𝑗)

𝑛
|
𝑝

→ 0 as 𝑗 → ∞, that
is, ∑𝑇
𝑛=1

𝑏(𝑛)|𝑦
0

𝑛
|
𝑝

= lim
𝑗→∞

∑
𝑇

𝑛=1
𝑏(𝑛)|𝑦

(𝑗)

𝑛
|
𝑝

= 0. By the
definition of 𝜆

∗
(𝑝), see (6), we have ‖Δ𝑦0‖2 ≥ 𝜆

∗
(𝑝). This

contradicts with (16) and assumption 𝑎 < 𝜆
∗
(𝑝). The proof is

completed.

Lemma 5. Functional 𝐽
𝑞
satisfies (PS) condition if 𝑎 < 𝜆

∗
(𝑞).

The proof is similar to that of Lemma 4 and is omitted.

2.2. Eigenvalue Problem. Consider eigenvalue problem:

−Δ
2

𝑥
𝑛−1

= 𝜆𝑥
𝑛
, 𝑥

𝑛+𝑇
= 𝑥
𝑛
, 𝑥
𝑛
∈ R
𝑁

, (19)

that is,𝑥
𝑛+1
+(𝜆−2)𝑥

𝑛
+𝑥
𝑛−1

= 0,𝑥
𝑛+𝑇

= 𝑥
𝑛
. By the periodicity,

the difference system has complexity solution 𝑥
𝑛
= 𝑒
𝑖𝑛𝜃

𝑐 for
𝑐 ∈ CN, where 𝜃 = 2𝑘𝜋/𝑇, 𝑘 ∈ Z.Moreover,𝜆 = 2−𝑒−𝑖𝜃−𝑒𝑖𝜃 =
2(1−cos 𝜃) = 4 sin2(𝑘𝜋/𝑇). Let 𝜂

𝑘
denote the real eigenvector

corresponding to the eigenvalues 𝜆
𝑘
= 4 sin2(𝑘𝜋/𝑇), where

𝑘 ∈ 𝑍[0, 𝑟] and 𝑟 = [𝑇/2]. Since 𝑎 = 4 sin2(𝑚𝜋/𝑇) for some
𝑚 ∈ 𝑍[0, 𝑟], we can split space 𝐸

𝑇
as follows:

𝐸
𝑇
= 𝑊
−

⨁𝑊
0

⨁𝑊
+

, (20)

where

𝑊
−

= span {𝜂
𝑘
| 𝑘 ∈ 𝑍 [0,𝑚 − 1]} , 𝑊

0

= span {𝜂
𝑚
} ,

𝑊
+

= span {𝜂
𝑘
| 𝑘 ∈ 𝑍 [𝑚 + 1, 𝑟]} .

(21)

Bymeans of eigenvalue problem,we have |Δ𝑥
𝑛
|
2

−𝑎|𝑥
𝑛
|
2

=

(Δ𝑥
𝑛
, Δ𝑥
𝑛
) − 𝑎(𝑥

𝑛
, 𝑥
𝑛
) = (−Δ

2

𝑥
𝑛−1
, 𝑥
𝑛
) − 𝑎(𝑥

𝑛
, 𝑥
𝑛
) = (𝜆 −

𝑎)(𝑥
𝑛
, 𝑥
𝑛
) = (𝜆 − 𝑎)|𝑥

𝑛
|
2. Let

𝛿 =

{{{{{{{

{{{{{{{

{

min {4 sin2 (𝑚 + 1) 𝜋

𝑇
− 4 sin2𝑚𝜋

𝑇
,

4 sin2𝑚𝜋
𝑇

− 4 sin2 (𝑚 − 1) 𝜋

𝑇
} , 𝑚 ∈ 𝑍 [1, 𝑟] ,

4 sin2 𝜋
𝑇
, 𝑚 = 0.

(22)

Then ±(‖ Δ𝑥‖2 − 𝑎 ‖ 𝑥‖2) ≥ 𝛿 ‖ 𝑥‖2 for 𝑥 ∈ 𝑊±.
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On the other hand, associating to numbers 𝜆
∗
(𝑝) and

𝜆
∗
(𝑞) (see (6)), we set

Λ
∗
(𝑝) =

𝑇

∑

𝑛=1

𝑏 (𝑛)
𝑒𝑛

𝑝

,

Λ
∗
(𝑞) =

𝑇

∑

𝑛=1

𝑏 (𝑛)
𝑒𝑛

𝑞

,

(23)

where 𝑒
𝑛
= 𝑢 ∈ R𝑁 (𝑛 ∈ [1, 𝑇]) is the real eigenvector

corresponding to eigenvalue 𝜆
0
= 0. 𝑒 = (𝑒

𝑇

1
, 𝑒
𝑇

2
, . . . , 𝑒

𝑇

𝑁
)
𝑇

=

(𝑢
𝑇

, 𝑢
𝑇

, . . . , 𝑢
𝑇

)
𝑇

∈ 𝐸
𝑇
, where ∙𝑇 denotes the transpose of a

vector or a matrix. Moreover, letting |𝑢| = 𝑇
−1/2, we have

‖𝑒‖ = 1, ‖Δ𝑒‖ = 0. Therefore, by definition of 𝜆
∗
(𝑝), if

Λ
∗
(𝑝) = 0 then 𝜆

∗
(𝑝) = 0.

However, by assumption 𝜆
∗
(𝑝) > 𝑎 = 4sin 2(𝑚𝜋/𝑇) for

some 𝑚 ∈ 𝑍[0, 𝑟], thus 𝜆
∗
(𝑝) > 0. That is to say the equality

Λ
∗
(𝑝) = 0 cannot hold. Therefore our discussion will be

distinguished in two cases: Λ
∗
(𝑝) > 0 and Λ

∗
(𝑝) < 0.

2.3. Preliminaries. Let 𝑋 be a Hilbert space, and let 𝜑 ∈

𝐶
1

(𝑋,R) be a functional satisfying the (PS) condition. Write
crit(𝜑) = {𝑥 ∈ 𝑋 | 𝜑



(𝑥) = 0} for the set of critical
points of functional 𝜑 and 𝜑𝑐 = {𝑥 ∈ 𝑋 | 𝜑(𝑥) ≤ 𝑐} for
the level set. Denote by 𝐻

𝑘
(𝐴, 𝐵) the 𝑘th singular relative

homology group with integer coefficients. Let 𝑥
0
∈ crit(𝜑)

be an isolated critical point with value 𝑐 = 𝜑(𝑥
0
), 𝑐 ∈ R, the

group 𝐶
𝑘
(𝜑, 𝑥
0
) = 𝐻

𝑘
(𝜑
𝑐

∩ 𝑈, (𝜑
𝑐

∩ 𝑈) \ {𝑥
0
}), and 𝑘 ∈ Z

is called the 𝑘th critical group of 𝜑 at 𝑥
0
, where 𝑈 is a closed

neighbourhood of 𝑢. Due to the excision of homology [13],
𝐶
𝑘
(𝜑, 𝑥
0
) is dependent on 𝑈.

Suppose that 𝜑(crit(𝜑)) is strictly bounded from below by
𝑎 ∈ R, then the critical groups of 𝜑 at infinity are formally
defined [11] as 𝐶

𝑘
(𝜑,∞) = 𝐻

𝑘
(𝑋, 𝜑
𝑎

), 𝑘 ∈ Z.

Proposition 6 (Proposition 2.3, [11]). Assume that 𝐶
2-

functional 𝜑 satisfying (PS) condition has a local linking at 0
with respect to 𝑋 = 𝑋

+

0
⨁𝑋
−

0
; that is, there exists 𝜌 > 0 such

that

𝜑 (𝑥) ≤ 𝜑 (0) for 𝑥 ∈ 𝑋−
0
and ‖𝑥‖ ≤ 𝜌,

𝜑 (𝑥) > 𝜑 (0) for 𝑥 ∈ 𝑋+
0
and 0 < ‖𝑥‖ ≤ 𝜌.

(24)

Then 𝐶
𝑘
(𝜑, 0) ̸= 0, 𝑘 = dim𝑋

−

0
.

By Propostion 6, one proves the following lemmas with
respect to 𝐸

𝑇
= 𝑋
+

⨁X−.

Lemma 7. If 𝑎 < 𝜆
∗
(𝑝), then 𝐶

𝑘
(𝐽
𝑝
, 0) ̸= 0, 𝑘 = dim𝑋

−,
where 𝑋− = 𝑊

−

⨁𝑊
0 as Λ

∗
(𝑝) > 0, 𝑋− = 𝑊

− as Λ
∗
(𝑝) <

0. Λ
∗
(𝑝) is defined by (23).

Proof. We first consider the following.

Case 1 (Λ
∗
(𝑝) > 0 and 𝑋+ = 𝑊

+, 𝑋− = 𝑊
−

⨁𝑊
0). By

𝑝 > 2, |𝑥|𝑝 = 𝑜(|𝑥|
2

) as |𝑥| → 0, then there exists 𝜃 ∈ (0, 1)
suitably small, such that |𝑥|𝑝 ≤ 𝛿/3(𝑏/𝑝 + 𝜀)|𝑥|

2 as |𝑥| < 𝜃,

where 𝛿 > 0 see (22) and 𝑏 = max{|𝑏(1)|, . . . , |𝑏(𝑇)|} > 0. By
assumption (A2) and 𝐺

𝑝
(𝑛, 0) = 0, for any given 𝜀 > 0, there

exists 𝜌
𝑛
∈ (0, 𝜃), such that |𝐺

𝑝
(𝑛, 𝑥
𝑛
)| ≤ 𝜀|𝑥

𝑛
|
𝑝 as |𝑥

𝑛
| ≤ 𝜌
𝑛
,

𝑛 ∈ 𝑍[1, 𝑇]. Thus

1

𝑝

𝑇

∑

𝑛=1

𝑏 (𝑛)
𝑥𝑛


𝑝

+

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
𝑛
)

≤ (
𝑏

𝑝
+ 𝜀)

𝑇

∑

𝑛=1

𝑥𝑛

𝑝

≤
1

3
𝛿‖𝑥‖
2

.

(25)

Let 𝜌 = min{𝜌
1
, . . . , 𝜌

𝑇
}. For 0 <‖ 𝑥 ‖≤ 𝜌 < 1, it follows that

𝐽
𝑝
(𝑥) ≥

1

2
𝛿‖𝑥‖
2

−
1

3
𝛿‖𝑥‖
2

> 0, 𝑥 ∈ 𝑊
+

= 𝑋
+

. (26)

We need to prove that 𝐽
𝑝
(𝑥) ≤ 0 for 𝑥 ∈ 𝑋− = 𝑊−⨁𝑊

0,
‖𝑥‖ ≤ 𝜌. We first claim that

𝑇

∑

𝑛=1

𝑏 (𝑛)
𝑥𝑛


𝑝

> 0, ∀𝑥 ∈ 𝑊
−

⨁𝑊
0

, 𝑥 ̸= 0. (27)

Indeed, by contradiction, assume that∑𝑇
𝑛=1

𝑏(𝑛)|𝑥
𝑛
|
𝑝

≤ 0, for
some 𝑥 ∈ 𝑊

−

⨁𝑊
0, 𝑥 ̸= 0. Since Λ

∗
(𝑝) = ∑

𝑇

𝑛=1
𝑏(𝑛)|𝑒

𝑛
|
𝑝

>

0, where 𝑒 = (𝑒
𝑇

1
, 𝑒
𝑇

2
, . . . , 𝑒

𝑇

𝑁
)
𝑇

= (𝑢
𝑇

, 𝑢
𝑇

, . . . , 𝑢
𝑇

)
𝑇

∈

𝑊
−

⨁𝑊
0, and (𝑊

−

⨁𝑊
0

) \ {0} is arcwise connected,
then there exists a 𝑥

0

∈ (𝑊
−

⨁𝑊
0

) \ {0}, such that
∑
𝑇

𝑛=1
𝑏(𝑛)|𝑥

0

𝑛
|
𝑝

= 0. Thus ‖Δ𝑥0‖2 ≥ 𝜆
∗
(𝑝)‖𝑥

0

‖
2 by the

definition of 𝜆
∗
(𝑝). On the other hand, by the definition of

𝑊
−

⨁𝑊
0, we have ‖Δ𝑥0‖2 ≤ 𝑎 ‖𝑥0‖2. This is a contradiction

with assumption 𝑎 < 𝜆
∗
(𝑝). So the claim (27) holds.

There exists 𝑐
4
> 0 by (27), such that ∑𝑇

𝑛=1
𝑏(𝑛)|𝑥

𝑛
|
𝑝

≥

𝑐
4
‖𝑥‖
𝑝

𝑝
for all 𝑥 ∈ 𝑊

−

⨁𝑊
0

\ {0}, where ‖𝑥‖
𝑝

=

(∑
𝑇

𝑛=1
|𝑥
𝑛
|
𝑝

)
1/𝑝

. For 𝑥 ∈ 𝑊
−

⨁𝑊
0, ‖𝑥‖ ≤ 𝜌, 𝜀 sufficiently

small, we have

𝐽
𝑝
(𝑥) ≤ −

1

𝑝

𝑇

∑

𝑛=1

𝑏 (𝑛)
𝑥𝑛


𝑝

−

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
𝑛
)

≤ −
𝑐
4

𝑝
‖𝑥‖
𝑝

𝑝
+ 𝜀‖𝑥‖

𝑝

𝑝
≤ 0.

(28)

Since 𝐽
𝑝
(0) = 0 and 𝐽

𝑝
satisfies (PS) condition by Lemma 4,

so by Proposition 6, we obtain that 𝐶
𝑘
(𝐽
𝑝
, 0) ̸= 0 for 𝑘 =

dim (𝑊
−

⨁𝑊
0

).

Case 2 (Λ
∗
(𝑝) < 0, 𝑋

+

= 𝑊
+

⨁𝑊
0

, 𝑋
−

= 𝑊
−

). It is easy
to see that 𝐽

𝑝
(𝑥) ≤ 0 by ‖Δ𝑥‖2 − 𝑎 ‖𝑥‖2 ≤ −𝛿 ‖𝑥‖2 and 𝑝 > 2,

where 𝑥 ∈ 𝑊− and ‖𝑥‖ ≤ 𝜌. We need to claim that 𝐽
𝑝
(𝑥) > 0,

for 𝑥 ∈ 𝑊+⨁𝑊
0, 0 < ‖𝑥‖ ≤ 𝜌.

Suppose not that there exists a sequence {𝑥(𝑗)} ⊂ 𝐸
𝑇
such

that

{𝑥
(𝑗)

} ⊂ 𝑊
+

⨁𝑊
0

\ {0} , 0 <

𝑥
(𝑗)

≤ 𝜌,

𝐽
𝑝
(𝑥
(𝑗)

) ≤ 0,

(29)
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for large 𝑗. For ‖ 𝑥(𝑗) ‖ ≤ 𝜌, by Lemma 1, we get


𝑇

∑

𝑛=1

[
1

𝑝
𝑏 (𝑛)


𝑥
(𝑗)

𝑛



𝑝

+ 𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)]



≤

𝑇

∑

𝑛=1

[
𝑏

𝑝


𝑥
(𝑗)

𝑛



𝑝

+ 𝜀

𝑥
(𝑗)

𝑛



𝑝

] ≤ (
𝑏

𝑝
+ 𝜀)(

1

𝑎
1

)

𝑝


𝑥
(𝑗)


𝑝

.

(30)

Set 𝑦(𝑗)
𝑛
= 𝑥
(𝑗)

𝑛
/‖𝑥
(𝑗)

‖ .Then by (29) and the previous formula,
we have

0 ≥
𝐽
𝑝
(𝑥
(𝑗)

)

𝑥
(𝑗)

2

≥
1

2
(

Δ𝑦
(𝑗)


2

− 𝑎)

− (
𝑏

𝑝
+ 𝜀)(

1

𝑎
1

)

𝑝


𝑥
(𝑗)


𝑝−2

.

(31)

On the other hand, ‖Δ𝑦(𝑗)‖
2

≥ 𝑎 by the definition of
𝑊
+

⨁𝑊
0. Hence by 𝑝 > 2, there exists a subsequence

converges to 𝑦0 ∈ 𝐸
𝑇
, such that ‖Δ𝑦0‖2 = 𝑎, that is 𝑦0 ∈

𝑊
0 and ‖𝑦

0

‖ = 1. Since ‖Δ𝑥(𝑗)‖
2

≥ 𝑎‖𝑥
(𝑗)

‖
2

for {𝑥(𝑗)} ⊂

𝑊
+

⨁𝑊
0, it follows from 𝐽

𝑝
(𝑥
(𝑗)

) ≤ 0 that

0 ≤
1

𝑝

𝑇

∑

𝑛=1

𝑏 (𝑛)

𝑥
(𝑗)

𝑛



𝑝

+

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)

≤
1

𝑝

𝑇

∑

𝑛=1

𝑏 (𝑛)

𝑥
(𝑗)

𝑛



𝑝

+ 𝜀(
1

𝑎
1

)

𝑝


𝑥
(𝑗)


𝑝

.

(32)

Dividing by ‖𝑥
(𝑗)

‖
𝑝

in the previous inequality, then
∑
𝑇

𝑛=1
𝑏(𝑛)|𝑦

0

𝑛
|
𝑝

= lim
𝑗→∞

∑
𝑇

𝑛=1
𝑏(𝑛)|𝑦

(𝑗)

𝑛
|
𝑝

≥ 0.
Since 𝑒, 𝑦0 ∈ 𝑊

−

⨁𝑊
0, Λ
∗
(𝑝) = ∑

𝑇

𝑛=1
𝑏(𝑛)|𝑒

𝑛
|
𝑝

< 0

and (𝑊−⨁𝑊
0

) \ {0} is arcwise connected, then there exists
a 𝑦 ∈ (𝑊

−

⨁𝑊
0

) \ {0} such that ∑𝑇
𝑛=1

𝑏(𝑛)|𝑦
𝑛
|
𝑝

= 0. Thus
‖ Δ𝑥‖

2

≥ 𝜆
∗
(𝑝) ‖ 𝑥‖

2 by the definition of 𝜆
∗
(𝑝). On the other

hand, ‖ Δ𝑥‖2 ≤ 𝑎 ‖ 𝑥‖
2 by the definition of𝑊−⨁𝑊

0. This
is a contradiction with assumption 𝑎 < 𝜆

∗
(𝑝). That is to say,

the claim is valid.
By Proposition 6, we obtain 𝐶

𝑘
(𝐽
𝑝
, 0) ̸= 0, 𝑘 = dim 𝑊

−.
The proof is completed.

Lemma 8. If 𝑎 < 𝜆
∗
(𝑞), then 𝐶

𝑘
(𝐽
𝑞
,∞) ̸= 0 for 𝑘 = dim 𝑋

−,
where𝑋− = 𝑊−⨁𝑊

0 asΛ
∗
(𝑞) > 0,𝑋− = 𝑊− asΛ

∗
(𝑞) < 0.

The proof is similar to that of Lemma 7 and is omitted.

3. Proof of Theorem 2

Lemma 9. Let 𝑎 < 𝜆
∗
(𝑝). If there exists 𝐾

1
> 0 such that for

any 𝐾 > 𝐾
1
, 𝐽
𝑝
(𝑥) ≤ −𝐾, then one has ∑𝑇

𝑛=1
𝑏(𝑛)|𝑥

𝑛
|
𝑝

> 0,
and (𝑑/dt)𝐽

𝑝
(𝑡𝑥)|
𝑡=1

< 0.

Proof. We first claim that ‖ 𝑥 ‖ is sufficiently large, if 𝑥
satisfies condition of Lemma 9. Suppose not there exists𝑀 >

0 such that ‖ 𝑥 ‖≤ 𝑀. So there exists {𝑥(𝑗)} ⊂ 𝐸
𝑇
, 𝑥0 ∈ 𝐸

𝑇
,

such that 𝑥(𝑗) → 𝑥
0 as 𝑗 → ∞. Since for any 𝑗 > 𝐾

1
, we

have 𝐽
𝑝
(𝑥
(𝑗)

) ≤ −𝑗, thus 𝐽
𝑝
(𝑥
0

) = lim
𝑗→∞

𝐽
𝑝
(𝑥
(𝑗)

) = −∞. It is
a contradiction with 𝐽

𝑝
(𝑥
0

) = 𝑐.
If ‖𝑥‖ is large enough, thenwe can assume that |𝑥

𝑛
| is large

enough for 𝑛 ∈ 𝑍[1, 𝑘] and |𝑥
𝑛
| are bounded for 𝑛 ∈ 𝑍[𝑘 +

1, 𝑇].Therefore, by assumption (A1), for any given 𝜀 > 0, there
exists𝑀

1
> 0 such that


𝑔
𝑝
(𝑛, 𝑥
𝑛
)

≤ 𝜀

𝑥𝑛
 +

𝑀
1

𝑇
,


𝐺
𝑝
(𝑛, 𝑥
𝑛
)

≤ 𝜀

𝑥𝑛

2

+
𝑀
1

𝑇
,

∀ (𝑛, 𝑥
𝑛
) ∈ 𝑍 [1, 𝑇] ×R

𝑁

.

(33)

We claim that ∑𝑇
𝑛=1

𝑏(𝑛)|𝑥
𝑛
|
𝑝

> 0. Suppose not that, for 𝑗 >
𝐾
1
, there exists {𝑥(𝑗)} ⊂ 𝐸

𝑇
such that

𝑇

∑

𝑛=1

𝑏 (𝑛)

𝑥
(𝑗)

𝑛



𝑝

≤ 0. (34)

By 𝐽
𝑝
(𝑥
(𝑗)

) ≤ −𝑗 ≤ 0, (33) and (34), we have

1

2


Δ𝑥
(𝑗)


2

≤
𝑎

2


𝑥
(𝑗)


2

+

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)

≤
𝑎

2


𝑥
(𝑗)


2

+ 𝜀

𝑥
(𝑗)


2

+𝑀
1
.

(35)

Set 𝑦(𝑗)
𝑛

= 𝑥
(𝑗)

𝑛
/‖𝑥
(𝑗)

‖ and divided by ‖𝑥(𝑗)‖
2

in the previous
inequality. Since 𝜀 can be small enough, then there exists a
subsequence that converges to 𝑦0 ∈ 𝐸

𝑇
, such that ‖Δ𝑦0‖2 ≤ 𝑎,

‖𝑦
0

‖ = 1. Moreover, by (33) and (34), we get

0 ≥
1

𝑝

𝑇

∑

𝑛=1

𝑏 (𝑛)

𝑥
(𝑗)

𝑛



𝑝

≥ 𝑗 +
1

2


Δ𝑥
(𝑗)


2

−
𝑎

2


𝑥
(𝑗)


2

−

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) ≥ − (

𝑎

2
+ 𝜀)


𝑥
(𝑗)


2

−𝑀
1
.

(36)

Since 𝑝 > 2 and lim
𝑗→∞

‖𝑥
(𝑗)

‖ = ∞, divided by
‖𝑥
(𝑗)

‖
𝑝

in the previous inequality, we have ∑𝑇
𝑛=1

𝑏(𝑛)|𝑦
0

𝑛
|
𝑝

=

lim
𝑗→∞

∑
𝑇

𝑛=1
𝑏(𝑛)|𝑦

(𝑗)

𝑛
|
𝑝

= 0, that is, ‖ Δ𝑦0 ‖≥ 𝜆
∗
(𝑞), which

deduce a contradiction. So the claim ∑
𝑇

𝑛=1
𝑏(𝑛)|𝑥

𝑛
|
𝑝

> 0

holds.
Next we prove that (𝑑/𝑑𝑡)𝐽

𝑝
(𝑡𝑥)|
𝑡=1

< 0 holds. By con-
tradiction, there exists a sequence {𝑥(𝑗)} ⊂ 𝐸

𝑇
such that, for

𝑗 > 𝐾
1
,

𝑑

𝑑𝑡
𝐽
𝑝
(𝑡𝑥
(𝑗)

)

𝑡=1
≥ 0. (37)

Then, by (7), we get

𝑑

𝑑𝑡
𝐽
𝑝
(𝑡𝑥
(𝑗)

)

𝑡=1
=

Δ𝑥
(𝑗)


2

− 𝑎

𝑥
(𝑗)


2

−

𝑇

∑

𝑛=1

𝑏 (𝑛)

𝑥
(𝑗)

𝑛



𝑝

−

𝑇

∑

𝑛=1

(𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) , 𝑥
(𝑗)

𝑛
) ,

(38)
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and by (37) and 𝐽
𝑝
(𝑥
(𝑗)

) ≤ −𝑗 < 0, it follows that

(1 −
𝑝

2
) (


Δ𝑥
(𝑗)


2

− 𝑎

𝑥
(𝑗)


2

)

−

𝑇

∑

𝑛=1

(𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) , 𝑥
(𝑗)

𝑛
) + 𝑝

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)

=
𝑑

𝑑𝑡
𝐽
𝑝
(𝑡𝑥
(𝑗)

)

𝑡=1
− 𝑝𝐽
𝑝
(𝑥
(𝑗)

) ≥ 0.

(39)

Set 𝑦(𝑗)
𝑛

= 𝑥
(𝑗)

𝑛
/‖𝑥
(𝑗)

‖ and divided by ‖𝑥
(𝑗)

‖
2

in the
previous formula; since 𝑝 > 2 and 𝜀 can be small enough,
then there exists a subsequence converges to 𝑦0 ∈ 𝐸

𝑇
such

that ‖ Δ𝑦0‖2 ≤ 𝑎, ‖𝑦0‖ = 1. Moreover, by (37) and the first
claim, we get

0 <

𝑇

∑

𝑛=1

𝑏 (𝑛)

𝑥
(𝑗)

𝑛



𝑝

≤

Δ𝑥
(𝑗)


2

− 𝑎

𝑥
(𝑗)


2

−

𝑇

∑

𝑛=1

(𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) , 𝑥
(𝑗)

𝑛
) .

(40)

Divided by ‖ 𝑥(𝑗)‖𝑝 in the previous formula, and by 𝑝 > 2,
it follows that ∑𝑇

𝑛=1
𝑏(𝑛)|𝑦

0

𝑛
|
𝑝

= 0. This is a contradiction
with the definition of 𝜆

∗
(𝑝) and condition 𝑎 < 𝜆

∗
(𝑝). So the

second claim holds. The proof is completed.

Based on Lemma 9, we introduce the following notations:

𝐽
−𝐾

𝑝
= {𝑥 ∈ 𝐸

𝑇
: 𝐽
𝑝
(𝑥) ≤ −𝐾} ,

𝐸
+

𝑝
= {𝑥 ∈ 𝐸

𝑇
:

𝑇

∑

𝑛=1

𝑏 (𝑛)
𝑥𝑛


𝑝

> 0} ,

𝐸 (Ω
+
) = {𝑥 ∈ 𝐸

𝑇
: 𝑥
𝑛
= 0 for 𝑛 ∈ 𝑍 [1, 𝑇] \ Ω

+
} \ {0} .

(41)

Clearly, 𝐸(Ω
+
) ⊂ 𝐸

+

𝑝
. And by Lemma 9, we have 𝐽−𝐾

𝑝
⊂ 𝐸
+

𝑝
.

In order to describe the 𝐻
𝑞
(𝐸
𝑇
, 𝐽
−𝐾

𝑝
), we need to show the

following lemma.

Lemma 10. If 𝑎 < 𝜆
∗
(𝑝), then there exists 𝐾

1
> 0, such that

for any 𝐾 > 𝐾
1
, 𝐽−𝐾
𝑝

is a strong deformation retraction of 𝐸+
𝑝
.

Moreover, 𝐸(Ω
+
) and 𝐸+

𝑝
are homotopy equivalent.

Proof. Now we prove that 𝐽
−𝐾

𝑝
is a strong deformation

retraction of 𝐸+
𝑝
.

By Lemma 9, we have 𝐽
−𝐾

𝑝
⊂ 𝐸
+

𝑝
. Let 𝑥 ∈ 𝐸

+

𝑝
. By

Lemma 9, there exists a unique 𝑡
𝑝
= 𝑡
𝑝
(𝑥) > 0 such that

𝐽
𝑝
(𝑡
𝑝
𝑥) = −𝐾. By applying Implicit FunctionTheorem, 𝑡

𝑝
(𝑥)

is a continuous function in𝐸+
𝑝
. Let𝑇

𝑝
(𝑥) = max{𝑡

𝑝
(𝑥), 1} and

define 𝑓
𝑝
(𝑠, 𝑥) = (1 − 𝑠)𝑥 + 𝑠𝑇

𝑝
(𝑥)𝑥, then 𝑓

𝑝
: [0, 1] × 𝐸

+

𝑝
→

𝐽
−𝐾

𝑝
is a strong deformation retraction. Thus 𝐽−𝐾

𝑝
is a strong

deformation retraction of 𝐸+
𝑝
.

We next claim that 𝐸(Ω
+
) is a strong deformation retrac-

tion of𝐸+
𝑝
. Clearly, in terms of the notations, we have𝐸(Ω

+
) ⊂

𝐸
+

𝑝
. Let 𝜉

𝑝
: 𝑍[1, 𝑇] → R be a function such that

𝜉
𝑝
(𝑛) = 1 if 𝑛 ∈ Ω

+
, 𝜉

𝑝
(𝑛) = 0 if 𝑛 ∈ Ω

−
,

𝜉
𝑝
(𝑛) ∈ [0, 1] if 𝑛 ∈ 𝑍 [1, 𝑇] \ (Ω

+
∪ Ω
−
) .

(42)

Define

𝜁
𝑝
(𝑠, 𝑥
𝑛
) =

{{{{{

{{{{{

{

(1 − 2𝑠) 𝑥
𝑛
+ 2𝑠𝜉
𝑝
(𝑛) 𝑥
𝑛

if 0 ≤ 𝑠 ≤ 1

2
,

2 (1 − 𝑠) 𝜉
𝑝
(𝑛) 𝑥
𝑛
+ 2 (𝑠 −

1

2
)𝑃 (𝜉

𝑝
(𝑛) 𝑥
𝑛
)

if 1
2
≤ 𝑠 ≤ 1,

(43)

where 𝑃 : 𝐸
𝑇
→ 𝐸(Ω

+
) is a projection operator. Then 𝜁

𝑝
:

[0, 1] × 𝐸
+

𝑝
→ 𝐸(Ω

+
) is a deformation retraction. Indeed,

𝜁
𝑝
(0, 𝑥) = 𝑥, 𝜁

𝑝
(1, 𝑥) ∈ 𝐸 (Ω

+
) , for 𝑥 ∈ 𝐸+

𝑝
,

𝜁
𝑝
(𝑠, 𝑥) = 𝑥, for 𝑥 ∈ 𝐸 (Ω

+
) and 𝑠 ∈ [0, 1] .

(44)

For 𝑥 ∈ 𝐸+
𝑝
, if 𝑠 ∈ [0, 1/2], then

𝑇

∑

𝑛=1

𝑏 (𝑛)

𝜁
𝑝
(𝑠, 𝑥
𝑛
)


𝑝

= ∑

𝑛∈Ω+

𝑏 (𝑛)
𝑥𝑛


𝑝

+ ∑

𝑛∈Ω−

𝑏 (𝑛) (1 − 2𝑠)
𝑝𝑥𝑛


𝑝

≥

𝑇

∑

𝑛=1

𝑏 (𝑛)
𝑥𝑛


𝑝

> 0,

(45)

where 0 ≤ (1 − 2𝑠)
𝑝

≤ 1, that is, 𝜁
𝑝
(𝑠, 𝑥) ∈ 𝐸

+

𝑝
. If 𝑠 ∈ (1/2, 1],

it follows that

𝑇

∑

𝑛=1

𝑏 (𝑛)

𝜁
𝑝
(𝑠, 𝑥
𝑛
)


𝑝

= ∑

𝑛∈Ω+

𝑏 (𝑛)


2 (1 − 𝑠) 𝜉

𝑝
(𝑛) 𝑥
𝑛
+ 2 (𝑠 −

1

2
)𝑃 (𝜉

𝑝
(𝑛) 𝑥
𝑛
)



𝑝

≥ 0.

(46)

We claim that the equality of the previous formula cannot
hold. Otherwise, 𝑃𝑥

𝑛
= −((1 − 𝑠)/(𝑠 − (1/2)))𝑥

𝑛
, for 𝑛 ∈ Ω

+
,

which implies that 𝑃𝑥
𝑛
= 0. Hence 𝑥

𝑛
= 0 in Ω

+
, which

contradicts with the fact 𝑥 ∈ 𝐸
+

𝑝
. So ∑𝑇

𝑛=1
𝑏(𝑛)|𝜁

𝑝
(𝑠, 𝑥
𝑛
)|
𝑝

>

0, that is, 𝜁
𝑝
(𝑠, 𝑥) ∈ 𝐸

+

𝑝
as 𝑠 ∈ (1/2, 1]. Therefore, 𝜁

𝑝

is a deformation retraction from 𝐸
+

𝑝
onto 𝐸(Ω

+
), and this

completes the proof.

Proof of Theorem 2. Since 𝐸(Ω
+
) is well known to be con-

tractile in itself, and by Lemma 10, it follows that 𝐽−𝐾
𝑝

is
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homotopically equivalent to 𝐸(Ω
+
) for 𝐾 large enough, then

the Betti numbers (cf. [11, 13]) are

𝛽
𝑘
= dim 𝐶

𝑘
(𝐽
𝑝
,∞) = dim 𝐻

𝑘
(𝐸
𝑇
, 𝐽
−𝐾

𝑝
)

= dim 𝐻
𝑘
(𝐸
𝑇
, 𝐸 (Ω

+
)) = 0, 𝑘 ∈ 𝑍 [0,𝑁𝑇] .

(47)

Now we suppose that system (4) has only trivial solution;
that is, 𝐽

𝑝
has only critical point 𝑥 = 0, then we have

the Morse-type numbers 𝑀
𝑘

= dim𝐶
𝑘
(𝐽
𝑝
, 0) for 𝑘 ∈

𝑍[0,𝑁𝑇] (cf. [13]). Moreover, by Lemma 7, 𝐶
𝑘
(𝐽
𝑝
, 0) ̸= 0 for

𝑘 = dim𝑊
− or 𝑘 = dim(𝑊−⨁𝑊

0

). Since 𝐽
𝑝
satisfies (PS)

condition by Lemma 4, then using Morse Relation, we have
the following.

0 =

𝑁𝑇

∑

𝑘=0

(−1)
𝑘

𝛽
𝑘
=

𝑁𝑇

∑

𝑘=0

(−1)
𝑘

𝑀
𝑘
̸= 0, (48)

which is a contradiction.Therefore, 𝐽
𝑝
has at least one critical

point 𝑥∗ ̸= 0 and system (4) has at least a nonzero 𝑇-periodic
solution.

4. Proof of Theorem 3

For convenience, we introduce the following notations:

𝐽
𝑐

𝑞
= {𝑥 ∈ 𝐸

𝑇
: 𝐽
𝑞
(𝑥) ≤ 𝑐} , 𝑐 ∈ R,

𝐸
+

𝑞
= {𝑥 ∈ 𝐸

𝑇
:

𝑇

∑

𝑛=1

𝑏 (𝑛)
𝑥𝑛


𝑞

> 0} .

(49)

Clearly, 𝐸+
𝑞
∪ {0} is star-shaped with respect to the origin

and 𝐸(Ω
+
) ⊂ 𝐸
+

𝑞
, where 𝐸(Ω

+
) is given in Section 3. Similarly

with the proof of Lemmas 9 and 10, we have the following.

Lemma 11. Let 𝑎 < 𝜆
∗
(𝑞). Then there exists 𝜌 > 0 such that

(𝑑/𝑑𝑡)𝐽
𝑞
(𝑡𝑥)|
𝑡=1

> 0 for any 𝑥 ∈ 𝑀
𝜌
= {𝑥 ∈ 𝐵

𝜌
∩ 𝐸
+

𝑞
: 𝐽
𝑞
(𝑥) ≥

0}, where 𝐵
𝜌
stands for the closed ball in 𝐸

𝑇
of radius 𝜌 > 0

with the center at zero.

Lemma 12. Let 𝑎 < 𝜆
∗
(𝑞). Then there exists 𝜌 > 0 such that

(𝐽
0

𝑞
∩ 𝐵
𝜌
) \ {0} is a retract of 𝐸+

𝑞
∩ 𝐵
𝜌
, and 𝐸(Ω+) is a strong

deformation retraction of 𝐸+
𝑞
.

Proof of Theorem 3. We first prove that 𝐽0
𝑞
∩𝐵
𝜌
is contractible

in itself. In fact, it is sufficient to show that 𝐽0
𝑞
∩𝐵
𝜌
is starshaped

with respect to the origin; that is, 𝑥 ∈ 𝐽
0

𝑞
∩ 𝐵
𝜌
implies that

𝑡𝑥 ∈ 𝐽
0

𝑞
∩ 𝐵
𝜌
for all 𝑡 ∈ [0, 1].

Assume, by a contradiction, that there exists 𝑥
0
∈ 𝐽
0

𝑞
∩ 𝐵
𝜌

and 𝑡
0
∈ (0, 1), such that 𝐽

𝑞
(𝑡
0
𝑥
0
) > 0. It follows from

Lemma 11 that (𝑑/𝑑𝑡)𝐽
𝑞
(𝑡
0
𝑥
0
) > 0. By the monotonicity

arguments, this implies that

𝐽
𝑞
(𝑡𝑥
0
) > 0 ∀𝑡 ∈ [𝑡

0
, 1] . (50)

This contradicts the assumption 𝑥
0
∈ 𝐽
0

𝑞
, which implies

𝐽
𝑞
(𝑥
0
) ≤ 0.

On the other hand, since 𝐸(Ω
+
) is contractible in itself,

and 𝐸+
𝑞
∪ {0} is starshaped with respect to the origin, then

𝐸
+

𝑞
∩ 𝐵
𝜌
is contractible in itself. The retract of the set which

is contractible in itself is also contractible (cf. [19]); it follows
that the set (𝐽0

𝑞
∩ 𝐵
𝜌
) \ {0} is contractible by Lemma 12.

Combining the previous argument, 𝐽0
𝑞
∩𝐵
𝜌
and (𝐽0

𝑞
∩𝐵
𝜌
) \

{0} are contractible in themselves.

dim𝐶
𝑘
(𝐽
𝑞
, 0) = dim𝐻

𝑘
(𝐽
0

𝑞
∩ 𝐵
𝜌
, (𝐽
0

𝑞
∩ 𝐵
𝜌
) \ {0}) = 0,

𝑘 ∈ 𝑍 [0,𝑁𝑇] .

(51)

By Lemma 8, 𝐶
𝑘
(𝐽
𝑞
,∞) ̸= 0 for 𝑘 = dim(𝑊−⨁𝑊

0

) or 𝑘 =

dim𝑊
−.Therefore, byMorse Relation and the samemethods

in proof ofTheorem 2, it follows that 𝐽
𝑞
has at least one critical

point 𝑥∗ ̸= 0 and system (5) has at least a nonzero 𝑇-periodic
solution.
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