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A class of higher-order 3-dimensional discrete systems with antiperiodic boundary conditions is investigated. Based on the existence
of the positive solution of linear homogeneous system, several new Lyapunov-type inequalities are established.

1. Introduction

Lyapunov-type inequalities have been proved to be very use-
ful in oscillation theory, disconjugacy, eigenvalue problems,
and numerous other applications in the theory of differential
and difference equations [1-3]. In recent years, there are many
literatures which improved and extended the classical Lya-
punov inequality including continuous and discrete cases [4-
6]. Guseinov and Kaymakgalan [7] considered the following
discrete Hamiltonian system:

Ax()=a@®)x(t+1)+b@)u(®),

¢))
Au(t)=-—ct)x({t+1)—a(t)u(t),

where A denotes the forward difference operator, with the
coefficients a(t) satisfying the condition 1 — a(t)#0, t €
Z. They [7] presented some Lyapunov-type inequalities for
discrete linear scalar Hamiltonian systems when the coef-
ficient c(f) is not necessarily nonnegative value. Applying
these inequalities, they [7] obtained some stability criteria for
discrete Hamiltonian systems.

For simplicity, the following assumptions are introduced:

l1-a(n)>0, VnelZ, (2)

x(a)=0, or x(a)x(a+1)<0,

x(b)=0, or x(b)xb+1)<0, (3)

max |x(n)| >0, a,beZ.

a<n<b

Recently, Zhang and Tang [8] also considered the discrete
linear Hamiltonian system:

Ax(n)=am)x(n+1)+pn)yMn)),

Ayn)=—-ymxmn+1)-an) yn),

(4)

where a(n), B(n), and y(n) are real-valued functions defined
on Z and A denotes the forward difference operator defined
by Ax(n) = x(n + 1) — x(n), B(n) > 0. They [8] obtained the
following interesting Lyapunov-type inequality.

Theorem A. Suppose that (2) holds, and let a,b € Z with a <
b — 1. Assume (4) has a real solution (x(n), y(n)) such that (3)
holds. Then one has the following inequality:

n=a n=

b-1 b b-1 1/2
z o (n)] + [ B(n) Z)ﬁ (n)] > 2. (5)

In 2012, the following assumptions are introduced in [9].

(H1) 7 (n), r,(n), f,(n), and f,(n) are real-valued functions,
and r;(n) > 0, and r,(n) > 0.

(H2) 1 < p;,p, < 00,040,069, By, B, > 0 satisfy a;/p; +
%/ p, = Land B,/p, + B/ p, = 1.
(H3) r;(n) and f;(n) are real-valued functions and r;(n) > 0

fori = 1,2,...,m. Furthermore, 1 < p; < oo and
o;(n) > 0 satisfy Y- (a;/p;) = 1.



Under the boundary value conditions, Zhang and Tang
[9] considered the following quasilinear difference systems with
hypotheses (H1) and (H2):

= A(ry () |Au ()P Au (n))
=fi(n)|umn+ DI* v+ D|%u@n+1),
(6)
= A(ry () |Av ()P 2 Av ()

= f,mum+ VP e+ D v+ 1),

and the quasilinear difference systems involving the (py, p5» .. -
P,)-Laplacian:

= A (ry () |[Auy ()] Ay (m)

= fL () |uy (n+ 1)
X uy (n+ D[+ Ju,, (n+ D[ uy (n+ 1),
— A (ry () | Ay ()| Aty (1))

= f, ) |uy (n+ D[

X |uy (n+ 1)|o¢f2 o luy, (n+ 1)|‘X*”u2 n+1),

-A (rm (n) |Aum (n)|P’”72Aum (n))
= fou () [uy (n+ D[

X |u, (n + 1)|o62 |y, (n+ 1)|a’"_2um n+1).

7)

Some Lyapunov-type inequalities are established in [9].

Recently, antiperiodic problems have received consider-
able attention as antiperiodic boundary conditions appear in
numerous situations [10-12]. For the sake of convenience, in
this paper, one will only consider the following higher-order 3-
dimensional discrete system:

|A™x (m)|" A" x (n)
+ fi My, (x) vy, (y M)y, (z(0) =0,

A"y ] A"y (n) ©
+ My, (xm) v, (y() Y, (0) =0,

|A™z ()| 72 A™ 2 (n)
+ f3 (M vy, (x M)y, (y (M) ygs5 (z(m) =0,

where 1 < p, < +0o for k = 1,2,3; g;; are nonnegative
constants for i,j = 1,2,3; y,(u) = [l u for g > 0 with
Yo (u) = sign(u) = +1 forq = 0.

Obviously, the results obtained in [9] required that o, [ p, +
a/p, = Land Pi/py + B,/p, = Lor Y7 (ai/p;) = 1. The
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order of the quasilinear difference systems considered in [9] is
less than 3. In this paper, one will remove the unreasonably
severe constraints o,/ p;, + &, /p, = Land B,/p, + Bo/p, = 1
or Zﬁl(oci/pi) = 1in [9]. one will introduce the antiperiodic
boundary conditions instead of boundary conditions in [9].
In this paper, one will establish some new Lyapunov-type
inequalities for higher-order 3-dimensional discrete system (8)
by a method different from that in [9] under the following
antiperiodic boundary conditions:

ANx(a)+ANx(@b)=Ny(@a)+ ANy (D)
=Az(a)+ Az (b) =0, ©)
i=0,1,...

,m—1.

The similar results for higher-order m-dimensional discrete
system are easy to obtain.

Throughout this paper, p; > 1 and p, is a conjugate expo-
nent; that is, 1/p; + I/P; =1,i=1,2,3.

2. Main Results

Theorem 1. Let a < b, and assume that there exists a positive
solution (e, e,, e5) of the following linear homogeneous system:

(@) +1- p)e + dr16 +q3,63 =0,
qipe1 + (gop + 1 - py)e; + 5,63 =0, (10)

91361 T 36t (%,3 +1-p;)e; =0.

If (x(n), y(n), z(n)) is a nonzero solution of (8) satisfying the
antiperiodic boundary conditions (9), then

3 /b1 (1-1/piey
H( Z |fk(n)|Pk/(Pk_1)>

k=1 \n=a

(1)

L (p—1)e;
> (b- a)z"3=l Z?=1(‘1a/‘/1’j)ef<_2 >mz W e.
b-a

Proof. Let (x(n), y(n), and z(n)) be a nonzero solution of (8).
By the antiperiodic boundary conditions (9), x(a) + x(b) = 0.
For n € Z[a, b], we have

n-1

b-1
2= 2Y e+ ) -x @] -2 Y [x(k+1) - x (k)]
2 2
k=n

k=a
1 n-1 1 b-1
- EZAx (k) — EZAx (k).
k=a k=n
(12)

Using discrete Holder inequality gives

lb—l
()l < 2 ) 1Ax ()]
k=a
(13)

1 , b-1 1/P1
< S(b-a)' <Z|Ax (k)|"1> :

k=a
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Similarly,

'Ax(n |

Z |A1+1 |
< l(b _a)l/p; (ElAHlx(k)Fl)l/Pl
<5 2 )

Then

1 , (b1
|Aix(n)|P1 < (%)P (b_a)pl/pl (I;|Az+1x(k)|pl>'

Summing (15) from a to b — 1, we have

b1 ,
2 [0
n=a

P

g(b—a)< ) (b- a)pl (Z'Am (k)lzn)

that is,

b-1 1/P1
<Z|A"x (k)|"1> <
k=a

So

1/py
|x ()] < (b a)“"l(Zle (k)|Pl>

a

b —a b-1 ) 1/P1
(S )
k=a

(14)

(15)

(16)

17)

<l(b—a)l/‘”;<b__a>m_1 bimm ()| "
<35 5 2 x .

Similarly,

(18)

N S 1/
ool s - (257 (ZIA'"ﬂk)I‘") |

k=a

(19)

m-1/b-1 1/ps
29l < 56 a)”f’s(b 5 “) (ZIAmz<k>IP3> :
k=a

(20)

Multiplying the first equation of (8) by A™x(n) and using
inequalities (18)-(20), we have

|A™x (n)|‘D1
=|-fi )y, )y, (y )y, (z0) A"x (1)
= |fy )] Ix )| |y ()| "2 |z ()| |A"x ()]

|: - a)1/p1<b2a>m—1
- 1py ]
x <Z|Amx (k)l"l) ]
k=a
x 1<b—a)“"5<b_—“)m
2 2
- 1/p, 1Nz
X<Z|Amy(k)|P2> ]
k=a
x 1(b—a)l/";(b_—”)m_1
2 2
b1 1/ps 193
X <Z|Amz(k)|Ps> ]
k=a

x| f1 ()] |A™x ()] .
(21

Then

b-1
Z |A™x (n)lp1
n=a

m(y ] 191,5)

b-a
2

q1,1/P1 a12/p>
<ZIA x(k)V") (ZIA y(k>l"2)

‘113/P3b 1
(ZIA z (k) I"ﬁ) > i @[ ()

< (b _ a)‘Z?:ﬂ%,ﬂP, (

n=a

m( ,141]

< (b _ a)iz:]?ZI(ql,j/p] b a

2

q1,1/ P a12/P2
(T ) (B



4
b-1 q13/P3 1/p;
<(Twwor ) (Siner)
k=a
b-1 Up
X <Z|Amx (n)|P‘> )
(22)
So
b-1 (@1, +1)/p1-1 b-1 1.2/ P2
<Z|A”‘x <k>|“> (ZIA”“y <k>|“>
k=a k=a
b-1 Dslbs /- 1/p}
X<Z|Amz(k)|‘03> (Z'f (1’1)|P1> (23)
k=a

2 >m(2?_1 qu,5)

> (b _ a)z;:I(QI,j/Pj)(
b-a

For the second and third equations of (8), we also have

b-1 a1/ P1 b-1 (q22+1)/py—1
<Z|Amx(k)|l’1> <Z|Amy(k)lpz>
k=a k=a

b—1 92,3/ Ps 1/p;
X<Z|Amz(k)lpa> <Z|f (H)|P2> (24)
k=a

) 21142])

> (b _ a)Z?ﬂ(qz,j/P/ < ,

b-1 qs,1/p1 32/ P2
(ZlA’“x(k)l“) |A y<k>|”>

k=a
(@55+1)/p3—1 1/p}
( Y A"z (k)| <Z|f (n)l"S)

a0
> (b- a)Z?:wqa,j/p»(_z )m Hrs

b-a

(25)

Raising both sides of inequalities (23)-(25) to the pow-
ers ey, e,, and e, respectively, and multiplying the resulting
inequalities give

b1 (L1 due)/ pr+(=pey/ py
(ZIA’"x (k)l"l)

k=a
b-1 (Z?:l qize)/ py+(1=pyley/ p,
% <Z|Amy (k)|P2 >

k=a
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-1 (Z?:l gise;)/ pst+(1-psles/ps
X <Z|Amz (k)|P3>

k=a

3 /b1 , e/
x H(Zlfk <n>l”k>
k=1 \n=a

3 v3
> (b _ a)Zx'Szl Z?:l((qi,j/pj)ei)< 2 )m(Zi:1 Zj:l qt’]eX)
= _b s .

(26)

Since (ey, e,, €3) is a positive solution of the linear homo-
geneous system (10), then

3 /b1 , e/ i
[1(Za o)
k=1 \n=a (27)
30¢3

> (b _ a)z?:1 Z;:l((qi,j/pj)ei)< 2 ) (02 ZFI qi, ;).
- b-a

Summing both sides of linear homogeneous system (10)
yields

quu i~ z (pi—1De;. (28)

i=1j=1

Noting that 1/p; + 1/p, = 1,k = 1,2, 3, we have

3 b-1 P 3 (I_I/Pk)ek
(ﬂ) Pr/ (P~
[1(Zps o

3 mY L, (pi-De)
> (b _ a)Zi:I Z;ﬂ((%‘,j/l’j)e;‘)( - % a) ! .

(29)

Corollary 2. Leta < b and assume

(‘11,1 +1-p;)+ a1 + 4931 =0,

G2+ (@ap+1-py)+q3, =0, (30)

D3t st (%,3 +1-p;)=0.

If (x(n), y(n), z(n)) is a nonzero solution of (8) satisfying the
antiperiodic boundary conditions (9), then

3 (b1 o) (1=1/pi)
(I’l) Pl (Pr—=
[1( 2o

31
2 >mz?1<p,-—1>

> (b a)Z, 12) l(qx]/p] (b .
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