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We establish the strong convergence of prediction-correction and relaxed hybrid steepest-descent method (PRH method) for
variational inequalities under some suitable conditions that simplify the proof. And it is to be noted that the proof is different
from the previous results and also is not similar to the previous results. More importantly, we design a set of practical numerical
experiments. The results demonstrate that the PRH method under some descent directions is more slightly efficient than that of
the modified and relaxed hybrid steepest-descent method, and the PRHMethod under some new conditions is more efficient than
that under some old conditions.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, let 𝐾 be a nonempty closed convex subset of 𝐻,
and let 𝐹 : 𝐻 → 𝐻 be an operator. Then the variational
inequality problem VI(𝐹, 𝐾) [1] is to find 𝑥

∗

∈ 𝐾 such that

𝑥
∗

∈ 𝐾, ⟨𝑥 − 𝑥
∗

, 𝐹 (𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐾. (1)

The literature contains many methods for solving vari-
ational inequality problems; see [2–25] and references
therein. According to the relationship between the variational
inequality problems and a fixed point problem, we can obtain

𝑥
∗ is the solution of VI (𝐹,𝐾)

⇐⇒ 𝑥
∗

= 𝑃
𝐾
[𝑥
∗

− 𝛽𝐹 (𝑥
∗

)] , 𝛽 > 0,

(2)

where the projection operator 𝑃
𝐾
is the projection from 𝐻

onto𝐾, that is,

𝑃
𝐾
(𝑥) = argmin

𝑦∈𝐾

𝑥 − 𝑦
 , ∀𝑥 ∈ 𝐻. (3)

In this paper, 𝐹 : 𝐻 → 𝐻 is an operator with 𝐹 : 𝜅-Lipschtz
and 𝜂-strongly monotone; that is, 𝐹 satisfies the following
conditions:

𝐹 (𝑥) − 𝐹 (𝑦)
 ≤ 𝜅

𝑥 − 𝑦
 ,

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝑥 − 𝑦⟩ ≥ 𝜂
𝑥 − 𝑦
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, ∀𝑥, 𝑦 ∈ 𝐾.

(4)

If 𝛽 is small enough, then 𝑃
𝐾
is a contraction. Naturally, the

convergence of Picard iterates generated by the right-hand
side of (2) is obtained by Banach’s fixed point theorem. Such a
method is called the projectionmethod ormore results about
the projection method see [6, 8, 20] and so forth.

In fact, the projection𝑃
𝐾
in the contractionmethodsmay

not be easy to compute, and a great effort is to compute
the projection 𝑃

𝐾
in each iteration. Yamada and Deutsch

have provided a hybrid steepest-descent method for solving
the VI(𝐹,𝐾) [2, 3] in order to reduce the difficulty and
complexity of computing the projection 𝑃

𝐾
. Subsequently,

the convergence of hybrid steepest-descent methods was
given out by Xu and Kim [4] and Zeng et al. [5]. Naturally,
by analyzing several three-step iterative methods in each
iteration by the fixed pointed equation, we can obtain the
Noor iterations. Recently, Ding et al. [7] proposed a three-
step relaxed hybrid steepest-descent method for variational
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inequalities, and the simple proof of three-step relaxed hybrid
steepest-descent methods under different conditions was
introduced by Yao et al. [24]. The literature [14, 16] described
a modified and relaxed hybrid steepest-descent (MRHSD)
method and the different convergence of the MRHSD
method under the different conditions. A set of practical
numerical experiments in the literature [16] demonstrated
that the MRHSD method has different efficiency under
different conditions. Subsequently, the prediction-correction
and relaxed hybrid steepest-descent method (PRH method)
[15] makes more use of the history information and less
decreases the loss of information than the methods [7, 14].
The PRH method introduced more descent directions than
the MRHSD method [14, 16], and computing these descent
directions only needs the history information.

In this paper, we will prove the strong convergence
of PRH method under different and suitable restrictions
imposed on parameters (Condition 12), which differs from
that of [15]. Moreover, the proof of strong convergence
is different from the previous proof in [15], which is not
similar to that in [7] in Step 2. And more importantly,
numerical experiments verify that the PRH method under
Condition 12 is more efficient than that under Condition 10,
and the PRH method under some descent directions is more
slightly efficient than that of the MRHSD method [14, 16].
Furthermore, it is easy to obtain these descent directions.

The remainder of the paper is organized as follows.
In Section 2, we review several lemmas and preliminaries.
We prove the convergence theorem under Condition 12 in
Section 3. In Section 4, we give out a series of numerical
experiments, which demonstrated that the PRH method
under Condition 12 is more efficient than under Condition
10. Section 5 concludes the paper.

2. Preliminaries

In order to proof the later convergence theorem,we introduce
several lemmas and the main results in the following.

Lemma 1. In a real Hilbert space H, there holds the inequality

𝑥 + 𝑦


2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐻. (5)

The lemma is a basic result of a Hilbert space with the
inner product.

Lemma 2 (demiclosedness principle). Assume that 𝑇 is a
nonexpansive self-mapping on a nonempty closed convex subset
𝐾 of a Hilbert space 𝐻. If 𝑇 has a fixed point, then (𝐼 − 𝑇)

is demiclosed. That is, whenever 𝑥
𝑛
is a sequence in 𝐾 weakly

converging to some 𝑥 ∈ 𝐾 and the sequence (𝐼 − 𝑇)𝑥
𝑛
strongly

converges to some 𝑦 ∈ 𝐻, it follows that (𝐼 − 𝑇)𝑥 = 𝑦. Here 𝐼
is the identity operator of𝐻.

The following lemma is an immediate result of a projec-
tion mapping onto a closed convex subset of a Hilbert space.

Lemma 3. Let𝐾 be a nonempty closed convex subset of𝐻. For
all 𝑥, 𝑦 ∈ 𝐻 and 𝑧 ∈ 𝐾, then

(1) ⟨𝑃
𝐾
(𝑥) − 𝑥, 𝑧 − 𝑃

𝐾
(𝑦)⟩ ≥ 0,

(2) ‖𝑃
𝐾
(𝑥)−𝑃

𝐾
(𝑦)‖
2

≤1‖𝑥−𝑦‖
2

−‖𝑃
𝐾
(𝑥)−𝑥 +𝑦 −𝑃

𝐾
(𝑦)‖
2.

Lemma 4 (see [13]). Let {𝑥
𝑛
} and {𝑦

𝑛
} be bounded sequence

in a Banach space X and let {𝜁
𝑛
} be a sequence in [0, 1] with

0 < lim inf
𝑛→∞

𝜁
𝑛
≤ lim sup

𝑛→∞
𝜁
𝑛
< 1. Suppose 𝑥

𝑛+1
=

(1−𝜁
𝑛
)𝑦
𝑛
+𝜁
𝑛
𝑥
𝑛
for all integers 𝑛 ≥ 0 and lim sup

𝑛→∞
(‖𝑦
𝑛+1

−

𝑦
𝑛
‖ − ‖𝑥

𝑛+1
− 𝑥
𝑛
‖) ≤ 0. Then lim sup

𝑛→∞
‖𝑦
𝑛
− 𝑥
𝑛
‖ = 0.

Lemma 5 ([5, 7]). Let {𝑠
𝑛
} be a sequence of nonnegative real

numbers satisfying the inequality

𝑠
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑠
𝑛
+ 𝛼
𝑛
𝜏
𝑛
+ 𝛾
𝑛
, ∀𝑛 ≥ 0, (6)

where 𝛼
𝑛
, 𝜏
𝑛
, and 𝛾

𝑛
satisfy the following conditions:

(1) 𝛼
𝑛
⊂ [0, 1], ∑

∞

𝑛=0
𝛼
𝑛
= ∞, or ∏

∞

𝑛=0
(1 − 𝛼

𝑛
) = 0,

(2) lim
𝑛→∞

sup 𝜏
𝑛
≤ 0,

(3) 𝛾
𝑛
⊂ [0,∞),∑

∞

𝑛=0
𝛾
𝑛
< ∞.

Then lim
𝑛→∞

𝑠
𝑛
= 0.

Since 𝐹 is 𝜂-strongly monotone, VI(𝐹,𝐾) has a unique
solution 𝑥

∗

∈ 𝐾 [5]. Assume that 𝑇 : 𝐻 → 𝐻 is a
nonexpansive mapping with the fixed point set Fix(𝑇) = 𝐾.
Obviously Fix(𝑃

𝐾
) = 𝐾.

For any given numbers 𝜆 ∈ (0, 1) and 𝜇 ∈ (0, 2𝜂/𝜅
2

), we
define the mapping 𝑇

𝜆

𝜇
: 𝐻 → 𝐻 by

𝑇
𝜆

𝜇
𝑥 : 𝑇𝑥 − 𝜆𝜇𝐹 (𝑇𝑥) , ∀𝑥 ∈ 𝐻. (7)

Lemma 6 (see [5]). If 0 < 𝜇 < 2𝜂/𝜅
2 and 0 < 𝜆 < 1, then 𝑇

𝜆

𝜇

is a contraction. In fact,

𝑇
𝜆

𝜇
𝑥 − 𝑇
𝜆

𝜇
𝑦

≤ (1 − 𝜆𝛿)

𝑥 − 𝑦
 , (8)

where 𝛿 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2), for all 𝑥, 𝑦 ∈ 𝐻.

Lemma 7 (see [7]). Let {𝛼
𝑛
} be a sequence of nonnegative

numbers with lim sup
𝑛→∞

𝛼
𝑛
< ∞ and let {𝛽

𝑛
} be sequence

of real numbers with lim sup
𝑛→∞

𝛽
𝑛
≤ 0. Then

lim sup
𝑛→∞

𝛼
𝑛
𝛽
𝑛
≤ 0. (9)

3. Convergence Theorem

Before analyzing the convergence theorem,we first review the
PRH method and related results [15].

Algorithm 8 (see [15]). Take three fixed numbers 𝑡, 𝜌, 𝛾 ∈

(0, 2𝜂/𝜅
2

), starting with arbitrarily chosen initial points 𝑥
0
∈

𝐻, compute the sequences {𝑥
𝑛
}, {𝑥
𝑛
}, {𝑥
𝑛
}, {𝑥
𝑛
} such that;

Prediction

Step 1: 𝑥
𝑛
= 𝛾
𝑛
𝑥
𝑛
+ (1−𝛾

𝑛
)[𝑇𝑥
𝑛
−𝜆


𝑛+1
𝛾𝐹(𝑇𝑥

𝑛
)],

Step 2: 𝑥
𝑛
= 𝛽
𝑛
𝑥
𝑛
+(1−𝛽

𝑛
)[𝑇𝑥
𝑛
−𝜆


𝑛+1
𝜌𝐹(𝑇𝑥

𝑛
)],

Step 3: 𝑥
𝑛
= 𝜃
𝑛
𝑥
𝑛
+ (1 − 𝜃

𝑛
)𝑥
𝑛
, 0 ≤ 𝜃

𝑛
≤ 1,
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Correction

Step 4: 𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
)[𝑇𝑥
𝑛

−𝜆
𝑛+1

𝑡𝐹(𝑇𝑥
𝑛
)],

where 𝑇 : 𝐻 → 𝐻 is a nonexpansive mapping.

Let {𝛼
𝑛
} ⊂ [0, 1), {𝛽

𝑛
} ⊂ [0, 1] and {𝛾

𝑛
} ⊂ [0, 1], {𝜆

𝑛
}, {𝜆


𝑛
},

{𝜆


𝑛
} ⊂ (0, 1) satisfy the following conditions.

Remark 9. In fact, the PRH method is the MRHSD method
when 𝜃

𝑛
≡ 0, for all 𝑛.

Condition 10. One has

(1)

∞

∑

1

𝛼𝑛 − 𝛼
𝑛−1

 < ∞,

∞

∑

1

𝛽𝑛 − 𝛽
𝑛−1

 < ∞,

∞

∑

1

𝛾𝑛 − 𝛾
𝑛−1

 < ∞,

(2) lim
𝑛→∞

𝛼
𝑛
= 0, lim

𝑛→∞

𝛽
𝑛
= 1, lim

𝑛→∞

𝛾
𝑛
= 1,

(3) lim
𝑛→∞

𝜆
𝑛
= 0, lim

𝑛→∞

𝜆
𝑛

𝜆
𝑛+1

= 1,

∞

∑

1

𝜆
𝑛
= ∞,

(4) 𝜆
𝑛
≥ max {𝜆

𝑛
, 𝜆


𝑛
} , ∀𝑛 ≥ 1.

(10)

Theorem 11 (see [15]). In Condition 10, the sequence {𝑥
𝑛
}

converges strongly to 𝑥
∗

∈ 𝐾, and 𝑥
∗ is the unique solution

of the 𝑉𝐼(𝐹,𝐾).

We obtain the strong convergence theorem of PRH
method for variational inequalities under different assump-
tions.

Condition 12. One has

(1) 0 < lim inf
𝑛→∞

𝛼
𝑛
≤ lim sup
𝑛→∞

𝛼
𝑛
< 1,

lim
𝑛→∞

𝛽
𝑛
= 1, lim

𝑛→∞

𝛾
𝑛
= 1,

(2) lim
𝑛→∞

𝜆
𝑛
= 0,

∞

∑

1

𝜆
𝑛
= ∞,

(3) 𝜆
𝑛
≥ max {𝜆

𝑛
, 𝜆


𝑛
} , ∀𝑛 ≥ 1.

(11)

Theorem 13. The sequence {𝑥
𝑛
} converges strongly to 𝑥

∗

∈ 𝐾,
and 𝑥

∗ is the unique solution of the 𝑉𝐼(𝐹,𝐾). Assume that
{𝛼
𝑛
}, {𝛽
𝑛
} and {𝛾

𝑛
}, {𝜆
𝑛
}, {𝜆


𝑛
}, {𝜆


𝑛
} satisfy Condition 12.

Proof. We divide the proof into several steps.
Step 1. {𝑥

𝑛
}, {𝑥
𝑛
}, {𝑥
𝑛
}, and {𝑥

𝑛
} are bounded. Since 𝐹 is 𝜂-

strongly monotone, VI(𝐹, 𝐾) (1) has a unique solution 𝑥
∗

∈

𝐾, and𝑇𝜆𝑛+1
𝑡

𝑥
∗

= 𝑥
∗

−𝜆
𝑛+1

𝑡𝐹(𝑥
∗

),𝑇𝜆


𝑛+1

𝜌
𝑥
∗

= 𝑥
∗

−𝜆
𝑛+1

𝜌𝐹(𝑥
∗

),
𝑇
𝜆


𝑛+1

𝛾
𝑥
∗

= 𝑥
∗

− 𝜆
𝑛+1

𝛾𝐹(𝑥
∗

).

A series of computations yields

𝑥𝑛+1 − 𝑥
∗ =


𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇
𝜆
𝑛+1

𝑡
𝑥 − 𝑥
∗


≤ 𝛼
𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝛼

𝑛
)

𝑇
𝜆
𝑛+1

𝑡
𝑥 − 𝑥
∗


≤ 𝛼
𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝛼

𝑛
)

× [

𝑇
𝜆
𝑛+1

𝑡
𝑥 − 𝑇
𝜆
𝑛+1

𝑡
𝑥
∗

+

𝑇
𝜆
𝑛+1

𝑡
𝑥
∗

− 𝑥
∗

]

≤ 𝛼
𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝛼

𝑛
)

× [(1 − 𝜆
𝑛+1

𝜏)
𝑥𝑛 − 𝑥

∗ + 𝜆
𝑛+1

𝑡
𝐹 (𝑥
∗

)
] ,

(12)

where 𝜏 = 1 − √1 − 𝑡(2𝜂 − 𝑡𝜅2) ∈ (0, 1),

𝑥𝑛 − 𝑥
∗ =


𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇
𝜆


𝑛+1

𝜌
𝑥
𝑛
− 𝑥
∗


≤ 𝛽
𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝛽

𝑛
)

𝑇
𝜆


𝑛+1

𝜌
𝑥
𝑛
− 𝑥
∗


≤ 𝛽
𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝛽

𝑛
)

× [

𝑇
𝜆


𝑛+1

𝜌
𝑥
𝑛
− 𝑇
𝜆


𝑛+1

𝜌
𝑥
∗

+

𝑇
𝜆


𝑛+1

𝜌
𝑥
∗

− 𝑥
∗

]

≤ 𝛽
𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝛽

𝑛
)

× [(1 − 𝜆


𝑛+1
𝜏


)
𝑥𝑛 − 𝑥

∗ + 𝜆


𝑛+1
𝜌
𝐹 (𝑥
∗

)
]

≤ 𝛽
𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑥

∗

+ (1 − 𝛽
𝑛
) 𝜆


𝑛+1
𝜌
𝐹 (𝑥
∗

)
 ,

(13)

where 𝜏 = 1 − √1 − 𝜌(2𝜂 − 𝑡𝜅2) ∈ (0, 1).
Moreover, we also obtain

𝑥𝑛 − 𝑥
∗ =


𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛾

𝑛
) 𝑇
𝜆


𝑛+1

𝛾
𝑥
𝑛
− 𝑥
∗


≤ 𝛾
𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝛾

𝑛
)

𝑇
𝜆


𝑛+1

𝛾
𝑥
𝑛
− 𝑥
∗


≤𝛾
𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝛾

𝑛
)

× [

𝑇
𝜆


𝑛+1

𝛾
𝑥
𝑛
− 𝑇
𝜆


𝑛+1

𝛾
𝑥
∗

+

𝑇
𝜆


𝑛+1

𝛾
𝑥
∗

− 𝑥
∗

]

≤ 𝛾
𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝛾

𝑛
)

× [(1 − 𝜆


𝑛+1
𝜏


)
𝑥𝑛 − 𝑥

∗ + 𝜆


𝑛+1
𝛾
𝐹 (𝑥
∗

)
]

≤
𝑥𝑛 − 𝑥

∗ + (1 − 𝛾
𝑛
) 𝜆


𝑛+1
𝛾
𝐹 (𝑥
∗

)
 ,

(14)
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where 𝜏


= 1 − √1 − 𝛾(2𝜂 − 𝑡𝜅2) ∈ (0, 1), subtituting; (14)
into (13) and (14) into (12), we immediately obtain

𝑥𝑛 − 𝑥
∗ = 𝛽

𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝛽

𝑛
)

× [(1 − 𝜆


𝑛+1
𝜏


)
𝑥𝑛 − 𝑥

∗ + 𝜆


𝑛+1
𝜌
𝐹 (𝑥
∗

)
]

≤ 𝛽
𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝛽

𝑛
)

× [(1 − 𝜆


𝑛+1
𝜏


)
𝑥𝑛 − 𝑥

∗

+ (1 − 𝛾
𝑛
) 𝜆


𝑛+1
𝛾
𝐹 (𝑥
∗

)
 +𝜆


𝑛+1
𝜌
𝐹 (𝑥
∗

)
]

≤
𝑥𝑛 − 𝑥

∗ + (1 − 𝛽
𝑛
) 𝜆
𝑛+1

(𝛾 + 𝜌)
𝐹 (𝑥
∗

)
 .

(15)

Furthermore,

𝑥𝑛 − 𝑥
∗ =

𝜃𝑛𝑥𝑛 + (1 − 𝜃
𝑛
) 𝑥
𝑛
− 𝑥
∗

≤ 𝜃
𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝜃

𝑛
)
𝑥𝑛 − 𝑥

∗

≤ 𝜃
𝑛
[
𝑥𝑛 − 𝑥

∗ + (1 − 𝛾
𝑛
) 𝜆


𝑛+1
𝛾
𝐹 (𝑥
∗

)
]

+ (1 − 𝜃
𝑛
) [

𝑥𝑛 − 𝑥
∗ + (1 − 𝛽

𝑛
) 𝜆
𝑛+1

× (𝛾 + 𝜌)
𝐹 (𝑥
∗

)
]

≤
𝑥𝑛 − 𝑥

∗ + (1 − 𝛾
𝑛
) 𝜆


𝑛+1
𝛾
𝐹 (𝑥
∗

)


+ (1 − 𝛽
𝑛
) 𝜆
𝑛+1

(𝛾 + 𝜌)
𝐹 (𝑥
∗

)
 ,

𝑥𝑛+1 − 𝑥
∗

≤ 𝛼
𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝛼

𝑛
)

× [(1 − 𝜆
𝑛+1

𝜏)
𝑥𝑛 − 𝑥

∗ + 𝜆
𝑛+1

𝑡
𝐹 (𝑥
∗

)
]

≤ 𝛼
𝑛
[
𝑥𝑛 − 𝑥

∗ + (1 − 𝛾
𝑛
) 𝜆


𝑛+1
𝛾
𝐹 (𝑥
∗

)
]

+ (1 − 𝛼
𝑛
) {(1 − 𝜆

𝑛+1
𝜏)

× [
𝑥𝑛 − 𝑥

∗ + (1 − 𝛾
𝑛
) 𝜆


𝑛+1
𝛾
𝐹 (𝑥
∗

)


+ (1 − 𝛽
𝑛
) 𝜆
𝑛+1

(𝛾 + 𝜌)
𝐹 (𝑥
∗

)
]

+ 𝜆
𝑛+1

𝑡
𝐹 (𝑥
∗

)
}

≤ 𝛼
𝑛

𝑥𝑛 − 𝑥
∗ + 𝛼

𝑛
(1 − 𝛾

𝑛
) 𝜆
𝑛+1

𝛾
𝐹 (𝑥
∗

)
 + (1 − 𝛼

𝑛
)

× [(1 − 𝜆
𝑛+1

𝜏)
𝑥𝑛 − 𝑥

∗ + 𝜆
𝑛+1

(2𝛾 + 𝜌 + 𝑡)
𝐹 (𝑥
∗

)
] .

(16)

It is easy to obtain the following by induction:

𝑥𝑛 − 𝑥
∗ ≤ 𝑀

0
, ∀𝑛 ≥ 0, (17)

where𝑀
0
= max{3‖𝑥

0
− 𝑥
∗

‖, 3(𝜌 + 𝛾 + 𝑡)‖𝐹(𝑥
∗

)‖/𝜏},

𝑥𝑛 − 𝑥
∗ ≤

𝑥𝑛 − 𝑥
∗ + (1 − 𝛽

𝑛
) 𝜆
𝑛+1

(𝛾 + 𝜌)
𝐹 (𝑥
∗

)


≤ (1 +
𝜏

3
)𝑀
0
,

𝑥𝑛 − 𝑥
∗ ≤

𝑥𝑛 − 𝑥
∗ + (1 − 𝛾

𝑛
) 𝜆


𝑛+1
𝛾
𝐹 (𝑥
∗

)


≤ (1 +
𝜏

3
)𝑀
0
,

𝑥𝑛 − 𝑥
∗ ≤ 𝜃

𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝜃

𝑛
)
𝑥𝑛 − 𝑥

∗

≤ 2 (1 +
𝜏

3
)𝑀
0
.

(18)

Hence

{𝑇𝑥
𝑛
} , {𝑇𝑥

𝑛
} , {𝑇𝑥

𝑛
} , {𝑇𝑥

𝑛
} ,

{𝐹 (𝑇𝑥
𝑛
)} , {𝐹 (𝑇𝑥

𝑛
)} , {𝐹 (𝑇𝑥

𝑛
)} , {𝐹 (𝑇𝑥

𝑛
)}

(19)

are also bounded.
Step 2. Consider ‖𝑥

𝑛+1
− 𝑥
𝑛
‖ → 0.

Indeed, by a series of computations, we have

𝑥𝑛 − 𝑥
𝑛−1



=

𝛾
𝑛
𝑥
𝑛
− 𝛾
𝑛−1

𝑥
𝑛−1

+ (1 − 𝛾
𝑛
) 𝑇
𝜆


𝑛+1

𝛾
𝑥
𝑛

− (1 − 𝛾
𝑛−1

) 𝑇
𝜆


𝑛

𝛾
𝑥
𝑛−1



≤
𝛾𝑛𝑥𝑛 − 𝛾

𝑛−1
𝑥
𝑛−1



+

(1 − 𝛾

𝑛
) 𝑇
𝜆


𝑛+1

𝛾
𝑥
𝑛
− (1 − 𝛾

𝑛−1
) 𝑇
𝜆


𝑛

𝛾
𝑥
𝑛−1



≤
𝑥𝑛 − 𝑥

𝑛−1

 +

(1 − 𝛾

𝑛
) 𝜆


𝑛+1
− (1 − 𝛾

𝑛−1
) 𝜆


𝑛



× 𝛾
𝐹 (𝑇𝑥

𝑛−1
)


+
𝛾𝑛 − 𝛾

𝑛−1

 (
𝑥𝑛−1

 +
𝑇𝑥𝑛−1

) .

(20)

According to (20) and the prediction step of Algorithm 8, we
also obtain

𝑥𝑛 − 𝑥
𝑛−1



=

𝛽
𝑛
𝑥
𝑛
− 𝛽
𝑛−1

𝑥
𝑛−1

+ (1 − 𝛽
𝑛
) 𝑇
𝜆


𝑛+1

𝜌
𝑥
𝑛

− (1 − 𝛽
𝑛−1

) 𝑇
𝜆


𝑛

𝜌
𝑥
𝑛−1



≤
𝛽𝑛𝑥𝑛 − 𝛽

𝑛−1
𝑥
𝑛−1



+

(1 − 𝛽

𝑛
) 𝑇
𝜆


𝑛+1

𝜌
𝑥
𝑛
− (1 − 𝛽

𝑛−1
) 𝑇
𝜆


𝑛

𝜌
𝑥
𝑛−1
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≤
𝑥𝑛 − 𝑥

𝑛−1

 +

(1 − 𝛽

𝑛
) 𝜆


𝑛+1
− (1 − 𝛽

𝑛−1
) 𝜆


𝑛



× 𝜌
𝐹 (𝑇 𝑥

𝑛−1
)
 + (1 − 𝛽

𝑛
) (1 − 𝜆



𝑛+1
𝜏


)

×
𝛾𝑛 − 𝛾

𝑛−1

 (
𝑥𝑛−1

 +
𝑇𝑥𝑛−1

)

+ (1 − 𝛽
𝑛
) (1 − 𝜆



𝑛+1
𝜏


)

(1 − 𝛾

𝑛
) 𝜆


𝑛+1
− 𝛾
𝑛−1

𝜆


𝑛



× 𝛾
𝐹 (𝑇𝑥

𝑛−1
)
 +

𝛽𝑛 − 𝛽
𝑛−1



× (
𝑥𝑛−1

 +
𝑇 𝑥
𝑛−1

 +
𝑇 𝑥
𝑛−1

) .

(21)

Also by the prediction step of Algorithm 8 and (20), (21), we
have

𝑥𝑛 − 𝑥
𝑛−1

 ≤ 𝜃
𝑛

𝑥𝑛 − 𝑥
𝑛−1

 + (1 − 𝜃
𝑛
)
𝑥𝑛 − 𝑥

𝑛−1



≤
𝑥𝑛 − 𝑥

𝑛−1



+

(1 − 𝛾

𝑛
) 𝜆


𝑛+1
− (1 − 𝛾

𝑛−1
) 𝜆


𝑛


𝛾
𝐹 (𝑇𝑥

𝑛−1
)


+
𝛾𝑛 − 𝛾

𝑛−1

 (
𝑥𝑛−1

 +
𝑇𝑥𝑛−1

)

+

(1 − 𝛽

𝑛
) 𝜆


𝑛+1
− (1 − 𝛽

𝑛−1
) 𝜆


𝑛


𝜌
𝐹 (𝑇𝑥

𝑛−1
)


+ (1 − 𝛽
𝑛
) (1 − 𝜆



𝑛+1
𝜏


)
𝛾𝑛 − 𝛾

𝑛−1



× (
𝑥𝑛−1

 +
𝑇𝑥𝑛−1

) + (1 − 𝛽
𝑛
) (1 − 𝜆



𝑛+1
𝜏


)

×

(1 − 𝛾

𝑛
) 𝜆


𝑛+1
− 𝛾
𝑛−1

𝜆


𝑛


𝛾
𝐹 (𝑇𝑥

𝑛−1
)


+
𝛽𝑛 − 𝛽

𝑛−1

 (
𝑥𝑛−1

 +
𝑇𝑥𝑛−1

 +
𝑇𝑥𝑛−1

) .

(22)

Let

𝑦
𝑛
= 𝑇
𝜆
𝑛+1

𝑡
𝑥
𝑛
= 𝑇𝑥
𝑛
− 𝜆
𝑛+1

𝑡𝐹 (𝑇𝑥
𝑛
) , (23)

so we get

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑦
𝑛
. (24)

Furthermore,

𝑦𝑛 − 𝑦
𝑛−1



=
𝑇𝑥𝑛 − 𝑇𝑥

𝑛−1
+ 𝜆
𝑛
𝑡𝐹 (𝑇𝑥

𝑛−1
) − 𝜆
𝑛+1

𝑡𝐹 (𝑇𝑥
𝑛
)


≤
𝑇𝑥𝑛 − 𝑇𝑥

𝑛−1

 + 𝜆
𝑛
𝑡
𝐹 (𝑇𝑥

𝑛−1
)


+ 𝜆
𝑛+1

𝑡
𝐹 (𝑇𝑥

𝑛
)


≤
𝑥𝑛 − 𝑥

𝑛−1

 + 𝜆
𝑛
𝑡
𝐹 (𝑇𝑥

𝑛−1
)


+ 𝜆
𝑛+1

𝑡
𝐹 (𝑇𝑥

𝑛
)
 .

(25)

Apply lim
𝑛→∞

𝛽
𝑛
= 1, lim

𝑛→∞
𝜆
𝑛
= 0, and lim

𝑛→∞
𝛾
𝑛
= 1

and (22), (25) to get
𝑦𝑛 − 𝑦

𝑛−1

 −
𝑥𝑛 − 𝑥

𝑛−1



≤

(1 − 𝛾

𝑛
) 𝜆


𝑛+1
− (1 − 𝛾

𝑛−1
) 𝜆


𝑛


𝛾
𝐹 (𝑇𝑥

𝑛−1
)


+
𝛾𝑛 − 𝛾

𝑛−1

 (
𝑥𝑛−1

 +
𝑇𝑥𝑛−1

)

+

(1 − 𝛽

𝑛
) 𝜆


𝑛+1
− (1 − 𝛽

𝑛−1
) 𝜆


𝑛


𝜌
𝐹 (𝑇𝑥

𝑛−1
)


+ (1 − 𝛽
𝑛
) (1 − 𝜆



𝑛+1
𝜏


)
𝛾𝑛 − 𝛾

𝑛−1

 (
𝑥𝑛−1

 +
𝑇𝑥𝑛−1

)

+ (1 − 𝛽
𝑛
) (1 − 𝜆



𝑛+1
𝜏


)

×

(1 − 𝛾

𝑛
) 𝜆


𝑛+1
− 𝛾
𝑛−1

𝜆


𝑛


𝛾
𝐹 (𝑇 (𝑥

𝑛−1
))


+
𝛽𝑛 − 𝛽

𝑛−1

 (
𝑥𝑛−1

 +
𝑇𝑥𝑛−1

 +
𝑇𝑥𝑛−1

)

+ 𝜆
𝑛
𝑡
𝐹 (𝑇𝑥

𝑛−1
)
 + 𝜆
𝑛+1

𝑡
𝐹 (𝑇𝑥

𝑛
)
 → 0.

(26)

According to Lemma 4, we obtain

lim
𝑛→∞

𝑦𝑛−1 − 𝑥
𝑛−1

 = 0. (27)

Furthermore, by lim
𝑛→∞

𝛾
𝑛
= 1, we also get

𝑥𝑛 − 𝑥
𝑛



=

− (1 − 𝛾

𝑛
) 𝑥
𝑛
+ (1 − 𝛾

𝑛
) [𝑇𝑥
𝑛
− 𝜆


𝑛+1
𝛾𝐹 (𝑇𝑥

𝑛
)]


≤ (1 − 𝛾
𝑛
)
𝑥𝑛

 + (1 − 𝛾
𝑛
)
𝑇𝑥𝑛

 + 𝜆


𝑛+1
𝛾
𝐹 (𝑇𝑥

𝑛
)
 → 0.

(28)

By (27), (28) and the correction step of Algorithm 8, we
immediately conclude that

𝑥𝑛 − 𝑥
𝑛−1



=
𝛼𝑛−1𝑥𝑛−1 + (1 − 𝛼

𝑛−1
) 𝑦
𝑛−1

− 𝑥
𝑛−1



≤ 𝛼
𝑛−1

𝑥𝑛−1 − 𝑥
𝑛−1

 + (1 − 𝛼
𝑛−1

)
𝑦𝑛−1 − 𝑥

𝑛−1

 → 0,

(29)

so we get
𝑥𝑛+1 − 𝑥

𝑛

 → 0. (30)

Step 3. Consider ‖𝑥
𝑛+1

− 𝑇𝑥
𝑛
‖ → 0.

Indeed, by the prediction step of Algorithm 8, we have
𝑥𝑛 − 𝑥

𝑛



=

− (1 − 𝛽

𝑛
) 𝑥
𝑛
+ (1 − 𝛽

𝑛
) [𝑇𝑥
𝑛
− 𝜆


𝑛+1
𝜌𝐹 (𝑇𝑥

𝑛
)]


≤ (1 − 𝛽
𝑛
)
𝑥𝑛

 + (1 − 𝛽
𝑛
) [

𝑇𝑥𝑛
 +


𝜆


𝑛+1
𝜌𝐹 (𝑇𝑥

𝑛
)

] .

(31)

According to the assumption lim
𝑛→∞

𝛽
𝑛

= 1 and
lim
𝑛→∞

𝜆
𝑛
= 0, then

𝑥𝑛 − 𝑥
𝑛

 → 0. (32)



6 Abstract and Applied Analysis

By (32), we immediately obtain

𝑥𝑛 − 𝑥
𝑛

 ≤ 𝜃
𝑛

𝑥𝑛 − 𝑥
𝑛

 + (1 − 𝜃
𝑛
)
𝑥𝑛 − 𝑥

𝑛

 → 0. (33)

By a series of computations, we can get

𝑥𝑛+1 − 𝑇𝑥
𝑛



=

𝛼
𝑛
(𝑥
𝑛
− 𝑇𝑥
𝑛
) + (1 − 𝛼

𝑛
) (𝑇
𝜆
𝑛+1

𝑡
𝑥 − 𝑇𝑥

𝑛
)


≤ 𝛼
𝑛

𝑥𝑛 − 𝑇𝑥
𝑛

 + (1 − 𝛼
𝑛
)
𝑇𝑥𝑛 − 𝑇𝑥

𝑛



+ (1 − 𝛼
𝑛
) 𝜆
𝑛+1

𝑡
𝐹 (𝑇𝑥

𝑛
)


≤ 𝛼
𝑛

𝑥𝑛 − 𝑇𝑥
𝑛

 +
𝑥𝑛 − 𝑥

𝑛

 + 𝜆
𝑛+1

𝑡 ‖𝐹 (𝑇𝑥)‖

≤ 𝛼
𝑛

𝑥𝑛+1 − 𝑇𝑥
𝑛

 + 𝛼
𝑛

𝑥𝑛 − 𝑥
𝑛+1



+
𝑥𝑛 − 𝑥

𝑛

 + 𝜆
𝑛+1

𝑡 ‖𝐹 (𝑇𝑥)‖ .

(34)

Hence, by (28), (33), and (34), we also obtain

𝑥𝑛+1 − 𝑇𝑥
𝑛

 ≤
𝛼
𝑛

1 − 𝛼
𝑛

𝑥𝑛 − 𝑥
𝑛+1



+

𝑥𝑛 − 𝑥
𝑛



1 − 𝛼
𝑛

+
𝜆
𝑛+1

𝑡 ‖𝐹 (𝑇𝑥)‖

1 − 𝛼
𝑛

→ 0.

(35)

Using Steps 2 and 3, it is easy to obtain the following corollary.

Corollary 14. Consider ‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ → 0.

Applying Steps 2 and 3 , one gets

𝑥𝑛+1 − 𝑇𝑥
𝑛

 → 0,
𝑥𝑛+1 − 𝑥

𝑛

 → 0, (36)

so it is easy to see that

𝑥𝑛 − 𝑇𝑥
𝑛

 ≤
𝑥𝑛+1 − 𝑇𝑥

𝑛

 +
𝑥𝑛+1 − 𝑥

𝑛

 → 0. (37)

Step 4. Consider lim
𝑛→∞

sup⟨−𝐹(𝑥∗), 𝑇𝑥
𝑛
− 𝑥
∗

⟩ ≤ 0.
For some 𝑥 ∈ 𝐻, here exits {𝑇𝑥

𝑛
𝑖

} → 𝑥 weakly and such
that

lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗

) , 𝑇𝑥
𝑛
− 𝑥
∗

⟩

= lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗

) , 𝑇𝑥
𝑛
𝑖

− 𝑥
∗

⟩ .

(38)

According to {𝑇𝑥
𝑛
𝑖

} → 𝑥, we have

𝑥 ∈ Fix (𝑇) = 𝐾. (39)

By 𝑥∗ being the unique solution of VI(𝐹, 𝐾), we can obtain

lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗

) , 𝑇𝑥
𝑛
− 𝑥
∗

⟩

= lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗

) , 𝑥 − 𝑥
∗

⟩

≤ 0.

(40)

Since ‖𝑇𝑥
𝑛
−𝑇𝑥
𝑛
‖ ≤ ‖𝑥

𝑛
−𝑥
𝑛
‖ → 0, we immediately conclude

that

lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗

) , 𝑇𝑥
𝑛
− 𝑥
∗

⟩

≤ lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗

) , 𝑇𝑥
𝑛
− 𝑇𝑥
𝑛
⟩

+ lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗

) , 𝑇𝑥
𝑛
− 𝑥
∗

⟩

≤ lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗

) , 𝑇𝑥
𝑛
− 𝑥
∗

⟩

≤ 0.

(41)

Step 5. By Step 1 and Lemma 1, we have

𝑥𝑛+1 − 𝑥
∗

2

=

𝛼
𝑛
(𝑥
𝑛
− 𝑥
∗

) + (1 − 𝛼
𝑛
) (𝑇
𝜆
𝑛+1

𝑡
𝑥
𝑛
− 𝑥
∗

)


2

≤
𝛼𝑛 (𝑥𝑛 − 𝑥

∗

)


2

+ (1 − 𝛼
𝑛
)

×

(𝑇
𝜆
𝑛+1

𝑡
𝑥
𝑛
− 𝑇
𝜆
𝑛+1

𝑡
𝑥
∗

+ 𝑇
𝜆
𝑛+1

𝑡
𝑥
∗

− 𝑥
∗

)


2

≤
𝛼𝑛 (𝑥𝑛 − 𝑥

∗

)


2

+ (1 − 𝛼
𝑛
)

× [

𝑇
𝜆
𝑛+1

𝑡
𝑥
𝑛
− 𝑇
𝜆
𝑛+1

𝑡
𝑥
∗


2

+ 2 ⟨𝑇
𝜆
𝑛+1

𝑡
𝑥
∗

− 𝑥
∗

, 𝑇
𝜆
𝑛+1

𝑡
𝑥
𝑛
− 𝑥
∗

⟩]

≤ 𝛼
𝑛
[
𝑥𝑛 − 𝑥

∗ + (1 − 𝛾
𝑛
) 𝜆


𝑛+1
𝛾
𝐹 (𝑥
∗

)
]
2

+ (1 − 𝛼
𝑛
) (1 − 𝜆

𝑛+1
𝜏)
2

× [
𝑥𝑛 − 𝑥

∗ + (1 − 𝛾
𝑛
) 𝜆


𝑛+1
𝛾
𝐹 (𝑥
∗

)


+ (1 − 𝛽
𝑛
) 𝜆
𝑛+1

(𝛾 + 𝜌)
𝐹 (𝑥
∗

)
 ]
2

+ 2𝑡𝜆
𝑛+1

⟨−𝐹 (𝑥
∗

) , 𝑇𝑥
𝑛
− 𝑥
∗

− 𝑡𝜆
𝑛+1

𝐹 (𝑇𝑥
𝑛
)⟩

≤ 𝛼
𝑛

𝑥𝑛 − 𝑥
∗

2

+ (1 − 𝛾
𝑛
) 𝜆
𝑛+1

𝛾𝑀

+ (1 − 𝛼
𝑛
) (1 − 𝜆

𝑛+1
𝜏)
2𝑥𝑛 − 𝑥

∗

2

+ (1 − 𝛼
𝑛
) (1 − 𝜆

𝑛+1
𝜏)
2

(1 − 𝛽
𝑛
) 𝜆
𝑛+1

𝑀

+ (1 − 𝛼
𝑛
) (1 − 𝜆

𝑛+1
𝜏)
2

(1 − 𝛾
𝑛
) 𝜆
𝑛+1

𝛾𝑀

+ 2𝑡𝜆
𝑛+1

⟨−𝐹 (𝑥
∗

) , 𝑇𝑥
𝑛
− 𝑥
∗

− 𝑡𝜆
𝑛+1

𝐹 (𝑇𝑥
𝑛
)⟩

≤ [1 − (1 − 𝛼
𝑛
) 𝜆
𝑛+1

𝜏]
𝑥𝑛 − 𝑥

∗

2

+ (1 − 𝛼
𝑛
) 𝜆
𝑛+1

𝜏𝑤


𝑛+1
,

(42)
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where

𝑤


𝑛+1
=

2𝑡 ⟨−𝐹 (𝑥
∗

) , 𝑇𝑥
𝑛
− 𝑥
∗

− 𝑡𝜆
𝑛+1

𝐹 (𝑇𝑥
𝑛
)⟩

𝜏 (1 − 𝛼
𝑛
)

+
𝜑
𝑛

𝜏 (1 − 𝛼
𝑛
)
+

𝜉
𝑛

𝜏 (1 − 𝛼
𝑛
)
,

𝜑
𝑛
= (1 − 𝛾

𝑛
) 𝛾𝑀,

𝜉
𝑛
= (1 − 𝛼

𝑛
) (1 − 𝜆

𝑛+1
𝜏)
2

(1 − 𝛽
𝑛
)𝑀

+ (1 − 𝛼
𝑛
) (1 − 𝜆

𝑛+1
𝜏)
2

(1 − 𝛾
𝑛
) 𝜆
𝑛+1

𝛾𝑀,

(43)

and𝑀
0
≪ 𝑀 < ∞.

Denote

𝑠


𝑛+1
=
𝑥𝑛+1 − 𝑥

∗ , 𝑢
𝑛
= (1 − 𝛼

𝑛
) 𝜆
𝑛+1

𝜏. (44)

We can rewrite (42) as

𝑠


𝑛+1
≤ (1 − 𝑢

𝑛
) 𝑠


𝑛
+ 𝑢
𝑛
𝑤


𝑛
+ 0. (45)

In fact, 𝑢
𝑛
, 𝑤


𝑛
satisfies Lemma 5; according to

lim
𝑛→∞

𝛽
𝑛
= 1, lim

𝑛→∞

𝛾
𝑛
= 1, lim

𝑛→∞

𝜆
𝑛
= 0, (46)

we obtain
𝜑
𝑛

𝜏 (1 − 𝛼
𝑛
)
→ 0,

𝜉
𝑛

𝜏 (1 − 𝛼
𝑛
)
→ 0.

(47)

Moreover, by Step 4, we also obtain

lim
𝑛→∞

2𝑡 ⟨−𝐹 (𝑥
∗

) , 𝑇𝑥
𝑛
− 𝑥
∗

− 𝑡𝜆
𝑛+1

𝐹 (𝑇𝑥
𝑛
)⟩

𝜏 (1 − 𝛼
𝑛
)

≤
2𝑡

𝜏
lim
𝑛→∞

sup {⟨−𝐹 (𝑥
∗

) , 𝑇𝑥
𝑛
− 𝑥
∗

⟩

+ 𝜆
𝑛+1

⟨−𝐹 (𝑥
∗

) , −𝑡𝐹 (𝑇𝑥
𝑛
)⟩}

≤
2𝑡

𝜏
lim
𝑛→∞

sup {⟨−𝐹 (𝑥
∗

) , 𝑇𝑥
𝑛
− 𝑥
∗

⟩}

+ lim
𝑛→∞

sup {𝜆
𝑛+1

⟨−𝐹 (𝑥
∗

) , −𝑡𝐹 (𝑇𝑥
𝑛
)⟩}

≤ 0 + 0 = 0.

(48)

Furthermore, by (43), (47), and (48), it is easy to obtain

lim
𝑛→∞

sup𝑤
𝑛
≤ 0. (49)

Consequently apply Lemma 5 to obtain
𝑥𝑛 − 𝑥

∗ → 0. (50)

4. Numerical Experiments

The problem considered in this section is

min {
1

2
‖𝑋 − 𝐶‖

2

𝐹
| 𝑋 ∈ 𝐾} , (51)

where ‖ ⋅ ‖
𝐹
is the matrix Fröbenis norm; that is,

‖𝐶‖
𝐹
= (

∞

∑

𝑖=1

∞

∑

𝑗=1


𝐶
𝑖𝑗



2

)

1/2

. (52)

Note that the matrix Fröbenis norm is induced by the
inner product

⟨𝐴, 𝐵⟩ = Trace (𝐴𝑇𝐵) . (53)

The problems arise from finance and statistics, and we form
the test problems similarly as in [9, 21].

Let 𝐾 = 𝑆
𝑛

+
∩ ß, where

𝑆
𝑛

+
= {𝐻 ∈ R

𝑛×𝑛

| 𝐻
𝑇

= 𝐻,𝐻 ⪰ 0} ,

ß = {𝐻 ∈ R
𝑛×𝑛

| 𝐻
𝑇

= 𝐻,𝐻
𝐿
≤ 𝐻 ≤ 𝐻

𝑈
} .

(54)

Let 𝐻
𝐿
, 𝐻
𝑈

be given 𝑛 × 𝑛 symmetric matrices, and 𝐶

asymmetric which differs from previous approaches [9, 21],
and it is to be noted that the extended contraction method
(EC method) [9] has much difficulty in computing the
examples when 𝐶 is asymmetric, where𝐻

𝐿
≤ 𝐻
𝑈
in element

wise:
𝐻
𝐿
≤ 𝐻
𝑈
: (𝐻
𝐿
)
𝑖𝑗
≤ (𝐻
𝑈
)
𝑖𝑗
, ∀𝑖, 𝑗 ∈ 1, . . . , 𝑛. (55)

Then (51) is equivalent to the following variational
inequality:

⟨𝑋


− 𝑋, ∇ (
1

2
‖𝑋 − 𝐶‖

2

)⟩ ≥ 0, ∀𝑋


∈ 𝐾. (56)

So we get

⟨𝑋


− 𝑋,𝑋 − 𝐶⟩ ≥ 0, ∀𝑋


∈ 𝐾. (57)

According to Condition 10, we take the following param-
eter sequences, and let Condition 10 denote the parameter
sequences:

𝛼
𝑛
=

1

ln 𝑛
,

𝜆
𝑛
= 𝜆


𝑛
= 𝜆


𝑛
=

1

ln (𝑛 + 1)
,

𝛽
𝑛
= 𝛾
𝑛
= 1 −

1

ln 𝑛
,

𝛾 = 𝜌 = 𝑡 = 𝑐
0
> 0.

(58)

According to Condition 12, we take the following param-
eter sequences, and let Condition 12 denote the parameter
sequences:

𝛼
𝑛
= 0.8 −

1

(10 ∗ ln 𝑛)
, 𝑛 = 2𝑘,

𝛼
𝑛
= 0.3 −

1

(10 ∗ ln 𝑛)
, 𝑛 = 2𝑘 − 1,
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Table 1: Numerical results for the PRH method and the EC method.

Asymmetric matrix 𝑐
0
= 0.1, 𝜃

𝑛
= 0.8, tolerance = 10

−4

Condition 10 Condition 12 EC method
𝑛 It cpu It cpu It cpu tolerance
100 201 8.34 130 5.35 100 14.46 8.289𝑒 + 000

200 333 75.44 208 47.14 100 94.30 1.010𝑒 + 002

300 443 318.02 272 174.70 100 302.29 4.899𝑒 + 002

400 543 789.16 330 446.00 100 686.83 9.628𝑒 + 002

500 647 1747.70 388 972.18 100 1287.36 1.756𝑒 + 003

1000 1082 19884.30 634 11502.13 100 9220.50 9.826𝑒 + 003

2000 >2000 >150000 1052 128504.67 100 >74640.41 >5.597𝑒 + 003

Matlab code:
𝐶 = zeros(𝑛, 𝑛); HU = ones(𝑛, 𝑛) ∗ 0.1; HL = −HU;
for 𝑖 = 1 : 𝑛

for 𝑗 = 1 : 𝑛

𝑡 = mod(𝑡 ∗ 42108 + 13846, 46273);
𝐶(𝑖, 𝑗) = 𝑡 ∗ 2/46273 − 1;

end;
end;
for 𝑖 = 1 : 𝑛

𝐶(𝑖, 𝑖) = abs(𝐶(𝑖, 𝑖)) ∗ 2; HU(𝑖, 𝑖) = 1; HL(𝑖, 𝑖) = 1;
end;

Algorithm 1

Table 2: Numerical results for tolerance 10−4.

Asymmetric
matrix

𝑐
0
= 0.1, 𝜃

𝑛
= 0.8

Condition 10 Condition 12
𝑛 It cpu It cpu
100 204 8.78 130 5.45
200 330 76.08 208 47.72
300 445 323.20 272 175.89
400 548 867.56 330 450.59
500 663 1916.90 388 994.18

Table 3: Numerical results for tolerance 10−3.

Asymmetric
matrix

𝑐
0
= 0.1, 𝜃

𝑛
= 0.8

Condition 10 Condition 12
𝑛 It cpu It cpu
1000 193 3893.63 126 2280.74
2000 318 42981.02 200 28737.65

𝜆
𝑛
= 𝜆


𝑛
= 𝜆


𝑛
=

1

ln (𝑛 + 1)
,

𝛽
𝑛
= 1 −

1

ln 𝑛
, 𝑛 = 2𝑘,

𝛽
𝑛
= 1 −

1

ln 𝑛
, 𝑛 = 2𝑘 − 1,

𝛾
𝑛
= 1 −

1

ln 𝑛
, 𝑛 = 2𝑘,

𝛾
𝑛
= 1 −

1

ln (2𝑛)
, 𝑛 = 2𝑘 − 1,

𝛾 = 𝜌 = 𝑡 = 𝑐
0
> 0.

(59)

Obviously, we have much difficulty in computing the projec-
tion of 𝑃

𝐾
[𝑋], for all 𝑥 ∈ 𝑆

𝑛. In order to reduce the difficulty
and complexity of computing the projection𝑃

𝐾
, we define𝑇𝑋

by

𝑇𝑋 = 𝐻 (𝐺 (𝑋)) , (60)

where

𝐺 (𝑋) = min (𝐻
𝑈
,max (𝑋,𝐻

𝐿
)) ,

𝐻 (𝑋) = 𝑃
𝑆
𝑛

+

(𝑋) ,

(61)

which can be computed without difficulty and the fixed point
set of Fix(𝑇) = 𝐾. According to Theorems 11 and 13, the
sequences generated byAlgorithm 8underConditions 10 and
12 are convergent.

The computation beginswith ones (𝑛, 𝑛) inMATLABand
stops as soon as ‖𝑥

𝑘+1
− 𝑥
𝑘
‖ ≤ 10

−3 or 10
−2. All codes were

implemented in MATLAB 7.1 and ran at a Pentium R 1.70G
processor, 2G Acer note computer.

We test the problems with 𝑛 = 100, 200, 300, 400, 500,
1000, and 2000. The test results with the PRH method under
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Table 4: Numerical results for tolerance 10−4.

Asymmetric matrix 𝛾 = 0.1, 𝜌 = 0.3, 𝑡 = 0.1

𝜃
𝑛
= 0 𝜃

𝑛
= 0.2 𝜃

𝑛
= 0.4 𝜃

𝑛
= 0.6 𝜃

𝑛
= 0.8

𝑛 It cpu It cpu It cpu It cpu It cpu
100 132 5.52 134 5.60 128 5.50 134 5.67 132 5.54
200 210 48.04 206 47.22 208 48.04 204 47.15 214 48.58
300 274 177.49 268 176.08 276 178.80 274 177.68 276 178.84
400 336 468.28 328 445.93 336 468.20 334 454.24 330 453.79
500 392 977.79 394 1012.57 378 948.44 386 953.91 390 971.10

Matlab code:
𝐶 = zeros(𝑛, 𝑛); HU = ones(𝑛, 𝑛) ∗ 0.1; HL = −HU;
for 𝑖 = 1 : 𝑛

for 𝑗 = 1 : 𝑛

𝐶 = −1 + 2 ∗ rand(𝑛);
end;

end;
for 𝑖 = 1 : 𝑛

𝐶(𝑖, 𝑖) = abs(𝐶(𝑖, 𝑖)) ∗ 2; HU(𝑖, 𝑖) = 1; HL(𝑖, 𝑖) = 1;
end;

Algorithm 2

different conditions are reported in Tables 1, 2, 3, and 4. And
the CPU time is in seconds. It is to be noted that the results
of extended contraction method are only given out when the
iteration step (It) is less than or equal to 100.
Test Examples 1. In this example we generate the data in a
similar manner as in [9]. The entries of diagonal elements of
𝐶 are randomly generated in the interval (0, 2); the entries
of off-diagonal elements of 𝐶 are randomly generated in the
interval (−1, 1) (Algorithm 1):

(𝐻
𝑈
)
𝑗𝑗
= (𝐻
𝐿
)
𝑗𝑗
= 1,

(𝐻
𝑈
)
𝑖𝑗
= −(𝐻

𝐿
)
𝑖𝑗
= 0.1, ∀𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(62)

When 𝑛 ≥ 1000 and tolerance 10−4, the computation time of
the proposed method is too long, so the results of the PRH
method give out approximate solution with 𝑛 ≥ 1000 and
tolerance 10−3 in the following. And the extended contraction
method (EC method) has much difficulty in computing the
examples when 𝐶 is asymmetric. Furthermore, by intro-
ducing auxiliary variable, the certain projection method or
relaxed-PPAmethod [10] can be implemented by these tests.
Test Examples 2. We form the data of the second problems
similarly as in the first test examples. The entries of diagonal
elements of 𝐶 are randomly generated in the interval (0, 2);
the entries of off-diagonal elements of 𝐶 are generated from
a uniform distribution in the same interval (Algorithm 2):

(𝐻
𝑈
)
𝑗𝑗
= (𝐻
𝐿
)
𝑗𝑗
= 1,

(𝐻
𝑈
)
𝑖𝑗
= −(𝐻

𝐿
)
𝑖𝑗
= 0.1, ∀𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(63)

From Tables 1 to 3, we found that the iteration numbers
and CPU time of PRH under Condition 12 are more efficient
than that under Condition 10. In Table 4 of our method,
the tests’ results give out that the PRH method under some
descent directions is more slightly efficient than those of the
MRHSDmethod [14, 16], and it is easy to obtain these descent
directions. Furthermore, it is important to find 𝛾, 𝜌, and 𝑡 by
Tables 2 and 4.

5. Conclusions

We have proved the strong convergence of PRH method
under Condition 12, which differs from Condition 10. The
result can be considered as an improvement and refinement
of the previous results [14]. Andmore importantly, numerical
experiments demonstrated that the PRH method under
Condition 12 is more efficient than that under Condition
10, and the PRH method under some descent directions is
more slightly efficient than that of the MRHSD method.
How to select parameters of the PRH method for solving
variational inequalities is worthy of further investigations in
the future.
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