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This paper deals with the numerical solutions of fuzzy fractional differential equations under Caputo-type fuzzy fractional
derivatives of order 𝛼 ∈ (0, 1). We derived the shifted Legendre operational matrix (LOM) of fuzzy fractional derivatives for the
numerical solutions of fuzzy fractional differential equations (FFDEs). Our main purpose is to generalize the Legendre operational
matrix to the fuzzy fractional calculus. The main characteristic behind this approach is that it reduces such problems to the
degree of solving a system of algebraic equations which greatly simplifies the problem. Several illustrative examples are included to
demonstrate the validity and applicability of the presented technique.

1. Introduction

The subject of fractional calculus has gained considerable
popularity and importance during the past three decades.
Some of the most recent works on this topic, that is, the
theory of derivatives and integrals of fractional (noninteger)
order, are such as the book of Podlubny [1], Baleanu et
al. [2], Diethelm [3], Baleanu et al. [4], and Sabatier et al.
[5]. Only in the last few years, the various applications of
fractional calculus have been extended in the area of physics
and engineering such as themodeling of nonlinear oscillation
of earthquake [6], the fluid-dynamic models [7], continuum
and statistical mechanics [8], and solid mechanics [9]. In
a notably enormous number of recent works, one can find
the robustness upon the usefulness of fractional calculus
to derive particular solutions of different kinds of classical
differential equations like Bessel differential equation of
general order [10, 11]. Also, the most significant advantage
of applying FDEs is their nonlocal property, which interprets
that the next state of a system relies not only pon its current
phase but also pon all of its past records of phases [12].
For example, with the fractional differentiability, the fluid
dynamic trafficmodel can get rid of the shortage arising from
the hypothesis of continuum traffic flow [12, 13].

On the other hand, the modeling of natural phenomena
is stated using mathematical tools (mathematical arithmetic,
mathematical logics, etc.). However, obtaining a determinis-
tic model of such problems is not easy, even does not occur
and always has some errors and vagueness. So, investigating
a popular way to interpret such vagueness is important.
Since 1965 with Zadeh’s well-known paper on introducing
fuzzy sets, applications of fuzzy concept to the structure
of any modeling has appeared more and more, instead of
deterministic case. So the topic of fuzzy differential equations
(FDEs) of integer order has been rapidly growing in recent
years [14–20]. Additionally, the application of various tech-
niques has been expanded bymeans of the interpolations and
polynomials for approximating the fuzzy solutions of fuzzy
integral equations vastly, like Bernstein polynomials [21, 22],
Lagrange interpolation [23, 24], Chebyshev interpolation
[25], Legendre wavelets [26], and Galerkin-type technique
[27].

Recently, Agarwal et al. [28] proposed the concept
of solutions for the fractional differential equations with
uncertainty. They have considered the Riemann-Liouville’s
differentiability with a fuzzy initial condition to solve FFDEs.
In [29, 30], the authors considered the generalization of H-
differentiability for the fractional case. Discovering a suitable
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approximate or exact solution for FFDEs is a significant task
which has been aroused simultaneously with the emerging
of FFDES, except for a few number of these equations,
and we have hardship in finding their analytical solutions.
Consequently, there have been limited efforts to develop new
methods for gaining approximate solutions which reasonably
estimate the exact solutions. Salahshour et al. [31] considered
fuzzy laplace transforms for solving FFDEs under Riemann-
Liouville H-differentiability. Also Mazandarani and Kamyad
[32] generalized the fractional Euler method for solving
FFDEs under Caputo-type derivative.

From another point of view, several methods have been
exploited to solve fractional differential equations, and frac-
tional partial differential equations, fractional integrodiffer-
ential equations such as Adomian’s decomposition method
[7], He’s variational iteration method [33], homotopy per-
turbation method [34], and spectral methods [35, 36]. In
this way, orthogonal functions have received considerable
attention in dealing with the various kinds of fractional
differential equations. The main characteristic behind the
approach using this technique is that it reduces these prob-
lems to those of solving a system of algebraic equations thus
greatly simplifying the problem. Saadatmandi and Dehghan
[36] presented the shifted Legendre operational matrix for
fractional derivatives and applied it with tau method for the
numerical solution of fractional differential equations subject
to initial conditions. Also in [37–39], the authors derived new
formulas using shifted Chebyshev polynomials and shifted
Jacobi polynomials of any degree, respectively and applied
them together with tau and collocation spectral methods for
solving multiterm linear and nonlinear fractional differential
equations.

The essential target of this paper is to recommend a
suitable way to approximate FFDEs using a shifted Leg-
endre tau approach. This strategy demands a formula for
fuzzy fractional-order Caputo derivatives of shifted Legendre
polynomials of any degree which is provided and applied
together with the tau method for solving FFDEs with initial
conditions. Up till now, and to the best of our knowledge,
few methods corresponding to those mentioned previously
have been devoted to solve FFDEs and are traceless in
the literature for FFDEs under Caputo differentiability. This
partially motivates our interest in the operational matrix of
fuzzy fractional derivative of shifted Legendre polynomials.
Also another motivation is based on the reality that only a
few terms of expansion of the shifted Legendre function is
needed to reach to a high accuracy, therefore, it does not
need to implement the method frequently for finding the
approximate results in each particular point.

For finding the fuzzy solution, the shifted Legendre
operational matrix is generalized for the fuzzy fractional
derivative (0 < 𝛼 < 1) which is based on the Legendre tau
method for solving numerically FFDEs with the fuzzy initial
conditions. It is worthy to note here that the method based
on using the operational matrix of the Legendre orthogonal
function for solving FFDEs is computer oriented.

The aim of this paper is to introduce the shifted Legendre
operational matrix of fuzzy fractional derivative which is
based on Legendre tau method for solving FFDEs under

generalized differentiability. Also, we introduce a suitable way
to estimate the nonlinear fuzzy fractional initial problems on
the interval [0, 1], by spectral shifted Legendre collocation
method based on Legendre operational matrix, to find the
approximate fuzzy solution. Finally, the accuracy of the pro-
posed algorithms is demonstrated by several test problems.
We note that the two shifted Legendre and shifted Jacobi
operational matrices have been introduced by Saadatmandi
and Dehghan [36] and Doha et al. [39], respectively, in the
crisp concept. We, therefore, motivated our interest in the
shifted Legendre operational matrix in the fuzzy settings.

This paper is organized as follows: In Section 2, we begin
by introducing some necessary definitions and mathematical
preliminaries of the fuzzy calculus and fractional calculus.
Some basic concepts, properties and theorems of fuzzy
fractional calculus are presented in Section 3. Section 4 is
devoted to the fuzzy Legendre functions and their properties.
The shifted Legendre operational matrix of fuzzy fractional
derivative for solving fuzzy fractional differential equation is
obtained in Section 5. Section 6 illustrates the effectiveness
of the proposed method through solving several examples
which some of them are modelled based on the real phenom-
ena. Finally, a conclusion is given in the last section.

2. Preliminaries

We give some definitions and introduce the necessary nota-
tion which will be used throughout the paper, see, for exam-
ple, [40, 41]. Also for some definitions related to generalized
fuzzy difference, one can find more in [42, 43].

We denote the set of all real numbers by R. A fuzzy
number is a mapping 𝑢̃ : R → [0, 1] with the following
properties:

(a) 𝑢̃ is upper semicontinuous,
(b) 𝑢̃ is fuzzy convex, that is, 𝑢̃(𝜆𝑥 + (1 − 𝜆)𝑦 ≥

min{𝑢̃(𝑥), 𝑢̃(𝑦)} for all 𝑥, 𝑦 ∈ R, 𝜆 ∈ [0, 1],
(c) 𝑢̃ is normal, that is, ∃𝑥

0
∈ R for which 𝑢̃(𝑥

0
) = 1,

(d) supp 𝑢̃ = {𝑥 ∈ R | 𝑢̃(𝑥) > 0} is the support of the 𝑢,
and its closure cl (supp 𝑢̃) is compact.

Let E be the set of all fuzzy number on R. The 𝛼-level set
of a fuzzy number 𝑢̃ ∈ E, 0 ≤ 𝑟 ≤ 1, denoted by [𝑢̃]

𝑟
, is

defined as

[𝑢̃]𝑟
= {

{𝑥 ∈ R | 𝑢̃ (𝑥) ≥ 𝑟} if 0 < 𝑟 ≤ 1
cl (supp 𝑢̃) if 𝑟 = 0.

(1)

It is clear that the 𝑟-level set of a fuzzy number is a closed
and bounded interval [𝑢̃(𝑟), 𝑢̃(𝑟)], where 𝑢̃(𝑟) denotes the
left-hand endpoint of [𝑢̃]

𝑟
and 𝑢̃(𝑟) denotes the right-hand

endpoint of [𝑢̃]
𝑟
. Since each 𝑦 ∈ R can be regarded as a fuzzy

number 𝑦 defined by

𝑦 (𝑡) = {

1 if 𝑡 = 𝑦,
0 if 𝑡 ̸= 𝑦,

(2)

R can be embedded in E.
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The addition and scalar multiplication of fuzzy number
in E are defined as follows:

(1) 𝑢̃ ⊕ Ṽ = (𝑢̃ + Ṽ, 𝑢̃ + Ṽ) ,

(2) (𝜆 ⊙ 𝑢̃) =

{

{

{

(𝜆𝑢̃ (𝑟) , 𝜆𝑢̃ (𝑟)) 𝜆 ≥ 0,

(𝜆𝑢̃ (𝑟) , 𝜆𝑢̃ (𝑟)) 𝜆 < 0.

(3)

The metric structure is given by the Hausdorff distance
𝐷: E × E → R

+
⋃0,

𝐷 (𝑢̃, Ṽ) = sup
𝑟∈[0,1]

max {󵄨󵄨󵄨
󵄨
𝑢̃ (𝑟) − Ṽ (𝑟)󵄨󵄨󵄨

󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢̃ (𝑟) − Ṽ (𝑟)

󵄨
󵄨
󵄨
󵄨
󵄨
} . (4)

It is easy to see that 𝐷 is a metric in E and has the following
properties

(i) 𝐷(𝑢̃ ⊕ 𝑤, Ṽ ⊕ 𝑤) = 𝐷(𝑢̃, Ṽ), for all 𝑢̃, Ṽ, 𝑤 ∈ E,
(ii) 𝐷(𝑘 ⊙ 𝑢̃, 𝑘 ⊙ Ṽ) = |𝑘|𝐷(𝑢̃, Ṽ), for all 𝑘 ∈ R, 𝑢̃, Ṽ ∈ E,
(iii) 𝐷(𝑢̃⊕ Ṽ, 𝑤⊕𝑒) ≤ 𝐷(𝑢̃, 𝑤)+𝐷(Ṽ, 𝑒), for all 𝑢̃, Ṽ, 𝑤 ∈ E,
(iv) 𝐷(𝑢̃ + Ṽ, 0̃) ≤ 𝐷(𝑢, 0̃) + 𝐷(V, 0̃), for all 𝑢, V ∈ E,
(v) (E, 𝐷) is a complete metric space.

Definition 1. The property (iv) in the properties of the above
metric space suggests the definition of a function ‖ ⋅ ‖E : 𝑅 →

E that ‖𝑢‖E := 𝐷(𝑢, 0̃), for all 𝑢 ∈ E that has the properties
of usual norms. In [44], the properties of this function are
presented as follows:

(i) ‖𝑢‖ ≥ 0, for all 𝑢 ∈ E and ‖𝑢‖ = 0 if and only if
𝑢 = 0̃,

(ii) ‖𝜆⋅𝑢‖ = |𝜆|⋅‖𝑢‖ and ‖𝑢+V‖ ≥ ‖𝑢‖+‖V‖, for all 𝑢, V ∈
E, for all 𝜆 ∈ R.

(iii) |‖𝑢‖ − ‖V‖| ≤ 𝐷(𝑢, V) and 𝐷(𝑢, V) ≤ ‖𝑢‖ +

‖V‖ for all 𝑢, V ∈ E.

Definition 2 (see [45]). Let 𝑓 and 𝑔 be the two fuzzy-
number-valued functions on the interval [𝑎, 𝑏], that is, 𝑓, 𝑔 :
[𝑎, 𝑏] → E. The uniform distance between fuzzy-number-
valued functions is defined by

𝐷
∗
(𝑓, 𝑔) := sup

𝑥∈[𝑎,𝑏]

𝐷(𝑓 (𝑥) , 𝑔 (𝑥)) . (5)

Remark 3 (see [46]). Let 𝑓: [𝑎, 𝑏] → E be fuzzy continuous.
Then from property (iv) of Hausdorff distance, we can define

𝐷(𝑓 (𝑥) , 0̃) = sup
𝑟∈[0,1]

max {󵄨󵄨󵄨󵄨
󵄨
𝑓

𝑟
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓

𝑟

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

} , ∀𝑥 ∈ [𝑎, 𝑏] .

(6)

Definition 4 (see [42]). Let 𝐾𝑛

𝑐
be the space of nonempty

compact and convex sets of R𝑛. The generalized Hukuhara
difference of two sets 𝐴, 𝐵 ∈ 𝐾𝑛

𝑐
(gH-difference for short) is

defined as follows:

𝐴 ⊖gH𝐵 = 𝐶 ⇐⇒ {

(a) 𝐴 = 𝐵 + 𝐶 or
(b) 𝐵 = 𝐴 + (−1) 𝐶.

(7)

In case (a) of the above equation, the gH-difference is
coincident with the H-difference. Thus the gH-difference is
a generalization of the H-difference.

Definition 5 (see [47]). Let 𝑥, 𝑦 ∈ E. If there exists 𝑧 ∈ E such
that 𝑥 = 𝑦 ⊕ 𝑧, and then 𝑧 is called the H-difference of 𝑥 and
𝑦, and it is denoted by 𝑥 ⊖ 𝑦.

In this paper, the sign “⊖” always stands for H-difference
and note that 𝑥 ⊕ 𝑦 ̸= 𝑥 + (−𝑦). Also throughout the paper
is assumed that the Hukuhara difference and Hukuhara
generalized differentiability existed.

Definition 6 (see [42]). The generalized difference (g-
difference for short) of two fuzzy numbers 𝑢, V ∈ E is given
by its level sets as

[𝑢 ⊖ g V]
𝛼
= cl⋃

𝛽≥𝛼

([𝑢]𝛽
⊖gH[V]𝛽) ∀𝛼 ∈ [0, 1] , (8)

where the gH-difference ⊖gH is with interval operands [𝑢]
𝛽

and [V]
𝛽
.

Proposition 7. The g-difference in Definition 6 is given by the
expression

[𝑢 ⊖ g V]
𝛼
= [inf

𝛽≥𝛼

min {𝑢
𝛽
− V

𝛽
, 𝑢

𝛽
− V

𝛽
} ,

sup
𝛽≥𝛼

max {𝑢
𝛽
− V

𝛽
, 𝑢

𝛽
− V

𝛽
}] .

(9)

Proof. See [42].

The next proposition gives simplified notation for 𝑢 ⊖ g V
and V ⊖ g 𝑢.

Proposition 8. For any two fuzzy numbers 𝑢, V ∈ E the two g-
difference 𝑢 ⊖ g V and V ⊖ g 𝑢 exist and, for any 𝛼 ∈ [0, 1], one
𝑢 ⊖ g V = −(V ⊖ g 𝑢) with

[𝑢 ⊖ g V]
𝛼
= [𝑑

𝛼
, 𝑑

𝛼
] , [𝑢 ⊖ g V]

𝛼
= [−𝑑

𝛼
, −𝑑

𝛼
] , (10)

where

𝑑
𝛼
= inf (𝐷

𝛼
) , 𝑑

𝛼
= sup (𝐷

𝛼
) , (11)

and the sets𝐷
𝛼
are

𝐷
𝛼
= {𝑢

𝛽
− V

𝛽
| 𝛽 ≥ 𝛼} ∪ {𝑢

𝛽
− V

𝛽
| 𝛽 ≥ 𝛼} . (12)

Proof. See [42].

The following proposition prove that the g-difference is
well-defined.

Proposition 9 (see [14]). For any fuzzy numbers 𝑢, V ∈ E the
g-difference 𝑢 ⊖ g V exists and it is a fuzzy number.

Proof. See [42].



4 Abstract and Applied Analysis

The following property holds for g-derivative.

Proposition 10. Let 𝑢, V ∈ E be two fuzzy numbers, and then

(i) 𝑢 ⊖ g V = 𝑢 ⊖gHV whenever the expressions on the right
exist, in particular, 𝑢 ⊖ g 𝑢 = 0,

(ii) (𝑢 + V)⊖ g V = 𝑢,
(iii) 0 ⊖ g (𝑢 ⊖ g V) = V ⊖ g 𝑢,
(iv) 𝑢 ⊖ g V = V ⊖ g 𝑢 = 𝑤 if and only if 𝑤 = −𝑤.

Furthermore, 𝑤 = 0 if and only if 𝑢 = V.

In this paper, we consider the following definition which
was introduced by Bede and Gal in [14].

Definition 11 (see [14]). Let 𝑓 : (𝑎, 𝑏) → E and 𝑥
0
∈ (𝑎, 𝑏).

One says that 𝑓 is strongly generalized differentiable at 𝑥
0
, if

there exists an element 𝑓󸀠
(𝑥) ∈ E, such that

(i) for all ℎ > 0 sufficiently small, ∃𝑓(𝑥
0
+ ℎ) ⊖

𝑓(𝑥
0
), ∃𝑓(𝑥

0
)⊖𝑓(𝑥

0
−ℎ), and the limits (in themetric

𝐷)

lim
ℎ → 0

+

𝑓 (𝑥
0
+ ℎ) ⊖ 𝑓 (𝑥

0
)

ℎ

= lim
ℎ → 0

+

𝑓 (𝑥
0
) ⊖ 𝑓 (𝑥

0
− ℎ)

ℎ

= 𝑓
󸀠
(𝑥

0
) ,

(13)

(ii) for all ℎ > 0 sufficiently small, ∃𝑓(𝑥
0
) ⊖ 𝑓(𝑥

0
+

ℎ), ∃𝑓(𝑥
0
− ℎ) ⊖ 𝑓(𝑥

0
), and the limits (in the metric

𝐷)

lim
ℎ → 0

+

𝑓 (𝑥
0
) ⊖ 𝑓 (𝑥

0
+ ℎ)

−ℎ

= lim
ℎ → 0

+

𝑓 (𝑥
0
− ℎ) ⊖ 𝑓 (𝑥

0
)

−ℎ

= 𝑓
󸀠
(𝑥

0
) ,

(14)

(iii) for all ℎ > 0 sufficiently small, ∃𝑓(𝑥
0
+ ℎ) ⊖

𝑓(𝑥
0
), ∃𝑓(𝑥

0
−ℎ)⊖𝑓(𝑥

0
), and the limits (in themetric

𝐷)

lim
ℎ → 0

+

𝑓 (𝑥
0
+ ℎ) ⊖ 𝑓 (𝑥

0
)

ℎ

= lim
ℎ → 0

+

𝑓 (𝑥
0
− ℎ) ⊖ 𝑓 (𝑥

0
)

−ℎ

= 𝑓
󸀠
(𝑥

0
) ,

(15)

(iv) for all ℎ > 0 sufficiently small, ∃𝑓(𝑥
0
) ⊖ 𝑓(𝑥

0
+

ℎ), ∃𝑓(𝑥
0
) ⊖ 𝑓(𝑥

0
− ℎ), and the limits (in the metric

𝐷)

lim
ℎ → 0

+

𝑓 (𝑥
0
) ⊖ 𝑓 (𝑥

0
+ ℎ)

−ℎ

= lim
ℎ → 0

+

𝑓 (𝑥
0
) ⊖ 𝑓 (𝑥

0
− ℎ)

ℎ

= 𝑓
󸀠
(𝑥

0
) .

(16)

Remark 12. Throughout this paper, we say that 𝑓 is (1)-
differentiable on (𝑎, 𝑏), if 𝑓 is differentiable in the sense (i)
of Definition 11 and also 𝑓 is (2)-differentiable on (𝑎, 𝑏), if 𝑓
is differentiable in the sense (ii) of Definition 11.

Theorem 13 (see [17]). Let 𝑓 : (𝑎, 𝑏) → E be a function and
denote [𝐹(𝑡)]𝑟 = [𝑓

𝑟
(𝑡), 𝑔

𝑟
(𝑡)], for each 𝑟 ∈ [0, 1]. Then

(1) if 𝑓 is (1)-differentiable, then 𝑓
𝑟
(𝑡) and 𝑔

𝑟
(𝑡) are

differentiable functions and

[𝐹
󸀠
(𝑡)]

𝑟

= [𝑓
󸀠

𝑟
(𝑡) , 𝑔

󸀠

𝑟
(𝑡)] , (17)

(2) if 𝑓 is (2)-differentiable, then 𝑓
𝑟
(𝑡) and 𝑔

𝑟
(𝑡) are

differentiable functions and

[𝐹
󸀠
(𝑡)]

𝑟

= [𝑔
󸀠

𝑟
(𝑡) , 𝑓

󸀠

𝑟
(𝑡)] . (18)

Definition 14 (see [42]). Let 𝑓 : (𝑎, 𝑏) → E and 𝑥
0
∈

(𝑎, 𝑏). We say that 𝑓 is g-differentiable at 𝑥
0
, if there exists

an element 𝑓󸀠
(𝑥

0
) ∈ E such that

𝑓
󸀠
(𝑥

0
) = lim

ℎ → 0

𝑓 (𝑥 + ℎ) ⊖ g 𝑓 (𝑥)

ℎ

. (19)

Next we review one of the main results from Bede [15] for
fuzzy initial value problem (FIVP) under (1)-differentiability
whichNieto et al. [48] generalized this results for FIVP under
(2)-differentiability (let ‖⋅‖ denote the usual Euclidean norm).

Theorem 15 (see [15], characterization theorem). Let one
consider the fuzzy initial value problem

𝑦
󸀠
= 𝑓 (𝑥, 𝑦 (𝑥)) ,

𝑦 (𝑡
0
) = 𝑦

0
,

(20)

where 𝑓: [𝑥
0
, 𝑥

0
+ 𝑎] × E → E is such that

(i) [𝑓(𝑥, 𝑦)]𝑟 = [𝑓𝑟
(𝑥, 𝑦, 𝑦), 𝑓

𝑟

(𝑥, 𝑦, 𝑦)],

(ii) 𝑓𝑟 and 𝑓
𝑟

are equicontinuous (i.e., for any 𝜖 > 0 there
is a 𝛿 > 0 such that |𝑓𝑟

(𝑥, 𝑦, 𝑧) − 𝑓
𝑟
(𝑥

1
, 𝑦

1
, 𝑧

1
)| < 𝜖

and |𝑓
𝑟

(𝑥, 𝑦, 𝑧) − 𝑓

𝑟

(𝑥
1
, 𝑦

1
, 𝑧

1
)| < 𝜖 for all 𝑟 ∈ [0, 1],

whenever (𝑥, 𝑦, 𝑧), (𝑥
1
, 𝑦

1
, 𝑧

1
) ∈ [𝑥

0
, 𝑥

0
+ 𝑎] ×R2 and

‖(𝑥, 𝑦, 𝑧)−(𝑥
1
, 𝑦

1
, 𝑧

1
)‖ < 𝛿 and uniformly bounded on

any bounded set,
(iii) there exists an 𝐿 > 0 such that |𝑓𝑟

(𝑥
2
, 𝑦

2
, 𝑧

2
) −

𝑓
𝑟
(𝑥

1
, 𝑦

1
, 𝑧

1
)| ≤ 𝐿max{|𝑦

2
− 𝑦

1
|, |𝑧

2
− 𝑧

1
|} for all 𝑟 ∈

[0, 1], |𝑓
𝑟

(𝑥
2
, 𝑦

2
, 𝑧

2
) − 𝑓

𝑟

(𝑥
1
, 𝑦

1
, 𝑧

1
)| ≤ 𝐿max{|𝑦

2
−

𝑦
1
|, |𝑧

2
− 𝑧

1
|} for all 𝑟 ∈ [0, 1].

Then the FIVP (20) and system of ODEs

(𝑦
𝑟
(𝑥))

󸀠

= 𝑓
𝑟
(𝑥, 𝑦

𝑟
, 𝑦

𝑟
) ,

(𝑦
𝑟
(𝑥))

󸀠
= 𝑓

𝑟

(𝑥, 𝑦
𝑟
, 𝑦

𝑟
) ,

𝑦
𝑟
(𝑥

0
) = (𝑦

𝑟

0
) ,

𝑦 (𝑥
0
) = (𝑦

𝑟

0
) ,

(21)

are equivalent.
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Corollary 16 (see [48]). If we consider FIVP (20) under (2)-
differentiability then the FIVP (20) and the following system of
ODEs are equivalent:

(𝑦
𝑟
(𝑥))

󸀠

= 𝑓

𝑟

(𝑥, 𝑦
𝑟
, 𝑦

𝑟
) ,

(𝑦
𝑟
(𝑡))

󸀠
= 𝑓

𝑟
(𝑥, 𝑦

𝑟
, 𝑦

𝑟
) ,

𝑦
𝑟
(𝑥

0
) = (𝑦

𝑟

0
) ,

𝑦 (𝑥
0
) = (𝑦

𝑟

0
) .

(22)

Theorem 17 (see [49]). Let 𝑓(𝑥) be a fuzzy-valued function
on [𝑎,∞) and it is represented by (𝑓(𝑥; 𝑟), 𝑓(𝑥; 𝑟)). For any
fixed 𝑟 ∈ [0, 1], assume that (𝑓(𝑥; 𝑟) and𝑓(𝑥; 𝑟)) are Riemann-
integrable on [𝑎, 𝑏] for every 𝑏 ≥ 𝑎, and assume that there are
two positive𝑀(𝑟) and𝑀(𝑟) such that:

∫

𝑏

𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥; 𝑟)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑥 ≤ 𝑀 (𝑟) , ∫

𝑏

𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥; 𝑟)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑥 ≤ 𝑀 (𝑟)

for every 𝑏 ≥ 𝑎.

(23)

Then 𝑓(𝑥) is improper fuzzy Riemann-integrable on [𝑎,∞)
and the improper fuzzy Riemann-integral is a fuzzy number.
Further more, we have

∫

∞

𝑎

𝑓 (𝑥) 𝑑𝑥 = [∫

∞

𝑎

𝑓 (𝑥; 𝑟) 𝑑𝑥, ∫

∞

𝑎

𝑓 (𝑥; 𝑟) 𝑑𝑥] . (24)

Definition 18 (see [45]). 𝑓(𝑥) : [𝑎, 𝑏] → E. We say that 𝑓
Fuzzy-Riemann integrable to 𝐼 ∈ E, if for any 𝜖 > 0, there
exists 𝛿 > 0 such that for any division 𝑃 = {[𝑢, V]; 𝜉} of [𝑎, 𝑏]
with the norms Δ(𝑃) < 𝛿, we have

𝐷(∑

𝑃

∗

(𝑢 − V) ⊙ 𝑓 (𝜁) , 𝐼) < 𝜖, (25)

where ∑∗ means addition with respect to ⊕ in E,

𝐼 := (𝐹𝑅)∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥. (26)

We also call an 𝑓 as above, (𝐹𝑅)-integrable.

Definition 19 (see [50]). Consider the 𝑛 × 𝑛 linear system of
equations

𝑎
11
𝑥

1
+ 𝑎

12
𝑥

2
+ ⋅ ⋅ ⋅ + 𝑎

1𝑛
𝑥

𝑛
= 𝑦

1
,

𝑎
21
𝑥

1
+ 𝑎

22
𝑥

2
+ ⋅ ⋅ ⋅ + 𝑎

2𝑛
𝑥

𝑛
= 𝑦

2
,

...

𝑎
𝑛1
𝑥

1
+ 𝑎

𝑛2
𝑥

2
+ ⋅ ⋅ ⋅ + 𝑎

𝑛𝑛
𝑥

𝑛
= 𝑦

𝑛
.

(27)

The matrix form of the above equations is

𝐴𝑋 = 𝑌, (28)

where the coefficient matrix 𝐴 = (𝑎
𝑖𝑗
), 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is a crisp

𝑛 × 𝑛 matrix and 𝑦
𝑖
∈ E, 1 ≤ 𝑖 ≤ 𝑛. This system is called a

fuzzy linear system (FLS).

Definition 20 (see [50]). A fuzzy number vector (𝑥
1
, 𝑥

2
,

. . . , 𝑥
𝑛
)
𝑡 given by 𝑥

𝑖
= (𝑥

𝑖
(𝑟), 𝑥

𝑖
(𝑟)), 1 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑟 ≤ 1

is called a solution of the fuzzy linear system (27) if
𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥

𝑗
=

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥

𝑗
= 𝑦

𝑖
,

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥

𝑗
=

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥

𝑗
= 𝑦

𝑖
.

(29)

If for a particular 𝑘, 𝑎
𝑘𝑗
> 0, 1 ≤ 𝑗 ≤ 𝑛, we simply get

𝑛

∑

𝑗=1

𝑎
𝑘𝑗
𝑥

𝑗
= 𝑦

𝑘
,

𝑛

∑

𝑗=1

𝑎
𝑘𝑗
𝑥

𝑗
= 𝑦

𝑘
. (30)

To solve fuzzy linear systems, one can refer to [51–53].

Now we define some notations which are used for the
fuzzy fractional calculus throughout the paper.

(i) 𝐿E
𝑝
(𝑎, 𝑏), 1 ≤ 𝑝 < ∞ is the set of all fuzzy-valued

measurable functions 𝑓 on [𝑎, 𝑏] where ||𝑓||
𝑝
=

(∫

1

0
(𝑑(𝑓(𝑡), 0))

𝑝
𝑑𝑡)

1/𝑝

.

(ii) 𝐶E
[𝑎, 𝑏] is a space of fuzzy-valued functionswhich are

continuous on [𝑎, 𝑏].
(iii) 𝐴𝐶E

[𝑎, 𝑏]denotes the set of all fuzzy-valued functions
which are absolutely continuous.

One can easily find this definition in the crisp sense in
[1, 54].

Definition 21 (see [54]). The Riemann-Liouville fractional
integral operator of order 𝛼, 𝑛 − 1 < 𝛼 ≤ 𝑛, of a function
𝑓 ∈ 𝐶[𝑎, 𝑏] is defined as

(𝐼
𝛼

𝑎+
𝑓) (𝑥) =

1

Γ (𝛼)

∫

𝑥

𝑎

𝑓 (𝑡)

(𝑥 − 𝑡)
1−𝛼
𝑑𝑡 𝑥 > 𝑎,

(𝐼
𝛼

𝑏−
𝑓) (𝑥) =

1

Γ (𝛼)

∫

𝑏

𝑥

𝑓 (𝑡)

(𝑡 − 𝑥)
1−𝛼
𝑑𝑡 𝑥 < 𝑏.

(31)

Properties of the operator 𝐼𝛼 can be found in [1, 54, 55].
we refer to only the following

For 𝑓 ∈ 𝐶[𝑎, 𝑏], 𝛼, 𝛽 ≥ 0 and 𝛾 > −1,

(1) 𝐼
𝛼
𝐼

𝛽
𝑓 (𝑥) = 𝐼

𝛼+𝛽
𝑓 (𝑥) ,

(2) 𝐼
𝛼
𝐼

𝛽
𝑓 (𝑥) = 𝐼

𝛽
𝐼

𝛼
𝑓 (𝑥) ,

(3) 𝐼
𝛼
𝑥

𝛾
=

Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)

𝑥
𝛼+𝛾
.

(32)
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Definition 22 (see [54]). The Riemann-Liouville fractional
derivatives of order 0 < 𝛼 < 1 of a function 𝑓 ∈ 𝐶[𝑎, 𝑏]

are expressed by

(𝐷
𝛼

𝑎+
𝑓) (𝑥) =

1

Γ (1 − 𝛼)

𝑑

𝑑𝑥

∫

𝑥

𝑎

𝑓 (𝑡) 𝑑𝑡

(𝑥 − 𝑡)
𝛼

(𝑥 > 𝑎) ,

(𝐷
𝛼

𝑏−
𝑓)(𝑥) = −

1

Γ (1 − 𝛼)

𝑑

𝑑𝑥

1

Γ (1 − 𝛼)

∫

𝑥

𝑎

𝑓 (𝑡) 𝑑𝑡

(𝑡 − 𝑥)
𝛼

(𝑥 < 𝑏) .

(33)

Definition 23 (see [55]). The fractional Caputo derivatives
𝑐
𝐷

𝛼

𝑎+
𝑓(𝑥) and 𝑐

𝐷
𝛼

𝑏−
𝑓(𝑥) on [𝑎, 𝑏] for 0 < 𝛼 < 1 are defined

via the above Riemann-Liouville fractional derivatives by

(
𝑐
𝐷

𝛼

𝑎+
𝑓) (𝑥) = (𝐷

𝛼

𝑎+
[𝑓 (𝑡) − 𝑓 (𝑎)]) (𝑥) ,

(
𝑐
𝐷

𝛼

𝑏−
𝑓) (𝑥) = (𝐷

𝛼

𝑏−
[𝑓 (𝑡) − 𝑓 (𝑏)]) (𝑥) ,

(34)

which can be simplified as

(
𝑐
𝐷

𝛼

𝑎+
𝑓) (𝑥) = (𝐷

𝛼

𝑎+
𝑓) (𝑥) −

𝑓 (𝑎)

Γ (1 − 𝑎)

(𝑥 − 𝑎)
−𝛼
,

(
𝑐
𝐷

𝛼

𝑏−
𝑓) (𝑥) = (𝐷

𝛼

𝑏−
𝑓) (𝑥) −

𝑓 (𝑏)

Γ (1 − 𝑎)

(𝑏 − 𝑥)
−𝛼
.

(35)

Also, the fractional Caputo derivative can be defined in a
sense of integral form described in Definition 24.

Definition 24 (see [56]). The Caputo definition of the
fractional-order derivative is defined as

𝑐
𝐷

𝛼
𝑓 (𝑥) =

1

Γ (𝑛 − 𝛼)

∫

𝑥

0

𝑓
𝑛
(𝑡)

(𝑥 − 𝑡)
𝛼+1−𝑛

𝑑𝑡,

𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N,

(36)

where 𝛼 > 0 is the order of the derivative and 𝑛 is the smallest
integer greater than 𝛼. For the Caputo derivative, we have

𝑐
𝐷

𝛼
𝐶 = 0, (𝐶 is a constant) , (37)

𝑐
𝐷

𝛼
𝑥

𝛽
=

{
{
{
{
{
{

{
{
{
{
{
{

{

0, for 𝛽 ∈ N
0
, 𝛽 < ⌈𝛼⌉ ,

Γ (𝛽 + 1)

Γ (𝛽 + 1 − 𝛼)

𝑥
𝛽−𝛼
, for 𝛽 ∈ N

0
, 𝛽 ≥ ⌈𝛼⌉

or 𝛽 ∉ N, 𝛽 > ⌊𝛼⌋ .

(38)

The ceiling function ⌈𝛼⌉ is used to denote the smallest integer
greater than or equal to𝛼, and the floor function ⌊𝛼⌋ to denote
the largest integer less than or equal to 𝛼. Also N = {1, 2, . . .}
and N

0
= {0, 1, 2, . . .}.

Definition 25 (see [1]). Similar to the differential equation of
integer order, the Caputo’s fractional differentiation is a linear
operation, that is,

𝑐
𝐷

𝛼
(𝜆𝑓 (𝑥) + 𝜇𝑔 (𝑥)) = 𝜆

𝑐
𝐷

𝛼
𝑓 (𝑥) + 𝜇

𝑐
𝐷

𝛼
𝑔 (𝑥) , (39)

where 𝜆 and 𝜇 are constants.

Lemma 26. Let 0 < 𝛼 < 1 and 𝑓 ∈ 𝐶[𝑎, 𝑏] ∩ 𝐿
𝑝
[𝑎, 𝑏]. Then

theCaputo fractional derivatives are bounded for any𝑥 ∈ [𝑎, 𝑏]
and (1 ≤ 𝑝 < ∞) as

󵄨
󵄨
󵄨
󵄨
(

𝑐
𝐷

𝛼

𝑎+
𝑓) (𝑥)

󵄨
󵄨
󵄨
󵄨
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓

󸀠
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝

|Γ (1 − 𝛼)| [1 − 𝛼]

(𝑥 − 𝑎)
1−𝛼

= 𝑀
𝛼

𝑎
,

󵄨
󵄨
󵄨
󵄨
(

𝑐
𝐷

𝛼

𝑏+
𝑓) (𝑥)

󵄨
󵄨
󵄨
󵄨
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓

󸀠
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩𝑝

|Γ (1 − 𝛼)| [1 − 𝛼]

(𝑏 − 𝑥)
1−𝛼

= 𝑀
𝛼

𝑏
.

(40)

Proof. See [54, 57].

3. Fuzzy Caputo Fractional Derivatives

In this section, some definitions and theorems related to the
fuzzy Caputo fractional derivatives are presented which are
an extension of the fractional derivative in the crisp sense.The
generalized differentiability should be considered to expand
the concept of Caputo fractional derivatives for the fuzzy
space. For more details, see [14, 30].

Definition 27. Let 𝑓 : 𝐿E ∩ 𝐶E be a fuzzy set-value function
and Φ(𝑥) = (1/Γ(1 − 𝛼)) ∫𝑥

𝑎
(𝑓(𝑡)𝑑𝑡/(𝑥 − 𝑡)

𝛼
), and then 𝑓 is

said to be g-Caputo fuzzy fractional differentiable at 𝑥, when

(
g
𝐷

𝛼

𝑎+
𝑓) (𝑥) = lim

ℎ → 0

Φ (𝑥 + ℎ) ⊖ gΦ (𝑥)

ℎ

, (41)

where

(
g
𝐷

𝛼

𝑎+
𝑓) (𝑥; 𝑟) = [

1

Γ (1 − 𝛼)

∫

𝑥

𝑎

𝑓
󸀠
(𝑡; 𝑟) 𝑑𝑡

(𝑥 − 𝑡)
𝛼
] ,

(
g
𝐷

𝛼

𝑎+
𝑓) (𝑥; 𝑟) = [

1

Γ (1 − 𝛼)

∫

𝑥

𝑎

𝑓

󸀠

(𝑡; 𝑟) 𝑑𝑡

(𝑥 − 𝑡)
𝛼
] .

(42)

Remark 28. A fuzzy-valued function 𝑓 is 𝐶
[1 − 𝛼]-

differentiable, if it is differentiable as in Definition 27, Case
(i), and it is 𝐶

[2 − 𝛼]-differentiable, if it is differentiable as in
Definition 27, case (ii).

Theorem 29. Let 0 < 𝛼 < 1 and 𝑓 ∈ 𝐴𝐶E
[𝑎, 𝑏], then Caputo

fuzzy fractional derivative exists almost everywhere on (𝑎, 𝑏)
and for all 0 ≤ 𝑟 ≤ 1 we have

(
𝐶
𝐷

𝛼

𝑎
+𝑓) (𝑥; 𝑟)

= [

1

Γ (1 − 𝛼)

∫

𝑥

𝑎

𝑓
󸀠
(𝑡)

(𝑥 − 𝑡)
𝛼
𝑑𝑡,

1

Γ (1 − 𝛼)

∫

𝑥

𝑎

𝑓

󸀠

(𝑡)

(𝑥 − 𝑡)
𝛼
𝑑𝑡]

(43)

when 𝑓 is (1)-differentiable, and

(
𝐶
𝐷

𝛼

𝑎
+𝑓) (𝑥; 𝑟)

= [

1

Γ (1 − 𝛼)

∫

𝑥

𝑎

𝑓

󸀠

(𝑡)

(𝑥 − 𝑡)
𝛼
𝑑𝑡,

1

Γ (1 − 𝛼)

∫

𝑥

𝑎

𝑓
󸀠
(𝑡)

(𝑥 − 𝑡)
𝛼
𝑑𝑡]

(44)
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when 𝑓 is (2)-differentiable, in which (𝐼
𝛼

𝑎
+𝑓)(𝑥) =

(1/Γ(𝛼)) ∫

𝑥

𝑎
(𝑓(𝑡)𝑑𝑡/(𝑥 − 𝑡)

1−𝛼
) for 𝑥 > 𝑎.

Proof. It is straightforward by applyingDefinitions 20 and 24.

Theorem 30. Let one assume that 𝑓 ∈ 𝐶E
[𝑎, 𝑏], and then one

has the following:

(𝐼
𝛼

𝑎
+

𝐶
𝐷

𝛼

𝑎
+𝑓) (𝑥) = 𝑓 (𝑥) ⊖ 𝑓 (𝑎) , 0 < 𝛼 < 1, (45)

when 𝑓 is 𝐶
[1 − 𝛼]-differentiable and

(𝐼
𝛼

𝑎
+

𝐶
𝐷

𝛼

𝑎
+𝑓) (𝑥) = −𝑓 (𝑎) ⊖ (−𝑓 (𝑥)) , 0 < 𝛼 < 1, (46)

when 𝑓 is 𝐶
[2 − 𝛼]-differentiable.

Proof. See [30].

Lemma 31. Let 0 < 𝛼 < 1 and 𝑓 ∈ 𝐴𝐶
E
[𝑎, 𝑏], then the

fuzzy Caputo derivative can be expressed by means of the fuzzy
Riemann-Liouville integral as follows:

(
𝐶
𝐷

𝛼

𝑎
+𝑓) (𝑥; 𝑟)

= (𝐼
1−𝛼

𝑎
+ 𝐷𝑓) (𝑥; 𝑟)

= [(𝐼
1−𝛼

𝑎
+ 𝐷𝑓) (𝑥; 𝑟) , (𝐼

1−𝛼

𝑎
+ 𝐷𝑓) (𝑥; 𝑟)] ,

(47)

when 𝑓 is (1)-differentiable, and

(
𝐶
𝐷

𝛼

𝑎
+𝑓) (𝑥; 𝑟)

= (𝐼
1−𝛼

𝑎
+ 𝐷𝑓) (𝑥; 𝑟)

= [(𝐼
1−𝛼

𝑎
+ 𝐷𝑓) (𝑥; 𝑟) , (𝐼

1−𝛼

𝑎
+ 𝐷𝑓) (𝑥; 𝑟)] ,

(48)

when 𝑓 is (2)-differentiable.

Now we consider the generalization of Taylor’s formula
for the fuzzy Caputo fractional derivative which was intro-
duced in [32, 45]. It should be mentioned that this theorem
is the extension of Taylor’s formula for the Caputo fractional
derivative in the crisp context [58].

Theorem 32. Let ̃
𝑓(𝑥) ∈ 𝐴𝐶

E
(0, 𝑏] and suppose that

𝑐
𝐷

𝑘𝛼 ̃
𝑓(𝑥) ∈ 𝐶

E
(0, 𝑏] for 𝑘 = 0, 1, . . . , 𝑛 + 1 where 0 < 𝛼 < 1,

0 ≤ 𝑥
0
≤ 𝑥 and 𝑥 ∈ (0, 𝑏]. Then we have

[
̃
𝑓 (𝑥)]

𝑟

= [𝑓
𝑟
(𝑥) , 𝑓

𝑟

(𝑥)] ,

𝑓
𝑟
(𝑥) =

𝑛

∑

𝑖=0

𝑥
𝑖𝛼

Γ (𝑖𝛼 + 1)

𝑐
𝐷

𝑖𝛼
𝑓

𝑟
(0

+
) +

𝑐
𝐷

(𝑛+1)𝛼
𝑓

𝛼
(𝑥

0
)

Γ (𝑛𝛼 + 𝛼 + 1)

𝑥
(𝑛+1)𝛼

,

𝑓

𝑟

(𝑥) =

𝑛

∑

𝑖=0

𝑥
𝑖𝛼

Γ (𝑖𝛼 + 1)

𝑐
𝐷

𝑖𝛼
𝑓

𝑟

(0
+
) +

𝑐
𝐷

(𝑛+1)𝛼
𝑓

𝛼
(𝑥

0
)

Γ (𝑛𝛼 + 𝛼 + 1)

𝑥
(𝑛+1)𝛼

,

(49)

where 𝑐
𝐷

𝛼
𝑓

𝑟
(0)=

𝑐
𝐷

𝛼
𝑓

𝑟
(𝑥)|

𝑥=0
,

𝑐
𝐷

𝛼
𝑓

𝑟

(0)=
𝑐
𝐷

𝛼
𝑓

𝑟

(𝑥)|
𝑥=0

.

Proof. See [32].

Now, characterization theorem (Theorem 15), which was
introduced by Bede in [15] and established by Pederson and
Sambandham in [59] for hybrid fuzzy differential equations,
is extended for fuzzy Caputo-type fractional differential
equations. To this end, we first consider the FFDEs under
Caputo’s H-differentiability for 0 < 𝛼 < 1 as follows:

(
𝑐
𝐷

𝛼

𝑎
+𝑦) (𝑥) = 𝑓 (𝑥, 𝑦 (𝑥)) , 𝑦 (𝑎) ∈ E. (50)

Theorem 33 (characterization theorem). Let one consider
the fuzzy fractional differential equation under Caputo’s H-
differentiability (50) where 𝑓 : [𝑥

0
, 𝑥

0
+ 𝑎] × E → E and

such that:

(i) [𝑓(𝑥, 𝑦)]𝑟 = [𝑓𝑟
(𝑥, 𝑦, 𝑦), 𝑓

𝑟

(𝑥, 𝑦, 𝑦)],

(ii) 𝑓𝑟 and 𝑓
𝑟

are equicontinuous (i.e., for any 𝜖 > 0 there
is a 𝛿 > 0 such that |𝑓𝑟

(𝑥, 𝑦, 𝑧) − 𝑓
𝑟
(𝑥

1
, 𝑦

1
, 𝑧

1
)| < 𝜖

and |𝑓
𝑟

(𝑥, 𝑦, 𝑧) − 𝑓

𝑟

(𝑥
1
, 𝑦

1
, 𝑧

1
)| < 𝜖 for all 𝑟 ∈ [0, 1],

whenever (𝑥, 𝑦, 𝑧), (𝑥
1
, 𝑦

1
, 𝑧

1
) ∈ [𝑥

0
, 𝑥

0
+ 𝑎] ×R2 and

‖(𝑥, 𝑦, 𝑧)−(𝑥
1
, 𝑦

1
, 𝑧

1
)‖ < 𝛿 and uniformly bounded on

any bounded set,

(iii) there exists an 𝐿 > 0 such that |𝑓𝑟
(𝑥

2
, 𝑦

2
, 𝑧

2
) −

𝑓
𝑟
(𝑥

1
, 𝑦

1
, 𝑧

1
)| ≤ 𝐿max{|𝑦

2
− 𝑦

1
|, |𝑧

2
− 𝑧

1
|} for all 𝑟 ∈

[0, 1], |𝑓
𝑟

(𝑥
2
, 𝑦

2
, 𝑧

2
) − 𝑓

𝑟

(𝑥
1
, 𝑦

1
, 𝑧

1
)| ≤ 𝐿max{|𝑦

2
−

𝑦
1
|, |𝑧

2
− 𝑧

1
|} for all 𝑟 ∈ [0, 1].

Then, (50) and the following system of FDEs are equivalent
when 𝑦(𝑥) is 𝐶

[1 − 𝛼]-differentiable

(
𝑐
𝐷

𝛼

𝑥
+

0

𝑦) (𝑥; 𝑟) = 𝑓
𝑟
(𝑥, 𝑦

𝑟
, 𝑦

𝑟
) ,

(
𝑐
𝐷

𝛼

𝑥
+

0

𝑦) (𝑥; 𝑟) = 𝑓

𝑟

(𝑥, 𝑦
𝑟
, 𝑦

𝑟
) ,

𝑦
𝑟
(𝑥

0
) = (

𝑐
𝑦

𝑟

0
) ,

𝑦 (𝑥
0
) = (

𝑐
𝑦

𝑟

0
) ,

(51)

also (50) and the following system of FDEs is equivalent when
𝑦(𝑥) is 𝐶

[2 − 𝛼]-differentiable

(
𝑐
𝐷

𝛼

𝑥
+

0

𝑦) (𝑥; 𝑟) = 𝑓

𝑟

(𝑥, 𝑦
𝑟
, 𝑦

𝑟
) ,

(
𝑐
𝐷

𝛼

𝑥
+

0

𝑦) (𝑥; 𝑟) = 𝑓
𝑟
(𝑥, 𝑦

𝑟
, 𝑦

𝑟
) ,

𝑦
𝑟
(𝑥

0
) = (

𝑐
𝑦

𝑟

0
) ,

𝑦 (𝑥
0
) = (

𝑐
𝑦

𝑟

0
) .

(52)

Proof. In the papers [15, 59], the authors proved for fuzzy
ordinary differential equations and hybrid fuzzy differential
equations. The result for FFDEs is obtained analogously by
usingTheorem 2 in [15] andTheorem 3.1 in [59].
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4. Proposed Method for Solving FFDEs

Saadatmandi and Dehghan [36] introduced the shifted
Legendre operational matrix for derivative with fractional
order using a spectral method which has been followed by
Doha et al. [37–39]. They presented the shifted Chebyshev
polynomials and Jacobi polynomials for solving fractional
differential equations by tau method. In this section, we
try to approximate fuzzy solution using shifted Legendre
polynomials under H-differentiability as follows.

4.1. Properties of Shifted Legendre Polynomials. The Legendre
polynomials, denoted by𝑃

𝑛
(𝑧), are orthogonal with Legendre

weight function: 𝑤(𝑧) = 1 over [−1, 1], namely [60],

∫

1

−1

𝑃
𝑛 (
𝑧) 𝑃𝑚 (

𝑧) 𝑑𝑧 =

2

2𝑛 + 1

𝛿
𝑛𝑚
, (53)

where𝛿
𝑛𝑚

is theKronecker function and can be specifiedwith
the help of following recurrence formula:

𝑃
0
(𝑧) = 1, 𝑃

1
(𝑧) = 𝑧,

𝑃
𝑖+1 (

𝑧) =

2𝑖 + 1

𝑖 + 1

𝑧𝑃
𝑖 (
𝑧) −

𝑖

𝑖 + 1

𝑃
𝑖−1 (

𝑧) , 𝑖 = 1, 2, . . . .

(54)

In order to use these polynomials on the interval [0, 1],
we define the so-called shifted Legendre polynomials by
introducing the change of variable 𝑧 = 2𝑥 − 1. Let the shifted
Legendre polynomials 𝑃

𝑛
(2𝑥 − 1) be denoted by 𝐿

𝑛
(𝑥). The

shifted Legendre polynomials are orthogonal with respect to
the weight function 𝑤

𝑠
(𝑥) = 1 in the interval (0, 1) with the

following orthogonality property:

∫

1

0

𝐿
𝑛
(𝑥) 𝐿

𝑚
(𝑥) 𝑑𝑥 =

1

2𝑛 + 1

𝛿
𝑛𝑚
. (55)

The shifted Legendre polynomials are generated from the
following three-term recurrence relation:

𝐿
𝑖+1
(𝑡) =

(2𝑖 + 1) (2𝑥 − 1)

𝑖 + 1

𝐿
𝑖
(𝑥) −

𝑖

𝑖 + 1

𝐿
𝑖−1
(𝑥) ,

𝑖 = 1, 2, . . .

𝐿
0
(𝑥) = 1, 𝐿

1
(𝑥) = 2𝑥 − 1.

(56)

The analytic form of the shifted Legendre polynomial 𝐿
𝑛
(𝑥)

of degree 𝑛 is given by

𝐿
𝑛
(𝑥) =

𝑛

∑

𝑖=0

(−1)
𝑛+𝑖 (𝑛 + 𝑖)!

(𝑛 − 𝑖)!

𝑥
𝑖

(𝑖!)
2
=

𝑛

∑

𝑖=0

𝑒
𝑖,𝑛
𝑥

𝑖
, (57)

in which

𝑒
𝑖,𝑛
= (−1)

𝑛+𝑖 (𝑛 + 𝑖)!

(𝑛 − 𝑖)!(𝑖!)
2
, (58)

where

𝐿
𝑛 (
0) = (−1)

𝑛
, 𝐿

𝑛 (
1) = 1. (59)
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Figure 1: The shifted Legendre functions for different𝑚.

A function𝑢(𝑥) of independent variable defined for 0 ≤ 𝑥 ≤ 1
may be expanded in terms of shifted Legendre polynomials as

𝑢 (𝑥) =

𝑚

∑

𝑖=0

𝑏
𝑖
𝐿

𝑖
(𝑥) = Λ

𝑇
Φ (𝑥) , (60)

where the shifted Legendre coefficients matrix 𝐵 and the
shifted Legendre vector Φ(𝑥) are given by

Λ
𝑇
= [𝜆

1
, 𝜆

2
, . . . , 𝜆

𝑚
] ,

Φ (𝑥) = [𝐿
0
(𝑥) , 𝐿

1
(𝑥) , . . . , 𝐿

𝑚
(𝑥)]

𝑇
.

(61)

Also, the derivative ofΦ(𝑥) can be expressed by

𝑑Φ (𝑥)

𝑑𝑥

= 𝐷Φ (𝑥) , (62)

where𝐷 is the (𝑚+1)×(𝑚+1) operationalmatrix of derivative
given by

𝐷 = (𝑑
𝑖𝑗
) =

{
{
{
{

{
{
{
{

{

2 (2𝑗 + 1) , for 𝑗 = 𝑖 − 𝑘,

{

𝑘 = 1, 3, . . . , 𝑚, if 𝑚 odd,
𝑘 = 1, 3, . . . , 𝑚 − 1, if 𝑚 even,

0, otherwise.
(63)

Thegraph of some shifted Legendre polynomials (for 3 ≤ 𝑚 ≤
8) shown in Figure 1 to depict their behaviors.

Now, we use the shifted Legender functions due to
approximate a fuzzy function.

4.2. The Approximation of Fuzzy Function. In this section,
we propose a shifted Legendre approximation for the fuzzy-
valued functions. To this end, we use Legendre’s nodes and
fuzzy shifted Legendre polynomials to calculate the fuzzy best
approximation. For more details, see [61–67].



Abstract and Applied Analysis 9

Definition 34. For 𝑦 ∈ 𝐿
E
𝑝
(0, 1) ∩ 𝐶

E
(0, 1) and Legendre

polynomial 𝐿
𝑛
(𝑥) a real valued function over (0, 1), the fuzzy

function is approximated by

𝑦 (𝑥) =

∞

∑

𝑗=0

∗

𝑐
𝑗
⊙ 𝐿

𝑗
(𝑥) , 𝑥 ∈ (0, 1) , (64)

where the fuzzy coefficients 𝑐
𝑗
are obtained by

𝑐
𝑗
= (2𝑗 + 1) ⊙ ∫

1

0

𝑦 (𝑥) ⊙ 𝐿
𝑗
(𝑥) 𝑑𝑥, (65)

in which 𝐿
𝑗
(𝑥) is the same as in (57), and∑∗ means addition

with respect to ⊕ in E.

Remark 35. In actuality, only the first (𝑚 + 1)-terms shifted
Legendre polynomials are considered. So we have

𝑦 (𝑥) ≃ 𝑦
𝑚
(𝑥) =

𝑚

∑

𝑗=0

∗

𝑐
𝑗
⊙ 𝐿

𝑗
(𝑥) = 𝐶

𝑇

𝑚
⊙ Φ

𝑚
(𝑥) , (66)

hence

𝑦
𝑟
(𝑥) ≃ 𝑦

𝑟

𝑚
(𝑥) =

𝑚

∑

𝑗=0

∗

𝑐
𝑟

𝑗
⊙ 𝐿

𝑗
(𝑥) , (67)

that the fuzzy shifted Legendre coefficient vector 𝐶𝑇

𝑚+1
and

shifted Legendre function vector Φ
𝑚+1
(𝑥) are defined as

𝐶
𝑇

𝑚
= [𝑐

0
, 𝑐

2
, . . . , 𝑐

𝑚
] , (68)

Φ
𝑚
(𝑥) = [𝐿

0
(𝑥) , 𝐿

1
(𝑥) , . . . , 𝐿

𝑚
(𝑥)] . (69)

Definition 36 (see [68]). A fuzzy-valued polynomial 𝑝∗
∈

̃
∏

𝑁
is the best approximation to fuzzy function 𝑓 on 𝜒 =

{𝑥
0
, 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁
}, if

max
𝑖=0,1,2,...,𝑁

𝐷(𝑝
∗
(𝑥

𝑖
) , 𝑓

𝑖
) = min

𝑝∈∏̃
𝑁

{ max
𝑖=0,1,2,...,𝑁

𝐷(𝑝 (𝑥
𝑖
) , 𝑓

𝑖
)} ,

(70)

in which̃∏
𝑁
is the set of all fuzzy valued polynomials.

The problem is referred to as the best shifted Legendre
approximation, as we use Legendre’s nodes.

Theorem 37. The best approximation of a fuzzy function
based on the Legendre nodes exists and is unique.

Proof. The proof is an instantaneous outcome of Theo-
rem 4.2.1 in [68].

Now, we want to show that the fuzzy approximation
converges of Legendre functions to function 𝑦(𝑥).

Lemma 38. Suppose that 𝑦(𝑥) ∈ 𝐴𝐶E
(0, 1] ∩ 𝐿

E
𝑝
(0, 1] and

𝑐
𝐷

𝛼
𝑦(𝑥) ∈ 𝐶

E
(0, 1], 0 < 𝛼 < 1, 0 ≤ 𝑥

0
≤ 𝑥, and 𝑥 ∈ (0, 1],

and also assume that 𝑦(𝑥) is 𝑐
[1 − 𝛼]-differentiable. Therefore

using Theorem 32, we have
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
𝑟
(𝑥) −

𝑚

∑

𝑖=0

𝑥
𝑖𝛼

Γ (𝑖𝛼 + 1)

𝐷
𝑖𝛼
𝑦

𝑟
(0

+
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀
𝛼

𝑥
(𝑚+1)𝛼

Γ (𝑚𝛼 + 𝛼 + 1)

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
𝑟
(𝑥) −

𝑚

∑

𝑖=0

𝑥
𝑖𝛼

Γ (𝑖𝛼 + 1)

𝐷
𝑖𝛼
𝑦

𝑟
(0

+
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀
𝛼

𝑥
(𝑚+1)𝛼

Γ (𝑚𝛼 + 𝛼 + 1)

,

(71)

in which |𝐷(𝑚+1)𝛼
𝑦

𝑟
(𝑥

0
)| < 𝑀

𝛼
and |𝐷(𝑚+1)𝛼

𝑦
𝑟
(𝑥

0
)| < 𝑀

𝛼
.

Proof. FromTheorem 32, we have

𝑦
𝑟
(𝑥) =

𝑚

∑

𝑖=0

𝑥
𝑖𝛼

Γ (𝑖𝛼 + 1)

𝑐
𝐷

𝑖𝛼
𝑦

𝑟
(0

+
) +

𝑐
𝐷

(𝑚+1)𝛼
𝑦

𝑟
(𝑥

0
)

Γ (𝑚𝛼 + 𝛼 + 1)

𝑥
(𝑚+1)𝛼

,

𝑦
𝑟
(𝑥) =

𝑚

∑

𝑖=0

𝑥
𝑖𝛼

Γ (𝑖𝛼 + 1)

𝑐
𝐷

𝑖𝛼
𝑦

𝑟
(0

+
) +

𝑐
𝐷

(𝑚+1)𝛼
𝑦

𝑟
(𝑥

0
)

Γ (𝑚𝛼 + 𝛼 + 1)

𝑥
(𝑚+1)𝛼

,

(72)

and the following relation can be obtained:
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
𝑟
(𝑥) −

𝑚

∑

𝑖=0

𝑥
𝑖𝛼

Γ (𝑖𝛼 + 1)

𝐷
𝑖𝛼
𝑦

𝑟
(0

+
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨

𝑐
𝐷

(𝑚+1)𝛼
𝑦

𝑟
(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨

Γ (𝑚𝛼 + 𝛼 + 1)

𝑥
(𝑚+1)𝛼

≤ 𝑀
𝑟

𝛼

𝑥
(𝑚+1)𝛼

Γ (𝑚𝛼 + 𝛼 + 1)

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
𝑟
(𝑥) −

𝑚

∑

𝑖=0

𝑥
𝑖𝛼

Γ (𝑖𝛼 + 1)

𝐷
𝑖𝛼
𝑦

𝑟
(0

+
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨

𝑐
𝐷

(𝑚+1)𝛼
𝑦

𝑟
(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨

Γ (𝑚𝛼 + 𝛼 + 1)

𝑥
(𝑚+1)𝛼

≤ 𝑀

𝑟

𝛼

𝑥
(𝑚+1)𝛼

Γ (𝑚𝛼 + 𝛼 + 1)

,

(73)

that𝑀𝑟

𝛼
= |

𝑐
𝐷

(𝑚+1)𝛼
𝑦

𝑟
(𝑥

0
)| and𝑀𝑟

𝛼
= |

𝑐
𝐷

(𝑚+1)𝛼
𝑦

𝑟
(𝑥

0
)|.

Remark 39. If we consider Lemma 38 and define 𝑀
𝛼
=

max{𝑀𝑟

𝛼
,𝑀

𝑟

𝛼
}, then (71) can be stated in the following form,

regarding to Section 2:

𝐷(𝑦 (𝑥) ,

𝑚

∑

𝑖=0

𝑥
𝑖𝛼

Γ (𝑖𝛼 + 1)

𝐷
𝑖𝛼
𝑦 (0

+
))

= sup
𝑟∈[0,1]

max{
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
𝑟
(𝑥) −

𝑚

∑

𝑖=0

𝑥
𝑖𝛼

Γ (𝑖𝛼 + 1)

𝐷
𝑖𝛼
𝑦

𝑟
(0

+
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
𝑟
(𝑥) −

𝑚

∑

𝑖=0

𝑥
𝑖𝛼

Γ (𝑖𝛼 + 1)

𝐷
𝑖𝛼
𝑦

𝑟
(0

+
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

≤ sup
𝑟∈[0,1]

max{𝑀𝑟

𝛼

𝑥
(𝑛+1)𝛼

Γ (𝑛𝛼 + 𝛼 + 1)

, 𝑀

𝑟

𝛼

𝑥
(𝑛+1)𝛼

Γ (𝑛𝛼 + 𝛼 + 1)

}

≤ 𝑀
𝛼

𝑥
(𝑛+1)𝛼

Γ (𝑛𝛼 + 𝛼 + 1)

.

(74)
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Theorem 40. Let 𝑐
𝐷

𝛼
𝑦(𝑥) ∈ 𝐶

E
(0, 1] ∩ 𝐿

E
𝑝
(0, 1], and 0 <

𝛼 < 1. Also consider a sequence of finite dimensional fuzzy
space 𝑋E ⊂ 𝑋, 𝑚 ≥ 1, in which 𝑋E have dimension 𝑑

𝑚+1
.

Additionally, 𝑋E have a basis {𝐿
𝑖
(𝑥)}

𝑚

𝑖=0
. If one assumes that

𝑦
𝑚
(𝑥) = 𝐶

𝑇
Φ is the best fuzzy approximation for fuzzy

function 𝑦(𝑥) from {𝐿
𝑖
(𝑥)}

𝑚

𝑖=0
, then the error estimation is as

follows:

lim
𝑚 → ∞

𝐷(𝑦 (𝑥) , 𝑦
𝑚
(𝑥)) = 0. (75)

Proof. Let 𝑓 : 𝑅 → E be a fuzzy valued function such
that [𝑓(𝑥)]𝑟 = [𝑓

𝑟
(𝑥), 𝑓

𝑟

(𝑥)]. Also consider the fuzzy
Taylor’s formula in Theorem 32, 𝑓𝑟

(𝑥) = ∑
𝑚

𝑖=0
(𝑥

𝑖𝛼
/Γ(𝑖𝛼 +

1))
𝑐
𝐷

𝑖𝛼
𝑓

𝑟
(0

+
) and 𝑓

𝑟

(𝑥) = ∑
𝑚

𝑖=0
(𝑥

𝑖𝛼
/Γ(𝑖𝛼 + 1))

𝑐
𝐷

𝑖𝛼
𝑓

𝑟

(0
+
).

From Lemma 38 we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦

𝑟
(𝑥) − 𝑓

𝑟
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀

𝑟

𝛼

𝑥
(𝑚+1)𝛼

Γ (𝑚𝛼 + 𝛼 + 1)

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
𝑟
(𝑥) − 𝑓

𝑟

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀

𝑟

𝛼

𝑥
(𝑚+1)𝛼

Γ (𝑚𝛼 + 𝛼 + 1)

.

(76)

From the assumption, 𝐶𝑇
Φ is the best fuzzy approximation

to 𝑦 from {𝐿
𝑖
(𝑥)}

𝑚

𝑖=0
, and 𝑓 ∈ 𝑋E, 𝑥 ∈ (0, 1]. So one has

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
𝑟
(𝑥) − 𝑦

𝑟

𝑚
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦

𝑟
(𝑥) − 𝑓

𝑟
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀

𝑟

𝛼

𝑥
(𝑚+1)𝛼

Γ (𝑚𝛼 + 𝛼 + 1)

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
𝑟
(𝑥) − 𝑦

𝑟

𝑚
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
𝑟
(𝑥) − 𝑓

𝑟

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀

𝑟

𝛼

𝑥
(𝑚+1)𝛼

Γ (𝑚𝛼 + 𝛼 + 1)

,

(77)

and thus, taking into account Theorem 1 in [69] and above
relations, we have

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑦
𝑟
(𝑥) − 𝑦

𝑟

𝑚
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦

𝑟
(𝑥) − 𝑓

𝑟
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

𝑀
𝑟,2

𝛼

Γ(𝑚𝛼 + 𝛼 + 1)
2
∫

1

0

𝑥
2(𝑚+1)𝛼

𝑑𝑥

≤

𝑀
𝑟,2

𝛼

Γ(𝑚𝛼 + 𝛼 + 1)
2
(2 (𝑚 + 1) 𝛼 + 1)

2
,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑦
𝑟
(𝑥) − 𝑦

𝑟

𝑚
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑦
𝑟
(𝑥) − 𝑓

𝑟

(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

𝑀

𝑟,2

𝛼

Γ(𝑚𝛼 + 𝛼 + 1)
2
∫

1

0

𝑥
2(𝑚+1)𝛼

𝑑𝑥

≤

𝑀

𝑟,2

𝛼

Γ(𝑚𝛼 + 𝛼 + 1)
2
(2 (𝑚 + 1) 𝛼 + 1)

2
.

(78)

From Remark 39 and Lemma 38, we have

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑦
𝑟
(𝑥) − 𝑦

𝑟

𝑚
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

𝑀
𝛼

Γ (𝑚𝛼 + 𝛼 + 1)

√

1

(2 (𝑚 + 1) 𝛼 + 1)

,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑦
𝑟
(𝑥) − 𝑦

𝑟

𝑚
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

𝑀
𝛼

Γ (𝑚𝛼 + 𝛼 + 1)

√

1

(2 (𝑚 + 1) 𝛼 + 1)

,

(79)

and if 𝑚 → ∞, we get ‖𝑦𝑟
(𝑥) − 𝑦

𝑚

𝑟
(𝑥)‖ → 0, ‖𝑦𝑟

(𝑥) −

𝑦

𝑟

𝑚
(𝑥)‖ → 0. Therefore, from Remark 39 and the definition

of Hausdorff distance in Section 2, it can be implied that

lim
𝑚 → ∞

𝐷(𝑦 (𝑥) , 𝑦
𝑚
(𝑥)) = 0, (80)

which completes the proof.

Remark 41. The same result can be obtained for 𝑦(𝑥) under
𝑐
[2 − 𝛼]-differentiability.

4.3. Operational Matrix of Caputo Fractional Derivative

Lemma 42. The fuzzy Caputo fractional derivative of order
0 < 𝛼 < 1 over the shifted Legendre functions can be gained
in the form of

𝑐
𝐷

𝛼
𝐿

𝑖 (
𝑥) =

𝑖

∑

𝑘=0

𝑒
󸀠

𝑘,𝑖

Γ (𝑘 + 1)

Γ (𝑘 − 𝛼 + 1)

𝑥
𝑘−𝛼
, (81)

where 𝑒󸀠
𝑘,𝑖
= 0 when 𝑖 < ⌈𝛼⌉ and for 𝑖 ≥ ⌈𝛼⌉, and so one has

𝑒
󸀠

𝑘,𝑖
= 𝑒

𝑘,𝑖
.

Proof. Employing the analytic form of shifted Legendre
polynomials explained in Section 4.1 and Definition 25, we
have:

𝐷
𝛼
𝐿

𝑖 (
𝑥) =

𝑖

∑

𝑘=0

𝑒
𝑘,𝑖
𝐷

𝛼
⊙ 𝑥

𝑘−𝛼
. (82)

Now, by exploiting Definition 24, the lemma can be proved.

Lemma 43. Let 0 < 𝛼 < 1, and the integral of the product
of the fuzzy Caputo fractional derivative with order 𝛼 over the
shifted legendre functions can be obtained by

∫

1

0

𝐷
𝛼
𝐿

𝑖
(𝑥) 𝐿

𝑗
(𝑥) 𝑑𝑥 =

𝑖

∑

𝑘=0

𝑗

∑

𝑙=0

𝑒
󸀠

𝑘,𝑖
𝑒

𝑙,𝑗

(𝑘 + 𝑙 + 1) − 𝛼

Γ (𝑘 + 1)

Γ (𝑘 − 𝛼 + 1)

.

(83)

Proof. Using Lemma 42 and the analytic form of shifted Leg-
endre polynomials explained in Section 4.1, we can acquire:

∫

1

0

𝐷
𝛼
𝐿

𝑖
(𝑥) 𝐿

𝑗
(𝑥) 𝑑𝑥

=

𝑖

∑

𝑘=0

𝑗

∑

𝑙=0

𝑒
󸀠

𝑘,𝑖
𝑒

𝑙,𝑗
Γ (𝑘 + 1)

Γ (𝑘 − 𝛼 + 1)

∫

1

0

𝑥
(𝑘+𝑙+1)−𝛼−1

𝑑𝑥.

(84)
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The operational matrix of different orthogonal functions
for solving differential equations was introduced in the crisp
concept [36, 37, 39]. Here, the Legendre operational matrix
(LOM) in [36] is applied to the FFDEs using Caputo-type
derivative.

The Caputo fractional derivatives operator of order 0 <
𝛼 < 1 of the vectorΦ defined in (69) can be stated by

𝐷
𝛼
Φ (𝑥) ≃ 𝐷

(𝛼)
Φ (𝑥) , (85)

where 𝐷(𝛼) is the (𝑚 + 1)-square operational matrix of
fractional Caputo’s derivative of Legendre functions. Regard-
ing the following theorem, the LOM elements 𝐷(𝛼)

𝑖,𝑗
are

determined under Caputo fractional derivative.This theorem
is generalizing the operational matrix of derivatives of shifted
Legendre given in Section 4.1 to the fractional calculus.

Theorem 44. Let Φ be Legendre functions vector. 𝐷(𝛼)

𝑖,𝑗
is

the (𝑚 + 1)-square operational matrix of fractional Caputo’s
derivative of order 0 < 𝛼 < 1. Then the elements of 𝐷(𝛼)

𝑖,𝑗
are

achieved as

𝐷
(𝛼)

𝑖,𝑗
=

𝑖

∑

𝑘=⌈𝛼⌉

𝜃
𝑖,𝑗,𝑘
, (86)

in which 𝜃
𝑖,𝑗,𝑘

are acquired by

𝜃
𝑖,𝑗,𝑘

= (2𝑗 + 1)

×

𝑗

∑

𝑙=0

(−1)
𝑖+𝑗+𝑘+𝑙

(𝑖 + 𝑘)! (𝑙 + 𝑗)!

(𝑖 − 𝑘)!𝑘!Γ (𝑘 − 𝛼 + 1) (𝑗 − 𝑙)!(𝑙!)
2
(𝑘 + 𝑙 − 𝛼 + 1)

.

(87)

Consider that in𝐷(𝛼), the first ⌈𝛼⌉ rows, are all zero.

Proof. Employing the relation (85) and the orthogonal prop-
erties of shifted Legendre functions (56), we have

𝐷
(𝛼)
= ⟨𝐷

𝛼
Φ (𝑥) , Φ(𝑥)

𝑇
⟩𝐸

−1
, (88)

in which ⟨𝐷
𝛼
Φ(𝑥), Φ(𝑥)

𝑇
⟩ and 𝐸

−1 are (𝑚 + 1)-square
matrixes defined as

⟨𝐷
𝛼
Φ (𝑥) , Φ(𝑥)

𝑇
⟩ = {∫

1

0

𝐷
𝛼
𝐿

𝑖
(𝑥)𝐿

𝑗
(𝑥)𝑑𝑥}

𝑖,𝑗=0

,

𝐸
−1
= diag {(2𝑖 + 1)}𝑚−1

𝑖=0
.

(89)

Hence, applying Lemma 43 and inserting the above matrixes
in the product𝐷(𝛼), the theorem be proved.

Remark 45. If 𝛼 = 𝑛 ∈ N, then Theorem 44 gives the
mentioned result as in Section 4.1.

The following property of the product of two shifted
Legendre polynomials fuzzy vectors will also be applied
which is the extension of the crisp case introduced in [36],

ΦΦ
𝑇
Λ̃ ≃

∼
ΛΦ, (90)

where ∼
Λ is an (𝑚 + 1)-square product operational matrix

for the fuzzy vector Λ̃ = [Λ̃, Λ̃]. Using the above equation
and by the orthogonal property equation (56), the elements
{

∼
Λ

𝑖𝑗
}
𝑚

𝑖,𝑗=0
can be computed from

∼
Λ

𝑖𝑗
= (2𝑗 + 1)

𝑚

∑

𝑘=0

∗

𝜆
𝑘
⊙ 𝑔

𝑖𝑗𝑘
, (91)

where∑∗ denotes the fuzzy summation and ⊙ indicates fuzzy
multiplication. Moreover, 𝑔

𝑖𝑗𝑘
are obtained by

𝑔
𝑖𝑗𝑘
= ∫

1

0

𝐿
𝑖
(𝑥) 𝐿

𝑗
(𝑥) 𝐿

𝑘
(𝑥) 𝑑𝑥, (92)

that in the simpler form, it is given by

𝑔
𝑖𝑗𝑘
=

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑑
𝑗−𝑙
𝑑

𝑙
𝑑

𝑖−𝑙

(2𝑖 + 2𝑗 − 2𝑙 + 1) 𝑑
𝑖+𝑗−𝑙

, 𝑘 = 𝑖 + 𝑗 − 2𝑙;

𝑙 = 0, 1, . . . , 𝑗,

0, 𝑘 ̸= 𝑖 + 𝑗 − 2𝑙;

𝑙 = 0, 1, . . . , 𝑗,

(93)

in which 𝑑
𝑙
= (2𝑙)!/2

𝑙
(𝑙!)

2.

Remark 46. As a matter of fact, from (93), it is obvious that
the elements of the product of shifted Legendre operational
matrix are independent from the fuzzy vector.

5. Application of the LOM for Solving FFDEs

In this section, Legendre operational matrix of fractional
Caputo’s derivative is considered to present its significance for
solving fuzzy fractional differential equation which is alike to
the concept of the Caputo-type derivative in crisp case [36].
The existence and uniqueness of the solutions under fuzzy
Caputo’s type derivative to this problem are discussed in [30].

5.1. General Linear FFDEs. Let us consider the general linear
fuzzy fractional differential equation

(
𝑐
𝐷

𝛼

0
+𝑦) (𝑥) = 𝑎1

⊙ 𝑦 (𝑥) ⊕ 𝑎
2
⊙ 𝑓 (𝑥) , 0 < 𝛼 ≤ 1,

𝑦 (0) = 𝑦
0
∈ E,

(94)

in which 𝑎
𝑗
for 𝑗 = 1, 2 are fuzzy constant coefficients, 𝑦(𝑥) :

𝐿
E
∩ 𝐶

E is a continuous fuzzy-valued function, and 𝑐
𝐷

𝛼

0
+

represents the fuzzy Caputo fractional derivative of order 𝛼.

Remark 47. In this section, considering more simplicity, it is
assumed that for the fuzzy set-valued function 𝑦(𝑥) : 𝐼 ⊂
R → 𝐿

E
∩ 𝐶

E, we present the functions 𝑦𝑟
, 𝑦

𝑟
: 𝑅 → 𝐼 ⊂

𝑅, 𝑟 ∈ [0, 1] by 𝑦𝑟

−
(𝑥) = (𝑦(𝑥))

𝑟

−
, 𝑦

𝑟

+
(𝑥) = (𝑦(𝑥))

𝑟

+
, for all 𝑥 ∈

𝐼, for all 𝑟 ∈ [0, 1], which are in the same previous manner,
called the left and right 𝑟-cut functions of 𝑦(𝑥).



12 Abstract and Applied Analysis

Let 𝑟 ∈ [0, 1] and 0 < 𝛼 < 1. Then from (94), we have that

[𝑎
1
⊙ 𝑦 (𝑥)]

𝑟
= [(𝑎

1
⊙ 𝑦 (𝑥))

𝑟

−
, (𝑎

1
⊙ 𝑦 (𝑥))

𝑟

+
]

= [(𝑎
1
)

𝑟

−
𝑦(𝑥)

𝑟

−
, (𝑎

1
)

𝑟

+
𝑦(𝑥)

𝑟

+
]

= 𝑎
(𝑟)

1
𝑦(𝑥)

(𝑟)
,

[𝑎
1
𝑦(𝑥)]

𝑟

±
= (𝑎

1
)

𝑟

±
𝑦(𝑥)

𝑟

±
.

(95)

Therefore,

(
𝑐
𝐷

𝛼

0
+𝑦)

𝑟

±
(𝑥) = (𝑎

1
)

𝑟

±
𝑦(𝑥)

𝑟

±
+ (𝑎

2
)

𝑟

±
𝑓(𝑥)

𝑟

±
, (96)

and thus

[(
𝑐
𝐷

𝛼

0
+𝑦)

𝑟

−
(𝑥) , (

𝑐
𝐷

𝛼

0
+𝑦)

𝑟

+
(𝑥)]

= [(𝑎
1
)

𝑟

−
𝑦(𝑥)

𝑟

−
+ (𝑎

2
)

𝑟

−
𝑓(𝑥)

𝑟

−
, (𝑎

1
)

𝑟

+
𝑦(𝑥)

𝑟

+
+ (𝑎

2
)

𝑟

+
𝑓(𝑥)

𝑟

+
] .

(97)

Hence, we obtain

[(
𝑐
𝐷

𝛼

0
+𝑦) (𝑥)]

(𝑟)

= [(
𝑐
𝐷

𝛼

0
+𝑦)

𝑟

−
(𝑥) , (

𝑐
𝐷

𝛼

0
+𝑦)

𝑟

+
(𝑥)]

= [(𝑎
1
)

𝑟

−
𝑦(𝑥)

𝑟

−
+(𝑎

2
)

𝑟

−
𝑓(𝑥)

𝑟

−
, (𝑎

1
)

𝑟

+
𝑦(𝑥)

𝑟

+
+(𝑎

2
)

𝑟

+
𝑓(𝑥)

𝑟

+
]

= [𝑎
1
⊙ 𝑦(𝑥)]

(𝑟)
+ [𝑎

2
⊙ 𝑓(𝑥)]

(𝑟)
, 𝑟 ∈ [0, 1] ,

= [𝑎
1
⊙ 𝑦(𝑥) ⊕ 𝑎

2
⊙ 𝑓(𝑥)]

(𝑟)
, 𝑟 ∈ [0, 1] .

(98)

We can rewrite (94) in the operator form

(𝑎
(𝑟)

1
𝐼⊖ g

𝑐
𝐷

𝛼
) 𝑦

(𝑟)
= 𝑎

(𝑟)

2
𝑓

(𝑟)
, (99)

in which the fuzzy operator 𝑐
𝐷

𝛼
= 𝐼

1−𝛼
𝐷 is supposed to be

compact on a fuzzy Banach space 𝑋E to 𝑋E [45, 70] and ⊖ g
is the notation for g-difference.

For solving fuzzy fractional differential equation (94),
we attempt to find a fuzzy function 𝑦

(𝑟)

𝑚
∈ 𝑋E; there-

fore, let (𝑐𝐷𝛼

0
+𝑦)(𝑥), 𝑦(𝑥) and 𝑓(𝑥) be approximated using

Definition 34 as:

𝑦 (𝑥) ≃ 𝑦
𝑚
(𝑥) =

𝑚

∑

𝑗=0

∗

𝑐
𝑗
⊙ 𝐿

𝑗
(𝑥) = 𝐶

𝑇

𝑚
⊙ Φ

𝑚
, (100)

that

[𝑦
𝑚
(𝑥)]

(𝑟)
=

𝑚

∑

𝑗=0

∗

𝑐
(𝑟)

𝑗
⊙ [𝐿

𝑗
(𝑥)] 𝑥 ∈ 𝐼 ⊂ 𝑅,

𝑓 (𝑥) ≃
̃
𝑓

𝑚 (
𝑥) =

𝑚

∑

𝑗=0

∗

𝑓
𝑗
⊙ 𝐿

𝑗 (
𝑥) = 𝐹

𝑇

𝑚
⊙ Φ

𝑚
,

(101)

where 𝐹
𝑚+1

= [𝑓
0
, 𝑓

1
, . . . , 𝑓

𝑚
]
𝑇 is obtained as

𝑓
𝑗
= (2𝑗 + 1) ⊙ ∫

1

0

𝑓 (𝑥) ⊙ 𝐿
𝑗
(𝑥) 𝑑𝑥. (102)

Also, using relations (85) and (100), we obtain

𝑐
𝐷

𝛼
𝑦 (𝑥) ≃ 𝐶

𝑇
⊙ 𝐷

𝛼
Φ

𝑚
(𝑥) ≃ 𝐶

𝑇
⊙ 𝐷

(𝛼)
Φ

𝑚
(𝑥) . (103)

Substituting (100)–(103) in problem (94), the coefficients
{𝑐

(𝑟)

𝑗
}

𝑚

𝑗=0
are specified by imposing the equation to be almost

fuzzy exact in the Legendre operationalmatrix form.Now, we
establish fuzzy residual for the approximation of (94), when
[𝑦(𝑥)]

(𝑟)
≈ [𝑦

𝑚
(𝑥)]

(𝑟).

Theorem 48. Let 𝑦𝑟
∈ 𝐶

E
[0, 1] and 0 < 𝛼 ≤ 1, and then

[(
𝑐
𝐷

𝛼
𝑦

𝑚
)(𝑥)]

(𝑟)
= [𝑅

𝑚
(𝑥) ⊕ 𝑎

2
⊙
̃
𝑓

𝑚
(𝑥) ⊕ 𝑎

1
⊙ 𝑦

𝑚
(𝑥)]

(𝑟)

.

(104)

Proof. Let 𝑟 ∈ [0, 1]. We have [(
𝑐
𝐷

𝛼

0
+𝑦𝑚

)(𝑥)]
(𝑟)

=

[(
𝑐
𝐷

𝛼

0
+𝑦𝑚

)
𝑟

−
(𝑥), (

𝑐
𝐷

𝛼

0
+𝑦𝑚

)
𝑟

+
(𝑥)], [𝑦

𝑚
(𝑥)]

(𝑟)
= [𝑦

(𝑟)

𝑚−
(𝑥),

𝑦
(𝑟)

𝑚+
(𝑥)] and regarding to what was conversed previously,

(
𝑐
𝐷

𝛼
𝑦

(𝑟)

𝑚±
) (𝑥) = 𝑅

(𝑟)

𝑚±
(𝑥) − (𝑎1

)
𝑟

±
𝑦

𝑚(
𝑥)

𝑟

±
− (𝑎

2
)

𝑟

±

̃
𝑓

𝑚(
𝑥)

𝑟

±
,

(105)

so

[(
𝑐
𝐷

𝛼
𝑦

𝑚
) (𝑥)]

(𝑟)

= [(
𝑐
𝐷

𝛼
𝑦

(𝑟)

𝑚−
) (𝑥) , (

𝑐
𝐷

𝛼
𝑦

(𝑟)

𝑚+
) (𝑥)]

= [𝑅
(𝑟)

𝑚−
(𝑥) , 𝑅

(𝑟)

𝑚+
(𝑥)]

− [(𝑎
1
)

𝑟

−
𝑦

𝑚
(𝑥)

𝑟

−
, (𝑎

1
)

𝑟

+
𝑦

𝑚
(𝑥)

𝑟

+
]

− [(𝑎
2
)

𝑟

−

̃
𝑓

𝑚(
𝑥)

𝑟

−
, (𝑎

2
)

𝑟

+

̃
𝑓

𝑚(
𝑥)

𝑟

+
]

= [𝑅
𝑚 (
𝑥)]

(𝑟)
⊕ [(𝑎

1
) ⊙ 𝑦

𝑚
(𝑥)]

(𝑟)
⊕ [(𝑎

2
) ⊙

̃
𝑓

𝑚
(𝑥)]

(𝑟)

.

(106)

Using g-difference, we have

[𝑅
𝑚 (
𝑥)]

(𝑟)
= [(

𝑐
𝐷

𝛼
𝑦

𝑚
)(𝑥)]

(𝑟)

⊖ g [(𝑎1
) ⊙ 𝑦

𝑚
(𝑥)]

(𝑟)
⊖ g [(𝑎2

) ⊙
̃
𝑓

𝑚
(𝑥)]

(𝑟)

,

(107)

or in the sense of fuzzy operator,

[𝑅
𝑚
]
(𝑟)
= (𝑎

(𝑟)

1
𝐼 ⊖ g

𝑐
𝐷

𝛼
) 𝑦

(𝑟)
⊖ g 𝑎

(𝑟)

2
𝑓

(𝑟)
. (108)

It is anticipated that the deriving fuzzy function [𝑦
𝑚
(𝑥)]

(𝑟)

will be a suitable approximation of the exact solution
[𝑦(𝑥)]

(𝑟). To this end, let 𝑋E = 𝐿
2

E([0, 1]), and let ⟨⋅, ⋅⟩E
indicate the fuzzy inner product for 𝑋E. It is demanded that
𝑅

(𝑟)

𝑚
satisfy

⟨𝑅
(𝑟)

𝑚
, 𝐿

𝑖
⟩

𝐸
= 0̃, 𝑖 = 0, 1, . . . , 𝑚 − 1, 𝑟 ∈ [0, 1] , (109)
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in which ⟨𝑅(𝑟)

𝑚
, 𝐿

𝑖
⟩

𝐸
= [(𝐹𝑅) ∫

1

0
𝑅

𝑚
(𝑥) ⊙ 𝐿

𝑖
(𝑥)𝑑𝑥]

(𝑟). The left
side is the shifted legendre coefficients associated with 𝐿

𝑗
. If

{𝐿
𝑖
}
𝑚

𝑖=0
are the main members of shifted Legendre familyΦ =

{𝐿
𝑖
}
∞

𝑖=0
which is complete in 𝑋E, then (109) needs the main

terms to be zero in the Fourier extension of 𝑅(𝑟)

𝑚
with respect

to Φ which is called tau method in the crisp context and it
is in a similar manner with the meaning of fuzzy (for more
details, see [71–73]).

To discover 𝑦(𝑟)

𝑛
, implementing (109) to (108), regarding

the (100)–(103), we generate𝑚 fuzzy linear equations as

⟨[𝑅
𝑚
(𝑥)]

(𝑟)
, 𝐿

𝑖
(𝑥)⟩

= ⟨[(
𝑐
𝐷

𝛼
𝑦

𝑚
)(𝑥)]

(𝑟)
⊖ g [(𝑎1

) ⊙ 𝑦
𝑚
(𝑥)]

(𝑟)

⊖ g [(𝑎2
) ⊙

̃
𝑓

𝑚
(𝑥)]

(𝑟)

, 𝐿
𝑖 (
𝑥)⟩ = 0̃,

(110)

for 𝑖 = 0, 1, . . . , 𝑚−1. Equation (110) generate (𝑚) set of fuzzy
linear equations.These fuzzy linear equations can be acquired
as the following system of equations:

𝑚−1

∑

𝑗=0

∗

𝑐
(𝑟)

𝑗
⊙ {⟨𝐷

(𝛼)
𝐿

𝑗
, 𝐿

𝑖
⟩ − ⟨𝑎

(𝑟)

1
𝐿

𝑗
, 𝐿

𝑖
⟩}

=

𝑚−1

∑

𝑗=0

∗

𝑓
(𝑟)

𝑗
⊙ ⟨𝑎

(𝑟)

2
𝐿

𝑗
, 𝐿

𝑖
⟩ , 𝑖 = 0, 1, . . . , 𝑚 − 1

(111)

or

𝑚−1

∑

𝑗=0

∗

𝑐
(𝑟)

𝑗
⊙ {(𝐹𝑅)∫

1

0

𝐷
(𝛼)
𝐿

𝑗 (
𝑥) 𝐿 𝑖 (

𝑥) 𝑑𝑡

− (𝐹𝑅)∫

1

0

𝑎
(𝑟)

1
𝐿

𝑗
(𝑥) 𝐿

𝑖
(𝑥) 𝑑𝑡}

=

𝑚−1

∑

𝑗=0

∗

𝑓
(𝑟)

𝑗
⊙ (𝐹𝑅)∫

1

0

𝑎
(𝑟)

2
𝐿

𝑗
(𝑥) 𝐿

𝑖
(𝑥) 𝑑𝑡.

(112)

Afterwards, substitution of (100) in the initial condition of
(94) yields

𝑦 (0) =

𝑚

∑

𝑗=0

∗

𝑐
(𝑟)

𝑗
⊙ 𝐿

𝑗
(0) = 𝑦

0
, (113)

that this equation be coupled with the previous fuzzy linear
equations and constructed (𝑚 + 1) fuzzy linear equations.
Clearly, after solving this fuzzy system, the coefficients {𝑐

𝑗
}
𝑚

𝑗=0

will be gained.

5.1.1. Error Analysis. The aim of this section is to acquire the
error bound for the Legendre approximation using shifted
Legendre polynomials.We consider the best shifted Legendre
approximation of a smooth fuzzy function under Caputo
derivative for 0 < 𝛼 ≤ 1 to reach the result. It should be
considered that the results of this section are the extension

of this concept in the crisp context (see more in [69, 74–76]).
Initially, we state the following lemma which can offer an
upper bound for approximating the error ofCaputo fractional
derivative. So we define the error vector 𝐸

𝛼
as

𝐸
𝛼
= 𝐷

𝛼
Φ − 𝐷

(𝛼)
Φ = [𝐸

0,𝛼
, 𝐸

1,𝛼
, . . . , 𝐸

𝑚,𝛼
]
𝑇
, (114)

where

𝐸
𝑖,𝛼
= 𝐷

𝛼
𝐿

𝑖
(𝑥) −

𝑚

∑

𝑗=0

𝐷
(𝛼)

𝑖𝑗
𝐿

𝑗
(𝑥) , 𝑖 = 0, 1, . . . , 𝑚. (115)

Now, we can propose the next lemma by usingTheorem 1
in [69] to depict the error bound of Caputo fractional
derivative operator for the shifted Legendre polynomials.

Lemma49. Let the error function of Caputo fractional deriva-
tive operator for Legendre polynomials 𝐸

𝑖,𝛼
: [𝑥

0
, 1] → R

be 𝑚 + 1 times continuously differentiable for 0 < 𝑥
0
≤ 𝑥,

𝑥 ∈ (0, 1]. Also 𝐸
𝑖,𝛼
∈ 𝐶

𝑚+1
[𝑥

0
, 1] and 𝛼 < 𝑚+ 1 and then the

error bound is presented as follows:

󵄩
󵄩
󵄩
󵄩
𝐸

𝑖,𝛼

󵄩
󵄩
󵄩
󵄩
≤

|Γ (𝑖 + 1)|

|Γ (1 − 𝛼)|

𝑀
𝛼

Γ (𝑚𝛼 + 𝛼 + 1)

√

1

(2 (𝑚 + 1) 𝛼 + 1)

𝑥
−𝛼

0
.

(116)

Proof. Firstly, we acquire a bound for 𝑐
𝐷

𝛼
𝑥

𝑖, regarding
Definition 24, as

𝑐
𝐷

𝛼
𝑥

𝑖
=

Γ (𝑖 + 1)

Γ (𝑖 + 1 − 𝛼)

𝑥
𝑖−𝛼

≤

|Γ (𝑚 + 2)|

|Γ (1 − 𝛼)|

𝑥
−𝛼

0
, 𝑖 = 0, 1, . . . , 𝑚.

(117)

Then using Lemma 1 in [69], we have:

𝐷
𝛼
𝐿

𝑖
(𝑥) =

𝑖

∑

𝑘=0

𝑒
𝑘,𝑖
𝐷

𝛼
𝑥

𝑘
≤

|Γ (𝑖 + 1)|

|Γ (1 − 𝛼)|

𝑥
−𝛼

0

𝑖

∑

𝑘=0

𝑒
𝑘,𝑖

=

|Γ (𝑖 + 1)|

|Γ (1 − 𝛼)|

𝑥
−𝛼

0
𝐿

𝑖 (
1) =

|Γ (𝑖 + 1)|

|Γ (1 − 𝛼)|

𝑥
−𝛼

0
,

(118)

in which

𝑒
𝑘,𝑖
= (−1)

𝑘+𝑖 (𝑘 + 𝑖)!

(𝑖 − 𝑘)!(𝑘!)
2
. (119)

Now, utilizing Theorem 1 in [69], the lemma can be proved.

Therefore, the maximum norm of error vector 𝐸
𝛼
is

attained as

󵄩
󵄩
󵄩
󵄩
𝐸

𝛼

󵄩
󵄩
󵄩
󵄩∞

≤

|Γ (𝑚 + 1)|

|Γ (1 − 𝛼)|

𝑀
𝛼

Γ (𝑚𝛼 + 𝛼 + 1)

√

1

(2 (𝑚 + 1) 𝛼 + 1)

𝑥
−𝛼

0
.

(120)
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Nowwe extend these results for the fuzzy case. Hence, the
error of fuzzy Caputo fractional derivative is defined as

𝐷
∗
(𝐷

𝛼
Φ (𝑥) , 𝐷

(𝛼)
Φ (𝑥))

= sup
𝑥∈[0,1]

𝐷(𝐷
𝛼
Φ (𝑥) , 𝐷

(𝛼)
Φ (𝑥))

= sup
𝑥∈[0,1]

sup
𝑟∈[0,1]

max {󵄨󵄨󵄨󵄨
󵄨
𝐷

𝛼
Φ(𝑥)

𝑟

−
(𝑥) − 𝐷

(𝛼)
Φ(𝑥)

𝑟

−
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷

𝛼
Φ(𝑥)

𝑟

+
(𝑥) − 𝐷

(𝛼)
Φ(𝑥)

𝑟

+
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
}

= sup
𝑟∈[0,1]

max {󵄩󵄩󵄩󵄩
󵄩
𝐷

𝛼
Φ(𝑥)

𝑟

−
(𝑥) − 𝐷

(𝛼)
Φ(𝑥)

𝑟

−
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩∞
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷

𝛼
Φ(𝑥)

𝑟

+
(𝑥) − 𝐷

(𝛼)
Φ(𝑥)

𝑟

+
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩∞
}

(121)

regarding Lemmas 38 and 49 andTheorem 40, and we have:

sup
𝑟∈[0,1]

max {󵄩󵄩󵄩󵄩
󵄩
𝐷

𝛼
Φ(𝑥)

𝑟

−
− 𝐷

(𝛼)
Φ(𝑥)

𝑟

−

󵄩
󵄩
󵄩
󵄩
󵄩∞
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷

𝛼
Φ(𝑥)

𝑟

+
(𝑥) − 𝐷

(𝛼)
Φ(𝑥)

𝑟

+
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩∞
}

Lemma 49

≤ sup
𝑟∈[0,1]

max{|Γ (𝑚 + 1)|
|Γ (1 − 𝛼)|

𝑀
𝑟

𝛼,−

Γ (𝑚𝛼 + 𝛼 + 1)

× √

1

(2 (𝑚 + 1) 𝛼 + 1)

𝑥
−𝛼

0
,

|Γ (𝑚 + 1)|

|Γ (1 − 𝛼)|

𝑀
𝑟

𝛼,+

Γ (𝑚𝛼 + 𝛼 + 1)

× √

1

(2 (𝑚 + 1) 𝛼 + 1)

𝑥
−𝛼

0
} ,

(122)

where 0 < 𝑥
0
≤ 𝑥, 𝑥 ∈ (0, 1].

Lemma 50. Consider the error function of the fuzzy Caputo
fractional derivative operator for shifted Legendre polynomials
which is continuously differentiable and 0 < 𝛼 < 1. Then the
error bound is given as follows:

𝐷
∗
(𝐷

𝛼
Φ (𝑥) , 𝐷

(𝛼)
Φ (𝑥))

≤

|Γ (𝑚 + 1)|

|Γ (1 − 𝛼)|

𝑀
𝛼

Γ (𝑚𝛼 + 𝛼 + 1)

√

1

(2 (𝑚 + 1) 𝛼 + 1)

𝑥
−𝛼

0
,

(123)

that𝑀
𝛼
= max{𝑀

𝛼,−
,𝑀

𝛼,+
}.

Proof. It is straightforward from the definition of (𝐸
𝛼
),

Definition 1, and Remark 3.

For an error assessment of the approximation solution
of (94), we assume that 𝑦

𝑚
(𝑥) and 𝑦(𝑥) reveal the fuzzy

approximate and exact solutions of the fuzzy fractional
differential equations, respectively. Then we rewrite (94) as

(
𝑐
𝐷

𝛼
𝑦

(𝑟)

𝑚±
) (𝑥) − (𝑎1

)
(𝑟)

±
𝑦

𝑚(
𝑥)

(𝑟)

±
= 𝐻

(𝑟)

𝑚±
(𝑥) + (𝑎2

)
(𝑟)

±
𝑓

𝑚(
𝑥)

(𝑟)

±
,

(124)

that𝐻(𝑟)

𝑚±
(𝑥) is the fuzzy perturbation function that depends

only on 𝑦
𝑚
(𝑥)

(𝑟)

±
. By subtracting (94) from above equation

and using Lemmas 38 and 50, Theorem 40, and Definition 2,
one can obtain
󵄩
󵄩
󵄩
󵄩
󵄩
𝐻

(𝑟)

𝑚±
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩E

≤ sup
𝑟∈[0,1]

max {󵄩󵄩󵄩
󵄩
𝐷

𝛼
Φ(𝑥)

𝑟

±
− 𝐷

𝛼
Φ(𝑥)

𝑟

±

󵄩
󵄩
󵄩
󵄩∞
}

+ (𝑎
1
)

(𝑟)

±
sup

𝑟∈[0,1]

max {󵄩󵄩󵄩󵄩
󵄩
𝑦

𝑟

±
(𝑥) − 𝑦

𝑟

𝑚+1,±
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩∞
} .

(125)

If we substitute the error bound from Lemmas 38 and 50 and
the proof of Theorem 40, then we have
󵄩
󵄩
󵄩
󵄩
󵄩
𝐻

(𝑟)

𝑚±
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩𝐸

≤

|Γ (𝑚 + 1)|

|Γ (1 − 𝛼)|

𝑀
(𝑟)

𝛼,±

Γ (𝑚𝛼 + 𝛼 + 1)

√

1

(2 (𝑚 + 1) 𝛼 + 1)

𝑥
−𝛼

0

+ (𝑎
1
)

(𝑟)

±

𝑀
(𝑟)

𝛼,±

Γ (𝑚𝛼 + 𝛼 + 1)

√

1

(2 (𝑚 + 1) 𝛼 + 1)

,

(126)
or

󵄩
󵄩
󵄩
󵄩
󵄩
𝐻

(𝑟)

𝑚±
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩E
≤ 𝐶 (1 + 𝑥

𝛼

0
) , (127)

at which 𝐶 = (|Γ(𝑚 + 1)|/|Γ(1 − 𝛼)|)(𝑀
(𝑟)

𝛼
/Γ(𝑚𝛼 + 𝛼 +

1))√1/(2(𝑚 + 1)𝛼 + 1), for 0 < 𝑥
0
≤ 𝑥, 𝑥 ∈ (0, 1]. Therefore,

𝐻
(𝑟)

𝑚
(𝑥) is bounded.

5.2. Nonlinear FFDEs. Consider the nonlinear FFDE

(
𝑐
𝐷

𝛼

0
+𝑦) (𝑥) = 𝐹 (𝑥, 𝑦 (𝑥) , 𝑦 (𝑥)) , 0 < 𝛼 < 1,

𝑦 (0) = [𝑦
0
, 𝑦

0
] ,

(128)

where 𝐹 can be nonlinear in general, 𝑦(𝑥) : 𝐿E ∩ 𝐶E is a
continuous fuzzy-valued function, and 𝑐

𝐷
𝛼

0
+ indicates the

fuzzy Caputo fractional derivative of order 𝛼.
In order to use LOM for this problem, we first approxi-

mate 𝑦(𝑥) and (𝑐𝐷𝛼

0
+𝑦)(𝑥) as (100) and (103), respectively. By

replacing these equations in (128), we have

𝐶
𝑇
⊙ 𝐷

(𝛼)
Φ (𝑥) ≃ 𝐹 (𝑥, 𝐶

𝑇
Φ (𝑥) , 𝐶

𝑇

Φ (𝑥)) . (129)

We intend to find the fuzzy coefficients𝐶
𝑚
. Also by substitut-

ing (100) in the initial condition of nonlinear FFDE (128), we
have

𝑦 (0) = 𝐶
𝑇
Φ (0) = 𝑦

0
,

𝑦 (0) = 𝐶

𝑇

Φ (0) = 𝑦
0
.

(130)
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To find the approximate fuzzy solution 𝑦
𝑚
(𝑥), we first

collocate (129) at (𝑚) points. For appropriate collocation
points we use the first (𝑚) shifted Legendre polynomials
roots. These equations together with (130) generate (𝑚 +

1) nonlinear fuzzy equations which can be solved using
Newton’s iterative method presented in [77].

Remark 51. The solvability of system (129) and (130) is a
complicated problem and we cannot prove the existence and
uniqueness of such a fuzzy solution. But in our accomplish-
ment, we have solved this system, regarding the method in
[77], using MATLAB functions. In the assumed example,
these functions have prospered to gain an accurate fuzzy
approximate solution of the system, even starting with a zero
initial guess.

6. Numerical Examples

In this section, to demonstrate the effectiveness of the
proposed method in the present paper, two different test
examples are carried out. Also, the obtained numerical
solutions be compared with exact solutions.

Example 52. Let us consider the following FFDE:

(
𝑐
𝐷

𝛼

0
+𝑦) (𝑥) = 𝜆 ⊙ 𝑦 (𝑥) , 0 < 𝛼 ≤ 1,

𝑦 (0; 𝑟) = [𝑦
0
(𝑟) , 𝑦

0
(𝑟)] , 0 < 𝑟 ≤ 1,

(131)

in which 𝑦(𝑥) : 𝐿E∩𝐶E is a continuous fuzzy-valued function
and 𝑐

𝐷
𝛼

0
+ denotes the fuzzy Caputo fractional derivative of

order 𝛼. We solve this example according to two following
cases for 𝜆 = 1, −1.

Case 1. Suppose that 𝜆 = 1, and then using 𝑐
[1 − 𝛼]-

differentiability andTheorem 33, we have the following:

(
𝑐
𝐷

𝛼

0
+𝑦) (𝑥; 𝑟) = 𝑦 (𝑥) , 0 < 𝛼 ≤ 1,

𝑦 (0; 𝑟) = 𝑦0 (
𝑟) , 0 < 𝑟 ≤ 1,

(
𝑐
𝐷

𝛼

0
+𝑦) (𝑥; 𝑟) = 𝑦 (𝑥) , 0 < 𝛼 ≤ 1,

𝑦 (0; 𝑟) = 𝑦
0
(𝑟) , 0 < 𝑟 ≤ 1,

(132)

in which 𝑦(0; 𝑟) = [0.5 + 0.5𝑟, 1.5 − 0.5𝑟].

The exact solution of FFDE is as follows:

𝑌 (𝑥; 𝑟) = (0.5 + 0.5𝑟) 𝐸𝛼,1
[𝑥

𝛼
] , 0 < 𝛼 ≤ 1,

𝑌 (𝑥; 𝑟) = (1.5 − 0.5𝑟) 𝐸
𝛼,1
[𝑥

𝛼
] , 0 < 𝑟 ≤ 1,

(133)

where 𝐸
𝛼,𝛼

is the classical Mittag-Leffler function

𝐸
𝛼,𝛼
(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼 (𝑘 + 1))

. (134)

Note that for 𝛼 = 1 this representation is still valid since
Γ(1) = 1 and 𝐸

1,1
(𝑧) = 𝑒

𝑧.

Remark 53. If 𝛼 = 1, then the fuzzy fractional differential
equations (132) are converted to fuzzy integer-order differen-
tial equations. So the exact solution of problem under (1)-
differentiability usingTheorem 15 is as follows:

𝑌 (𝑥; 𝑟) = (0.5 + 0.5𝑟) 𝑒
𝑥
,

𝑌 (𝑥; 𝑟) = (1.5 − 0.5𝑟) 𝑒
𝑥
, 0 < 𝑟 ≤ 1.

(135)

By utilizing the technique explained in Section 5, (131) with
𝜆 = 1 becomes:

𝑚

∑

𝑗=0

𝑐
𝑟

𝑗
[𝑑

(𝛼)

𝑖,𝑗
− 𝐼] 𝐿

𝑗
(𝑥; 𝑟) = 0 𝑖 = 0, . . . , 𝑚,

𝑚

∑

𝑗=0

𝑐
𝑟

𝑗
[𝑑

(𝛼)

𝑖,𝑗
− 𝐼] 𝐿

𝑗 (
𝑥; 𝑟) = 0 𝑖 = 0, . . . , 𝑚,

(136)

or we can rewrite it in the matrix form as

𝐶
𝑇

𝑚,−
[𝐷

(𝛼)
− 𝐼]Φ (𝑥) = 0,

𝐶
𝑇

𝑚,+
[𝐷

(𝛼)
− 𝐼]Φ (𝑥) = 0,

(137)

in which (𝑐𝑟
𝑗
) = [𝑐

𝑟

𝑗,−
, 𝑐

𝑟

𝑗,+
] and for 𝑗 = 0, 1, . . . , 𝑚. As it

was described in Section 5, we produce 𝑚 fuzzy algebraic
equationsmultiplied above fuzzy residual system by 𝐿

𝑖
(𝑥) for

𝑖 = 0, 1, . . . , 𝑚−1 using orthogonal property, and sowe obtain

𝐶
𝑇

𝑚,−
[𝐷

(𝛼)
− 𝐼] = 0,

𝐶
𝑇

𝑚,+
[𝐷

(𝛼)
− 𝐼] = 0.

(138)

Now, using the initial condition (131), we have

𝑦 (0; 𝑟) ≃ 𝐶
𝑇

𝑚,−
Φ

𝑚
= (0.5 + 0.5𝑟) ,

𝑦 (0; 𝑟) ≃ 𝐶
𝑇

𝑚,+
Φ

𝑚
= (1.5 − 0.5𝑟) .

(139)

The above three equations generate a set of𝑚+1 fuzzy linear
algebraic equations. As a result, for 𝛼 = 0.85 and 𝑚 = 3, one
can gain

𝐷
(0.85)

=

[

[

[

[

0 0 0 0

1.8639 0.3901 −0.1755 0.1095

−0.3901 4.5267 0.8696 −0.4078

1.6885 −0.4794 6.7831 1.3797

]

]

]

]

(140)

the unknown coefficients 𝑐
𝑗
can be gained by substituting

matrix𝐷(0.85) in the previous mentioned systems.

Case 2. Suppose that 𝜆 = −1, then using 𝑐
[2 − 𝛼]-

differentiability and Theorem 33, the FDEs are obtained as
same as (132). Also the exact solution is given by

𝑌 (𝑥; 𝑟) = (0.5 + 0.5𝑟) 𝐸𝛼,1
[−𝑥

𝛼
] , 0 < 𝛼 ≤ 1,

𝑌 (𝑥; 𝑟) = (1.5 − 0.5𝑟) 𝐸
𝛼,1
[−𝑥

𝛼
] , 0 < 𝑟 ≤ 1.

(141)
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Figure 2: The absolute error for different 𝑚 of Example 52, Case 1.
𝛼 = 0.85.
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Figure 3: The Fuzzy approximate solution of Example 52, Case 1.
𝛼 = 0.85,𝑚 = 4.

By applying the technique described in Sections 4 and 5,
namely 𝑚 = 2, we may write the approximate solution for
Cases 1 and 2 in the forms

𝑦
2
(𝑥) = 𝑐

0
𝐿

0
(𝑥) + 𝑐

1
𝐿

1
(𝑥) + 𝑐

2
𝐿

2
(𝑥) ,

𝑦
2
(𝑥) = 𝑐

0
𝐿

0
(𝑥) + 𝑐

1
𝐿

1
(𝑥) + 𝑐

2
𝐿

2
(𝑥) .

(142)

So regarding the (100)–(110) and (142), the unknown param-
eters, 𝑐

𝑗
, 𝑐

𝑗
, 𝑗 = 0, 1, 2, are achieved for both cases.

Remark 54. If 𝛼 = 1, then the fuzzy fractional differential
equation (131) with 𝜆 = −1 is converted to fuzzy integer-order
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Figure 4:The Absolute Error for different𝑚 of Example 52, Case 2.
𝛼 = 0.75.

differential equation. So the exact solution of problem under
(2)-differentiability using Corollary 16 is as follows:

𝑌 (𝑥; 𝑟) = (0.5 + 0.5𝑟) 𝑒
−𝑥
,

𝑌 (𝑥; 𝑟) = (1.5 − 0.5𝑟) 𝑒
−𝑥
, 0 < 𝑟 ≤ 1.

(143)

The approximate solution, exact solution and absolute errors
are depicted for Case 1 of Example 52 in Table 1 for 𝑥 = 1with
𝛼 = .85. It can be seen that a few terms of the shifted Legendre
functions are required to achieve a suitable approximation
which demonstrate the applicability of the proposed method
for this problem. Also the absolute errors for 𝑚 = 2, 4, 8

with 𝛼 = 0.85 are plotted in Figure 2 which show the
decreasing of the error with the increasing of the number of
Legendre functions.The fuzzy approximate solution is shown
in Figure 3 for 𝛼 = 0.85,𝑚 = 4.

Remark 55. Figure 2 depicts the absolute errors for 𝑦(𝑥; 𝑟) of
Example 52, Case 1. In the same way, if we consider 𝑦(𝑥; 𝑟),
then analogously to the demonstration of Figure 2, we can
obtain the absolute errors.

In the Table 2, the fuzzy approximate solution for Case 2
of Example 52 is considered.The fractional Caputo derivative
is 𝛼 = 0.75 and the number of Legendre functions are 𝑚 =

9. The result are computed for 𝑥 = 1 with different 𝑟-cut.
Again we can see that Table 2 demonstrates the validity of the
method for this kind of problems. Furthermore, the absolute
errors of Example 52, Case 2, are plotted in Figure 4 with
𝑚 = 5, 9, 11 and the fuzzy approximate solution is shown in
Figure 5 for 𝛼 = 0.75,𝑚 = 9.

Remark 56. Figure 4 shows the absolute errors for 𝑦(𝑥; 𝑟) of
Example 52, Case 2. In the same way, if we consider 𝑦(𝑥; 𝑟),
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Table 1: The result of the proposed method for Case 1 of Example 52 with 𝛼 = 0.85 and𝑚 = 4.

𝑟 𝑦
𝑟

4
𝑌(𝑟) Error 𝑦

𝑟

4
𝑌(𝑟) Error

0 1.5625 1.5627 2.455𝑒 − 4 4.6875 4.6882 7.364𝑒 − 4

0.1 1.7188 1.7190 2.270𝑒 − 4 4.5313 4.5320 7.119𝑒 − 4

0.2 1.8750 1.8753 2.946𝑒 − 4 4.3750 4.3757 6.873𝑒 − 4

0.3 2.0313 2.0316 3.191𝑒 − 4 4.2188 4.2194 6.628𝑒 − 4

0.4 2.1875 2.1878 3.437𝑒 − 4 4.0625 4.0631 6.382𝑒 − 4

0.5 2.3438 2.3441 3.682𝑒 − 4 3.9063 3.9069 6.137𝑒 − 4

0.6 2.5000 2.5004 3.928𝑒 − 4 3.7500 3.7506 5.891𝑒 − 4

0.7 2.6563 2.6567 4.173𝑒 − 4 3.5938 3.5943 5.646𝑒 − 4

0.8 2.8125 2.8129 4.419𝑒 − 4 3.4375 3.4380 5.400𝑒 − 4

0.9 2.9688 2.9692 4.664𝑒 − 4 3.2813 3.2818 5.155𝑒 − 4

1 3.1250 3.1255 4.909𝑒 − 4 3.1250 3.1255 4.909𝑒 − 4

Table 2: The result of the proposed method for Case 2 of Example 52 with 𝛼 = 0.75 and𝑚 = 9.

𝑟 𝑦
𝑟

5
𝑌(𝑟) Error 𝑦

𝑟

5
𝑌(𝑟) Error

0 0.1962 0.1966 3.149𝑒 − 4 0.5887 0.5897 9.446𝑒 − 4

0.1 0.2159 0.2162 3.464𝑒 − 4 0.5691 0.5700 9.131𝑒 − 4

0.2 0.2355 0.2359 3.778𝑒 − 4 0.5495 0.5504 8.816𝑒 − 4

0.3 0.2551 0.2555 4.093𝑒 − 4 0.5298 0.5307 8.501𝑒 − 4

0.4 0.2747 0.2752 4.408𝑒 − 4 0.5102 0.5110 8.186𝑒 − 4

0.5 0.2944 0.2948 4.723𝑒 − 4 0.4906 0.4914 7.872𝑒 − 4

0.6 0.3140 0.3145 5.038𝑒 − 4 0.4710 0.4717 7.557𝑒 − 4

0.7 0.3336 0.3341 5.353𝑒 − 4 0.4514 0.4521 7.242𝑒 − 4

0.8 0.3532 0.3538 5.668𝑒 − 4 0.4317 0.4324 6.927𝑒 − 4

0.9 0.3729 0.3735 5.982𝑒 − 4 0.4121 0.4128 6.612𝑒 − 4

1 0.3925 0.3931 6.297𝑒 − 4 0.3925 0.3931 6.297𝑒 − 4
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Figure 5: The fuzzy approximate solution of Example 52, Case 2.
𝛼 = 0.75,𝑚 = 9.

then analogously to the demonstration of Figure 4, we can
obtain the absolute errors.

Example 57. Let us consider the following FFDE:

(
𝑐
𝐷

𝛼

0
+𝑦) (𝑥) = 𝜆 ⊙ 𝑦 (𝑥) ⊕ (𝑥 + 1) , 0 < 𝛼 ≤ 1,

𝑦 (0; 𝑟) = [𝑦
0
(𝑟) , 𝑦

0
(𝑟)] 0 < 𝑟 ≤ 1.

(144)

Here, suppose that 𝜆 = −1, then using 𝑐
[2 − 𝛼]-

differentiability andTheorem 33 we have the following:

(
𝑐
𝐷

𝛼

0
+𝑦) (𝑥; 𝑟) = −𝑦 (𝑥) + 𝑥 + 1, 0 < 𝛼 ≤ 1,

𝑦 (0; 𝑟) = 𝑦
0
(𝑟) , 0 < 𝑟 ≤ 1,

(
𝑐
𝐷

𝛼

0
+𝑦) (𝑥; 𝑟) = −𝑦 (𝑥) + 𝑥 + 1, 0 < 𝛼 ≤ 1,

𝑦 (0; 𝑟) = 𝑦
0
(𝑟) , 0 < 𝑟 ≤ 1,

(145)

where 𝑦(0; 𝑟) = [0.5 + 0.5𝑟, 1.5 − 0.5𝑟]. Also, regarding (145),
the exact solution of FFDE (144) be determined as

𝑌 (𝑥; 𝑟) = (0.5 + 0.5𝑟) 𝐸𝛼,1
[𝑥

𝛼
]

+ ∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1
𝐸

𝛼,𝛼
[−(𝑥 − 𝑡)

𝛼
] (𝑥 + 1) 𝑑𝑡,

0 < 𝛼 ≤ 1,

𝑌 (𝑥; 𝑟) = (1.5 − 0.5𝑟) 𝐸𝛼,1
[𝑥

𝛼
]

+ ∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1
𝐸

𝛼,𝛼
[−(𝑥 − 𝑡)

𝛼
] (𝑥 + 1) 𝑑𝑡,

0 < 𝑟 ≤ 1.

(146)
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Table 3: The result of the proposed method for Example 57 with 𝛼 = 0.95 and𝑚 = 6.

𝑟 𝑦
𝑟

6
𝑌(𝑟) Error 𝑦

𝑟

6
𝑌(𝑟) Error

0 1.191161 1.191169 8.916561𝑒 − 6 1.562753 1.562743 9.986616𝑒 − 6

0.1 1.209740 1.209748 7.971402𝑒 − 6 1.544173 1.544164 9.041457𝑒 − 6

0.2 1.228320 1.228327 7.026243𝑒 − 6 1.525594 1.525586 8.096298𝑒 − 6

0.3 1.246899 1.246905 6.081084𝑒 − 6 1.507014 1.507007 7.151139𝑒 − 6

0.4 1.265479 1.265484 5.135925𝑒 − 6 1.488435 1.488428 6.205980𝑒 − 6

0.5 1.284059 1.284063 4.190766𝑒 − 6 1.469855 1.469850 5.260821𝑒 − 6

0.6 1.302638 1.302642 3.245608𝑒 − 6 1.451275 1.451271 4.315663𝑒 − 6

0.7 1.321218 1.321220 2.300449𝑒 − 6 1.432696 1.432692 3.370504𝑒 − 6

0.8 1.339798 1.339799 1.355290𝑒 − 6 1.414116 1.414114 2.425345𝑒 − 6

0.9 1.358377 1.358378 4.101313𝑒 − 7 1.395536 1.395535 1.480186𝑒 − 6

1 1.376957 1.376956 5.350274𝑒 − 7 1.376957 1.376956 5.350274𝑒 − 7

Applying the shifted Legendre method with LOM technique
explained in Sections 4 and 5, we have

𝑚

∑

𝑗=0

𝑐
𝑟

𝑗
[𝑑

(𝛼)

𝑖,𝑗
+ 𝐼] 𝐿

𝑗
(𝑥; 𝑟) =

𝑚

∑

𝑗=0

𝑓
𝑟

𝑗
𝐿

𝑗
(𝑥; 𝑟) 𝑖 = 0, . . . , 𝑚,

𝑚

∑

𝑗=0

𝑐
𝑟

𝑗
[𝑑

(𝛼)

𝑖,𝑗
+ 𝐼] 𝐿

𝑗
(𝑥; 𝑟) =

𝑚

∑

𝑗=0

𝑓

𝑟

𝑗
𝐿

𝑗
(𝑥; 𝑟) 𝑖 = 0, . . . , 𝑚,

(147)

or it can be written in the matrix form as

𝐶
𝑇

𝑚,−
[𝐷

(𝛼)
+ 𝐼]Φ (𝑥) = 𝐹

𝑇

𝑚,−
Φ (𝑥) ,

𝐶
𝑇

𝑚,+
[𝐷

(𝛼)
+ 𝐼]Φ (𝑥) = 𝐹

𝑇

𝑚,+
Φ (𝑥) ,

(148)

in which (𝑐𝑟
𝑗
) = [𝑐

𝑟

𝑗,−
, 𝑐

𝑟

𝑗,+
] and (𝑓𝑟

𝑗
) = [𝑓

𝑟

𝑗,−
, 𝑓

𝑟

𝑗,+
] for 𝑗 =

0, 1, . . . , 𝑚. As was illustrated in Section 5, we make 𝑚 fuzzy
algebraic equations by the result of the inner product of fuzzy
residual with 𝐿

𝑖
(𝑥), 𝑖 = 0, 1, . . . , 𝑚 − 1, so we gain

𝐶
𝑇

𝑚,−
[𝐷

(𝛼)
+ 𝐼] = 𝐹

𝑇

𝑚,−
,

𝐶
𝑇

𝑚,+
[𝐷

(𝛼)
+ 𝐼] = 𝐹

𝑇

𝑚,+
.

(149)

Also for the initial condition (144), we have

𝑦 (0; 𝑟) ≃ 𝐶
𝑇

𝑚,−
Φ

𝑚
= (0.5 + 0.5𝑟) ,

𝑦 (0; 𝑟) ≃ 𝐶
𝑇

𝑚,+
Φ

𝑚
= (1.5 − 0.5𝑟) .

(150)

The above equations produce a set of 𝑚 + 1 fuzzy linear
algebraic equations. As a result, namely, with 𝑚 = 2, the
approximate fuzzy solution should be written in the form

𝑦 (𝑥) =

2

∑

𝑗=0

𝑐
𝑗
𝐿

𝑗
(𝑥) = [𝑐

0
𝑐

1
𝑐

2
]

𝑇

Φ (𝑥) ,

𝑦 (𝑥) =

2

∑

𝑗=0

𝑐
𝑗
𝐿

𝑗
(𝑥) = [𝑐0

𝑐
1
𝑐

2]

𝑇

Φ (𝑥) .

(151)

Finally, the corresponding fuzzy approximate solution from
(151) can be acquired.

For case 𝛼 = 0.95 and 𝑚 = 6, 𝑥 = 1 with 𝑟 = 0.1, we
obtain the fuzzy approximate solution in a series expansion
as

𝑦 (𝑥, 0.1) = 0.5500 + 0.5533𝑥 − 0.1915𝑥
2
+ 1.1965𝑥

3

− 1.9554𝑥
4
+ 1.5046𝑥

5
− 0.4478𝑥

6
,

𝑦 (𝑥, 0.1) = 1.4500 − 0.5496𝑥 + 1.3466𝑥
2
− 1.9084𝑥

3

+ 2.4940𝑥
4
− 1.8195𝑥

5
− 1.8195𝑥

6
.

(152)

Remark 58. If 𝛼 = 1, then the fuzzy fractional differential
equation (144) with 𝜆 = −1 is converted to fuzzy integer-
order differential equation. Therefore, the exact solution of
problem under (2)-differentiability using Corollary 16 is as
follows:

𝑌 (𝑥; 𝑟) = 𝑥 + (0.5 + 0.5𝑟) 𝑒
−𝑥
,

𝑌 (𝑥; 𝑟) = 𝑥 + (1.5 − 0.5𝑟) 𝑒
−𝑥
.

(153)

In order to evaluate the advantages and the accuracy of using
the presented method for the fuzzy fractional differential
equations, Example 57 is considered. The results are illus-
trated in Table 3 are the approximate solutions are compared
with exact solutions and the absolute errors are derived for
𝛼 = 0.95 with 𝑚 = 6 at 𝑥 = 1. It is obvious that the fuzzy
approximate solutions are in high agreement with the fuzzy
exact solutions. Moreover, different numbers of Legendre
polynomials are applied to obtain the absolute errors for this
problem which can be seen in Figure 6. This graph shows
that the method has a good convergence rate. Also, the fuzzy
approximate solution is shown for 𝛼 = 0.95 in Figure 7. The
absolute error of different order of fractional differentiability
can be considered for 𝑥 = 1 in Figure 8 and the approximate
solutions are shown in Figure 9 that shows that this approach
can apply to solve the problem effectively with different fuzzy
fractional order of derivatives with suitable errors. It can bee
seen that the 𝛼 approaches an integer order, and the error has
a tendency to decrease, as expected.
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Figure 6:The absolute error for different𝑚 of Example 57,𝛼 = 0.95.

0
0.5

1
0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

r-cut

x

Fu
zz

y 
ap

pr
ox

im
at

e s
ol

ut
io

n
(y
(x
))

Figure 7: The fuzzy approximate solution of Example 57, 𝛼 =

0.95,𝑚 = 6.

Remark 59. Figure 6 illustrates the absolute errors for 𝑦(𝑥; 𝑟)
of Example 57. In the same way, if we consider for 𝑦(𝑥; 𝑟),
then analogously to the demonstration of Figure 6, we can
obtain the absolute errors.

Example 60. For our third example, consider the inhomoge-
neous linear equation in [78] with fuzzy initial values, and so
we have:

𝑐
𝐷

𝛼

0+
𝑦 (𝑥) + 𝑦 (𝑥) =

2𝑥
2−𝛼

Γ (3 − 𝛼)

−

𝑥
1−𝛼

Γ (2 − 𝛼)

+ 𝑥
2
− 𝑥,

𝑦 (0; 𝑟) = [−1 + 𝑟, 1 − 𝑟] , 0 < 𝛼 ≤ 1, 0 ≤ 𝑥 ≤ 1,

(154)
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Figure 8: The absolute error for different 𝛼 of Example 57,𝑚 = 8.
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Figure 9: The approximate solution for 𝛼 = 0.75(∗), 0.85(∘),
and 0.95(+) of Example 57,𝑚 = 8.

in which 𝑦(𝑥) : 𝐿E[0, 1] ∩ 𝐶E
[0, 1] is a continuous fuzzy-

valued function and 𝑐
𝐷

𝛼

0
+ denotes the fuzzy Caputo frac-

tional derivative of order 𝛼.

Now, using [1 − 𝛼]-differentiability and Theorem 33, we
have the following:

(
𝑐
𝐷

𝛼

0+
𝑦) (𝑥; 𝑟) + 𝑦 (𝑥; 𝑟) =

2𝑥
2−𝛼

Γ (3 − 𝛼)

−

𝑥
1−𝛼

Γ (2 − 𝛼)

+ 𝑥
2
− 𝑥,

𝑦 (0; 𝑟) = −1 + 𝑟, 0 < 𝛼 ≤ 1, 0 ≤ 𝑥 ≤ 1,

(
𝑐
𝐷

𝛼

0+
𝑦) (𝑥; 𝑟) + 𝑦 (𝑥; 𝑟) =

2𝑥
2−𝛼

Γ (3 − 𝛼)

−

𝑥
1−𝛼

Γ (2 − 𝛼)

+ 𝑥
2
− 𝑥,

𝑦 (0; 𝑟) = 1 − 𝑟, 0 < 𝛼 ≤ 1, 0 ≤ 𝑥 ≤ 1.

(155)
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Solving (155) leads to determining the solution of FFDE (154)
as follows:

𝑦 (𝑥; 𝑟) = (−1 + 𝑟) 𝐸
𝛼,1
[−𝑥

𝛼
] + ∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1
𝐸

𝛼,𝛼
[−(𝑥 − 𝑡)

𝛼
]

× (

2𝑥
2−𝛼

Γ (3 − 𝛼)

−

𝑥
1−𝛼

Γ (2 − 𝛼)

+ 𝑥
2
− 𝑥)𝑑𝑡,

0 ≤ 𝑟 ≤ 1,

𝑦 (𝑥; 𝑟) = (1 − 𝑟) 𝐸𝛼,1
[−𝑥

𝛼
] + ∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1
𝐸

𝛼,𝛼
[−(𝑥 − 𝑡)

𝛼
]

× (

2𝑥
2−𝛼

Γ (3 − 𝛼)

−

𝑥
1−𝛼

Γ (2 − 𝛼)

+ 𝑥
2
− 𝑥)𝑑𝑡,

0 ≤ 𝑟 ≤ 1.

(156)

By exploiting the method proposed in Section 5, the
equations are acquired by

𝑚

∑

𝑗=0

𝑐
𝑟

𝑗
[𝑑

(𝛼)

𝑖,𝑗
+ 𝐼] 𝐿

𝑗
(𝑥; 𝑟) =

𝑚

∑

𝑗=0

𝑓
𝑟

𝑗
𝐿

𝑗
(𝑥; 𝑟) 𝑖 = 0, . . . , 𝑚,

𝑚

∑

𝑗=0

𝑐
𝑟

𝑗
[𝑑

(𝛼)

𝑖,𝑗
+ 𝐼] 𝐿

𝑗
(𝑥; 𝑟) =

𝑚

∑

𝑗=0

𝑓

𝑟

𝑗
𝐿

𝑗
(𝑥; 𝑟) 𝑖 = 0, . . . , 𝑚,

(157)

or we can rewrite it in the matrix form as
𝐶

𝑇

𝑚,−
[𝐷

(𝛼)
+ 𝐼]Φ (𝑥) = 𝐹

𝑇

𝑚,−
Φ (𝑥) ,

𝐶
𝑇

𝑚,+
[𝐷

(𝛼)
+ 𝐼]Φ (𝑥) = 𝐹

𝑇

𝑚,+
Φ (𝑥) ,

(158)

in which (𝑐𝑟
𝑗
) = [𝑐

𝑟

𝑗,−
, 𝑐

𝑟

𝑗,+
] and (𝑓𝑟

𝑗
) = [𝑓

𝑟

𝑗,−
, 𝑓

𝑟

𝑗,+
] for 𝑗 =

0, 1, . . . , 𝑚. As it was described in Section 5, we create𝑚 fuzzy
algebraic equations multiplied in above system by 𝐿

𝑖
(𝑥) for

𝑖 = 0, 1, . . . , 𝑚−1 and implemented in the inner product using
orthogonal property, and so we gain:

𝐶
𝑇

𝑚,−
[𝐷

(𝛼)
+ 𝐼] = 𝐹

𝑇

𝑚,−
,

𝐶
𝑇

𝑚,+
[𝐷

(𝛼)
+ 𝐼] = 𝐹

𝑇

𝑚,+
.

(159)

Also for the initial condition (154), we have

𝑦 (0; 𝑟) ≃ 𝐶
𝑇

𝑚,−
Φ

𝑚
= −1 + 𝑟,

𝑦 (0; 𝑟) ≃ 𝐶
𝑇

𝑚,+
Φ

𝑚
= 1 − 𝑟.

(160)

Equations (159) and (160) produce a set of 𝑚 + 1 fuzzy
linear algebraic equations. As a result, for 𝛼 = 0.75𝑟 =

0.1 and 𝑚 = 3 the unknown coefficients 𝑐
𝑗
can be

achieved as 𝐶𝑇

3,−
= [−0.6914, 0.3147, 0.1144, 0.0083] and

𝐶
𝑇

3,+
= [0.3725, −0.1418, 0.2954, −0.0903]. Also with these

assumptions, one has

𝐷
(0.75)

=

[

[

[

[

0 0 0 0

1.7652 0.5884 −0.2263 0.1305

−0.5884 3.6662 1.2114 −0.4979

1.5389 −0.6230 5.1081 1.8265

]

]

]

]

. (161)
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Figure 10: The absolute error for different 𝛼 of Example 60,𝑚 = 5.

The approximate and exact solution of FFDEs (154) is
illustrated in Table 4 at 𝑥 = 1 with the absolute errors. In
this table, three shifted Legendre polynomials are considered
to derive the approximate solution. It is clear that with the
lower number of shifted Legendre functions, using proposed
method, one can reach a resealable approximate solution.
Also Figure 10 depicts the absolute error with 𝑚 = 5 and
various values of 𝛼. This figure exhibits the applicability
and validity of the proposed technique for this example.
Furthermore, the fuzzy approximate solution for 𝛼 = 0.75

with 𝑚 = 5 is shown in Figure 11 at 𝑥 = 1. Additionally,
in Figure 12, the fuzzy approximate solution is compared
with different values of 𝛼. It can be seen that as 𝛼 tends to
1, the solution of the fuzzy fractional differential equations
tends to that of the fuzzy integer-order differential equations.
Finally, Figure 13 displays the absolute error for 𝛼 = 0.75with
different values of𝑚which is obvious that with increasing the
number of shifted Legendre functions, the absolute error of
the problem has been decreased gently.

Remark 61. Figures 10 and 13 illustrate the absolute errors for
𝑦(𝑥; 𝑟) of Example 60. In the same way, if we consider 𝑦(𝑥; 𝑟),
then analogously to the demonstration of Figures 10 and 13,
we can obtain the absolute errors.

Now, we consider two applicable examples which are new
under uncertainty represented by fuzzy-valued functions.
Firstly, a brief history is given in the deterministic case of
Example 62. For more details, see [1, 79].

There are two kinds of electrical circuits which are related
to the fractional calculus. Circuits of the first types are
supposed to consist of capacitors and resistors, which are
described by conventional (integer-order) models. A circuit
expressing fractional order behavior is called fractance. Cir-
cuits of the second type may consist of resistors, capacitors,
and fractances. The term fractance was suggested initially
by Mehaute and Crepy [80]. Now, in order to scrutinize the
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Table 4: The result of the proposed method for Example 60 with 𝛼 = 0.95 and𝑚 = 3.

𝑟 𝑦
𝑟

3
𝑌(𝑟) Error 𝑦

𝑟

3
𝑌(𝑟) Error

0 −0.371581 −0.371573 7.857218𝑒 − 5 0.371581 0.371573 7.857218𝑒 − 5

0.1 −0.334423 −0.334416 7.071496𝑒 − 5 0.334423 0.334416 7.071496𝑒 − 5

0.2 −0.297265 −0.297258 6.285775𝑒 − 5 0.297265 0.297258 6.285775𝑒 − 5

0.3 −0.260107 −0.260101 5.500053𝑒 − 5 0.260107 0.260101 5.500053𝑒 − 5

0.4 −0.222948 −0.222944 4.714331𝑒 − 5 0.222948 0.222944 4.714331𝑒 − 5

0.5 −0.185790 −0.185786 3.928609𝑒 − 5 0.185790 0.185786 3.928609𝑒 − 5

0.6 −0.148632 −0.148629 3.142887𝑒 − 5 0.148632 0.148629 3.142887𝑒 − 5

0.7 −0.111474 −0.111472 2.357165𝑒 − 5 0.111474 0.111472 2.357165𝑒 − 5

0.8 −0.074316 −0.074314 1.571443𝑒 − 6 0.074316 0.074314 1.571443𝑒 − 6

0.9 −0.037158 −0.037157 7.857218𝑒 − 6 0.037158 0.037157 7.857218𝑒 − 6

1 0.000000 0.000000 9.520160𝑒 − 14 0.000000 0.000000 9.520160𝑒 − 14
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Figure 11: The fuzzy approximate solution of Example 60, 𝛼 =

0.75,𝑚 = 5.

mentioned problem in a real case, we use the fuzzy initial
value 𝑦(0; 𝑟) and the concept of Caputo’s H-differentiability
for fractional derivative of 𝑦(𝑥). So we have the following
fuzzy fractional oscillation differential equation.

Example 62. Consider an electrical circuit (LR circuit) with
an AC source. The current equation of this circuit can be
written as follows:

(
𝑐
𝐷

𝛼

0
+𝑦) (𝑥) = −

𝑅

𝐿

𝑦 (𝑥) + V (𝑥) , 0 ≤ 𝑥 ≤ 1,

𝑦 (0; 𝑟) = [0.96 + 0.04𝑟, 1.01 + 0.01𝑟] ,

(162)

in which 𝑅 is the circuit resistance, and 𝐿 is a coefficient,
corresponding to the solenoid and 0 ≤ 𝑟 ≤ 1. Suppose that
V(𝑥) = sin(𝑥), 𝑅 = 1 ohm and 𝐿 = 1H, so (162) can be
rewritten as

(
𝑐
𝐷

𝛼

0
+𝑦) (𝑥) = −𝑦 (𝑥) + sin (𝑥) , 0 ≤ 𝑥 ≤ 1,

𝑦 (0; 𝑟) = [0.96 + 0.04𝑟, 1.01 + 0.01𝑟] .

(163)
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Figure 12: The fuzzy approximate solution for different 𝛼:(1: star,
0.95: square, 0.85: ∘, 0.75:×, 0.65: pentagram) of Example 60,𝑚 = 5.
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Figure 13: The absolute error for different 𝑚 of Example 60, 𝛼 =

0.75.



22 Abstract and Applied Analysis

Table 5: The result of the proposed method for Example 62 with 𝛼 = 0.85 and𝑚 = 8.

𝑟 𝑦
𝑟

8
𝑌(𝑟) Error 𝑦

𝑟

8
𝑌(𝑟) Error

0 0.7208 0.7206 1.4374𝑒 − 4 0.7398 0.7397 1.5112𝑒 − 4

0.1 0.7223 0.7221 1.4433𝑒 − 4 0.7394 0.7393 1.5098𝑒 − 4

0.2 0.7238 0.7237 1.4492𝑒 − 4 0.7391 0.7389 1.5083𝑒 − 4

0.3 0.7253 0.7252 1.4551𝑒 − 4 0.7387 0.7385 1.5068𝑒 − 4

0.4 0.7269 0.7267 1.4610𝑒 − 4 0.7383 0.7381 1.5053𝑒 − 4

0.5 0.7284 0.7282 1.4669𝑒 − 4 0.7379 0.7378 1.5039𝑒 − 4

0.6 0.7299 0.7298 1.4729𝑒 − 4 0.7375 0.7374 1.5024𝑒 − 4

0.7 0.7314 0.7313 1.4788𝑒 − 4 0.7372 0.7370 1.5009𝑒 − 4

0.8 0.7330 0.7328 1.4847𝑒 − 4 0.7368 0.7366 1.4994𝑒 − 4

0.9 0.7345 0.7343 1.4906𝑒 − 4 0.7364 0.7362 1.4980𝑒 − 4

1 0.7360 0.7359 1.4965𝑒 − 4 0.7360 0.7359 1.4965𝑒 − 4

Now, using [2 − 𝛼]-differentiability and Theorem 33, we
have the following:

(
𝑐
𝐷

𝛼

0+
𝑦) (𝑥; 𝑟) + 𝑦 (𝑥; 𝑟) = sin (𝑥) ,

𝑦 (0; 𝑟) = (0.96 + 0.04𝑟) , 0 < 𝛼 ≤ 1, 0 ≤ 𝑥 ≤ 1,

(
𝑐
𝐷

𝛼

0+
𝑦) (𝑥; 𝑟) + 𝑦 (𝑥; 𝑟) = sin (𝑥) ,

𝑦 (0; 𝑟) = (1.01 + 0.01𝑟) , 0 < 𝛼 ≤ 1, 0 ≤ 𝑥 ≤ 1.

(164)

The exact solution of (163) under (2)-differentiability for
integer order is given by

𝑌
1
(𝑡; 𝑟) =

1

2

(sin (𝑡) − cos (𝑡)) + 𝑒−𝑡
(1.46 + 0.04r) ,

𝑌
1
(𝑡; 𝑟) =

1

2

(sin (𝑡) − cos (𝑡)) + 𝑒−𝑡
(1.51 − 0.01r) .

(165)

By applying the technique described in Section 5, we
approximate fuzzy solution as

𝑐
𝐷

𝛼
𝑦 (𝑥) ≃ 𝐶

𝑇
⊙ 𝐷

(𝛼)
Φ

𝑚
(𝑥) ,

𝑦 (𝑥) ≃ 𝑦𝑚 (
𝑥) = 𝐶

𝑇

𝑚
⊙ Φ

𝑚
,

sin (𝑥) ≃ ̃
𝑓

𝑚 (
𝑥) = 𝐹

𝑇

𝑚
⊙ Φ

𝑚
,

(166)

where vector 𝐹𝑇

𝑚
is obtained as (102). With 𝑚 = 3, 𝛼 = 0.75,

and 𝑟 = 0.1, we have

𝐷
(0.75)

=

[

[

[

[

0 0 0 0

1.7652 0.5884 −0.2263 0.1305

−0.5884 3.6662 1.2114 −0.4979

1.5389 −0.6230 5.1081 1.8265

]

]

]

]

,

𝐹
𝑇

4
= [0.4597 0.4279 −0.0392 −0.0072] ,

(167)

and subsequently, we generate 𝑚 + 1 fuzzy linear equations
using (110) and also from substituting (100) in the initial

conditions of (164), we can obtain the unknown fuzzy
coefficients {𝑐

𝑗
}
3

𝑗=0
as

𝑐
0
= 0.7222, 𝑐

1
= −0.0497,

𝑐
2
= 0.1272, 𝑐

3
= −0.0650,

𝑐
0
= 0.7488, 𝑐

1
= −0.0611,

𝑐
2
= 0.1317, 𝑐

3
= −0.0674,

(168)

and finally, the fuzzy approximate solution is given by

𝑦
4
(𝑥, 0.1) = 0.9640 − 1.6420𝑥 + 2.7118𝑥

2
− 1.2990𝑥

3
,

𝑦
4
(𝑥, 0.1) = 1.0090 − 1.7215𝑥 + 2.8128𝑥

2
− 1.3483𝑥

3
.

(169)

In Table 5, the numerical results of (162) are depicted at
𝑥 = 1 for 𝛼 = 0.85 and 𝑚 = 8. The absolute error
confirms that the proposed method approximates the fuzzy
solutionwith a suitable accuracy. Figure 14 shows the absolute
error of the proposed method with a different value of 𝛼
with 𝑚 = 10 which is clear as 𝛼 tends to 1, and the error
is decreasing dramatically, also with the increasing of the
number of Legendre functions, the absolute error is dereasing
that is, shown in Figure 16. Finally the fuzzy approximate
solution of (162) is demonstrated in Figure 15 in the interval
0 ≤ 𝑥 ≤ 1.

Now we consider the second application of FFDES in
the real world. But before we consider the problem of fuzzy
model, We glimpse the vision of a non-fuzzy case.

A pharmacodynamic model is usually separated in two
parts: a linkmodel and a transductionmodel.The linkmodel
depicts the distribution of drug from an observed compart-
ment (e.g., plasma) into a biophase (the effect compartment).
Drug in the biophase induces a pharmacodynamic response
(the effect), which is represented by a transductionmodel. For
more details, see [81, 82].

The model describing the transfer of drug to the effect
compartment, from the mechanistic interpretation, it can be
considered as the pharmacokinetics of the drug. However,
practically, and because drug condensation in the effect
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Figure 15: The fuzzy approximate solution of Example 62, 𝛼 =

0.75,𝑚 = 10.
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compartment does not appears, it is not often clear if the link
model is actually linked with a site of action, or if it exhibits
some pharmacodynamic related delay, or a combination of
the two. It is begun by representing drug concentration in
the effect compartment by the (Caputo) fractional differential
equation as follows:

(
𝛼
𝐷

𝛼

0+
𝐶𝑒) (𝑡) = 𝑘eo (−𝐶𝑒 (𝑡) + 𝑓 (𝑡)) , (170)

in which 𝑓(𝑡) describes the drug input into the central
compartment and 𝑘eo is the elimination rate constant from
the effect compartment. Also the action of drug is described
by a nonlinear memory-less function of 𝐶𝑒.

Now, we consider the action of drug delivery by a fuzzy
function under the fuzzy Caputo’s H-differentiability which
is modelled by fuzzy fractional differential equation.

Example 63. Consider the following fuzzy pharmacody-
namic model

(
𝛼
𝐷

𝛼

0+
𝐶𝑒) (𝑡) = 𝑘eo (−𝐶𝑒 (𝑡) + 𝑓 (𝑡)) , 0<𝛼 <1, 0 ≤𝑡 ≤1,

𝐶𝑒 (0; 𝑟) = (0.5 + 0.5𝑟, 1.5 − 0.5𝑟) ,

(171)

inwhich𝑓(𝑡) = (Dose 𝑘
𝑎
/𝑉(𝑘el−𝑘𝑎

))(𝑒
−𝑘el𝑡

−𝑒
−𝑘
𝑎
𝑡
) represents

drug concentration in the central compartment following, for
example, an oral administration of a dose, in this example
dose = 1 and parameters values are 𝑉 = 1, 𝑘

𝑎
= 5.0, 𝑘el =

0.5, and 𝑘eo = 1.

The exact solution of (171) with 𝛼 = 1 under generalized
differentiability is given by

𝑌 (𝑡; 𝑟) = 𝑒
−𝑡
(−

20

9

𝑒
𝑡/2
−

5

18

𝑒
−4𝑡
+ 3 + 0.5𝑟) ,

𝑌 (𝑡; 𝑟) = 𝑒
−𝑡
(−

20

9

𝑒
𝑡/2
−

5

18

𝑒
−4𝑡
+ 4 − 0.5𝑟) .

(172)

We apply the method presented in Section 5 and solve this
problem for𝑚 = 3, 𝛼 = 0.95, and 𝑟 = 0.2. Hence, we have

𝐷
(0.95)

=

[

[

[

[

0 0 0 0

1.9566 0.1432 −0.0743 0.0501

−0.1432 5.4849 1.3447 −0.1823

1.8823 −0.2015 8.8258 0.5752

]

]

]

]

,

𝐹
𝑇

4
= [−0.6537 −0.1886 0.2729 −0.1322] ,

(173)

and thereafter the fuzzy unknown coefficients for the fuzzy
approximation of (171) can be acquired easily by replacing the
above results in (110) and solving this algebraic fuzzy linear
equations system. So we have

𝑐
0
= 0.1744, 𝑐

1
= −0.4368,

𝑐
2
= 0.0573, 𝑐

3
= 0.0185,

𝑐
0
= 0.6417, 𝑐

1
= −0.6635,

𝑐
2
= 0.1043, 𝑐

3
= 0.0095,

(174)
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Table 6: The result of the proposed method for Example 63 with 𝛼 = 0.95 and𝑚 = 12.

𝑟 𝑦
1
2

𝑟
𝑌(𝑟) Error 𝑦

1
2

𝑟
𝑌(𝑟) Error

0 −0.243121 −0.243123 1.232190𝑒 − 6 0.128454 0.128450 3.891957𝑒 − 6

0.1 −0.224543 −0.224544 1.365176𝑒 − 6 0.109875 0.109871 3.758969𝑒 − 6

0.2 −0.205964 −0.205965 1.498166𝑒 − 6 0.091296 0.091293 3.625981𝑒 − 6

0.3 −0.187385 −0.187387 1.631153𝑒 − 6 0.072717 0.072714 3.492989𝑒 − 6

0.4 −0.168806 −0.168808 1.764141𝑒 − 6 0.054139 0.054135 3.360001𝑒 − 6

0.5 −0.150227 −0.150229 1.897131𝑒 − 6 0.035560 0.035557 3.227013𝑒 − 6

0.6 −0.131648 −0.131651 2.030121𝑒 − 6 0.016981 0.016978 3.094025𝑒 − 6

0.7 −0.113070 −0.113072 2.163107𝑒 − 6 −0.001597 −0.001600 2.961033𝑒 − 6

0.8 −0.094491 −0.094493 2.296095𝑒 − 6 −0.020176 −0.020178 2.828050𝑒 − 6

0.9 −0.075912 −0.075914 2.429084𝑒 − 6 −0.038754 −0.038757 2.695061𝑒 − 6

1 −0.057333 −0.057336 2.562075𝑒 − 6 −0.057333 −0.057336 2.562075𝑒 − 6

and ultimately the fuzzy approximate solution is given by

𝑦
4
(𝑥, 0.1) = 0.6 − 0.9392𝑥 − 2.2482𝑥

2
+ 0.3823𝑥

3
,

𝑦
4
(𝑥, 0.1) = 1.4 − 1.8391𝑥 + 0.3419𝑥

2
+ 0.1891𝑥

3
.

(175)

In Table 6, the approximate fuzzy solutions (171) are com-
pared with the exact solution at 𝑥 = 1 for 𝛼 = 0.95

and 𝑚 = 12. The absolute error shows that the proposed
method approximates the fuzzy solution with a high accu-
racy. Moreover, Figure 17 describes the absolute error of the
proposed method with a different value of 𝛼 with 𝑚 = 8. It
is obvious that the method reaches a good approximation as
𝛼 approaches 1; also again with the increasing of the number
of Legendre functions, the absolute error is decreasing that
is, shown in Figure 19. The fuzzy approximate solution of the
problem is displayed in Figure 18 in the interval 0 ≤ 𝑥 ≤ 1.

Example 64. Consider the following initial value problem of
nonlinear FFDE:

(
𝑐
𝐷

𝛼

0
+𝑦) (𝑥) = 3𝐴 ⊙ 𝑦

2
, 0 < 𝛼 < 1, 0 ≤ 𝑥 ≤ 1,

𝑦 (0; 𝑟) = [0.5√𝑟, 0.2√1 − 𝑟 + 0.5] ,

(176)

in which 𝑦(𝑥) : 𝐿E[0, 1] ∩ 𝐶E
[0, 1] is a continuous fuzzy-

valued function and 𝑐
𝐷

𝛼

0
+ denotes the fuzzy Caputo frac-

tional derivative of order 𝛼. Also𝐴 = [1+𝑟, 3−𝑟] is a constant
fuzzy number.

For approximating the fuzzy solution of (162), using the
method described in Sections 4 and 5, if we approximate the
solution by 𝑚 shifted Legendre functions, then it needs to
consider the first𝑚 roots of the shifted Legendre polynomial
𝐿

𝑚+1
(𝑥). Initially using (162), we have
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Figure 17: The absolute error for different 𝛼 of Example 63,𝑚 = 8.

𝑚

∑

𝑗=0

𝑐
𝑟

𝑗
𝑑

(𝛼)

𝑖,𝑗
𝐿

𝑗
(𝑥; 𝑟) − 3 (3 − 𝑟)

𝑚

∑

𝑗=0

(𝑐
𝑟

𝑗
𝐿

𝑗
(𝑥; 𝑟))

2

= 0

𝑖 = 0, . . . , 𝑚,

𝑚

∑

𝑗=0

𝑐
𝑟

𝑗
𝑑

(𝛼)

𝑖,𝑗
𝐿

𝑗
(𝑥; 𝑟) − 3 (1 + 𝑟)

𝑚

∑

𝑗=0

(𝑐
𝑟

𝑗
𝐿

𝑗
(𝑥; 𝑟))

2

= 0

𝑖 = 0, . . . , 𝑚,

(177)

or we can rewrite it in the matrix form as

𝐶
𝑇

𝑚,−
𝐷

(𝛼)
Φ (𝑥) − 3 (3 − 𝑟) [𝐶

𝑇

𝑚,−
Φ (𝑥)]

2

= 0,

𝐶
𝑇

𝑚,+
𝐷

(𝛼)
Φ (𝑥) − 3 (1 + 𝑟) [𝐶

𝑇

𝑚,+
Φ (𝑥)]

2

= 0,

(178)

in which (𝑐𝑟
𝑗
) = [𝑐

𝑟

𝑗,−
, 𝑐

𝑟

𝑗,+
] and for 𝑗 = 0, 1, . . . , 𝑚. As it

was described in Section 5, we produce 𝑚 fuzzy algebraic
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Figure 18: The fuzzy approximate solution of Example 63, 𝛼 =

0.95,𝑚 = 8.
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Figure 19: The absolute error for different 𝑚 of Example 63, 𝛼 =

0.95.

equations by collecting (162) in the first 𝑚 root of 𝐿
𝑚+1
(𝑥).

Also using the initial condition (162), we have

𝑦 (0; 𝑟) ≃ 𝐶
𝑇

𝑚,−
Φ

𝑚 (
0) = (0.5√𝑟) ,

𝑦 (0; 𝑟) ≃ 𝐶
𝑇

𝑚,+
Φ

𝑚
(0) = (0.2√1 − 𝑟 + 0.5) .

(179)

These roots can be put in the (178) and deriving three
nonlinear fuzzy equation, then these equations be coupled
with (179). Finally with solving the fuzzy nonlinear equations
system, the unknown coefficients 𝑐

𝑗
are obtained.

Now, as an explanation, assume that𝑚 = 3, then the first
three roots of 𝐿

4
(𝑥) are as follows:

𝑥
0
= 0.0694, 𝑥

1
= 0.9306, 𝑥

2
= 0.3300, (180)
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Figure 20:The approximate solution for different𝑚 of Example 64,
𝛼 = 0.75.
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Figure 21: The fuzzy approximate solution of Example 64, 𝛼 =

0.75,𝑚 = 3.

which for 𝛼 = 0.95 and 𝑟 = 0.1 are

𝑐
0
= 0.2593, 𝑐

1
= 0.1106,

𝑐
2
= −0.0032, 𝑐

3
= 0.0054,

𝑐
0
= 0.1171, 𝑐

1
= −0.0203,

𝑐
2
= 0.0045, 𝑐

3
= 0.0155.

(181)

Finally, using the above results and (100), the approximate
solution is computed in each particular point easily.

The approximate solution for Example 64 with different
fractional Caputo order is derived in Table 7. The solution
has been estimated using 3 shifted Legendre functions. The
results in this table are at 𝑥 = 1. It is clear that the method
is applicable and valid for different fuzzy fractional order 𝛼.
Furthermore, by changing the number of shifted Legendre
functions, the approximate solution for 𝛼 = 0.75 at 𝑥 =

1 is revealed in Figure 20 which shows that with only a
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Table 7: The approximate solution of the proposed method for Example 64 at 𝑥 = 1 with𝑚 = 3.

𝑟
𝛼=0.5

𝑦
𝑟

3

𝛼=0.75
𝑦

𝑟

3

𝛼=0.85
𝑦

𝑟

3

𝛼=0.5
𝑦

𝑟

3

𝛼=0.75
𝑦

𝑟

3

𝛼=0.85
𝑦

𝑟

3

0 0.1402 0.1019 0.1040 0.8224 0.8856 0.9381
0.1 0.1434 0.1053 0.1080 0.3061 0.3250 0.3456
0.2 0.1468 0.1091 0.1123 0.2769 0.2917 0.3111
0.3 0.1503 0.1131 0.1170 0.2539 0.2646 0.2826
0.4 0.1539 0.1175 0.1222 0.2356 0.2418 0.2586
0.5 0.1578 0.1224 0.1278 0.2209 0.2223 0.2380
0.6 0.1618 0.1278 0.1340 0.2087 0.2056 0.2202
0.7 0.1662 0.1328 0.1409 0.1986 0.1912 0.2046
0.8 0.1706 0.1388 0.1485 0.1908 0.1785 0.1909
0.9 0.1752 0.1455 0.1571 0.1838 0.1674 0.1788
1 0.1778 0.1576 0.1680 0.1778 0.1576 0.1680

few number of shifted Legendre polynomials, desired results
are available. Ultimately, the fuzzy approximate solution is
described in Figure 21 with 𝛼 = 0.75 and𝑚 = 3.

Remark 65. It is consequential to note that, for a crisp differ-
ential equation of integer or fractional order, the problem

(
𝑐
𝐷

𝛼

0
+𝑦) (𝑥) + 𝐹 (𝑥, 𝑦 (𝑥)) = 0, 𝑥 ∈ [0, 𝑋] , (182)

is the same as

(
𝑐
𝐷

𝛼

0
+𝑦) (𝑥) = −𝐹 (𝑥, 𝑦 (𝑥)) , 𝑥 ∈ [0, 𝑋] , (183)

in which is 𝐹 is nonlinear operator, and in the case of space
E, both problems are not equivalent [83].

7. Conclusion

In this paper, a cluster of orthogonal functions named
shifted Legendre function is used to solve fuzzy fractional
differential equations under Caputo type. The benefit of the
shifted Legendre operational matrices method over other
existing orthogonal polynomials is its simplicity of execution
besides some other advantages. A general formulation of the
proposedmethod is provided in details. Also a complete error
analysis is considered in Section 5. In this paper, we tried to
answer some questions:

(i) how to derive a shifted Legendre operational matrice
method over the fuzzy fractional integration and
differentiation

(ii) how to solve the fuzzy fractional order differential
equations via the shifted Legendre operational matri-
ces of the fuzzy fractional derivative.

Moreover, it should be mentioned that another advantage
of this technique is that it decreases these problems to the
degree of solving a system of fuzzy algebraic equations thus
extremely making the problems easier. Several examples was
carried out to depict the effectiveness and the absence of
complexity of the proposed method. The achieved solutions
have a satisfactory results obtained with only a small number
of Legendre polynomials.

For future research, we will consider this method for
solving FFDEs with order 1 < 𝛼 < 2. Also we will apply
it under Riemann-Liouville’s H-differentiability. Apart from
this, the other orthogonal functions like Jacobi polynomials
will be extended for solving FFDEs.
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