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We consider the uniformly random attractor for the three-dimensional stochastic nonautonomous Camassa-Holm equations in
the periodic box [0, 𝑙]

3 in this paper. We associate with the concepts of uniform attractor and random attractor and produce the
concept of uniformly random attractor for a process. Then we establish the existence of the uniformly random attractor in𝐷(𝐴

1/2
)

and𝐷(𝐴) for the equations.

1. Introduction

The Camassa-Holm equation
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𝑥
𝑢
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− 𝑢𝑢
𝑥𝑥𝑥

= 0 (1)

models the unidirectional propagation of shallow water
waves over a flat bottom [1–4]. It has been paid a large number
of attentions due to its rich nonlinear phenomenology. It is
completely integrable [1], and it has stable solutions [5]. It
possesses the peakons 𝑢 = 𝑒

|𝑥−𝑐𝑡| which has been proved
stable [6, 7]. It has been shown that (1) is locally well-posed
for initial data 𝑢

0
∈ 𝐻

𝑠
(R) (𝑠 > 3/2) [8, 9]. There are a rich

variety of global solutions and blow-up solutions obtained in
[8–10]. The global existence of weak solutions, conservative
solutions, and disispative solutions was investigated in [6, 11,
12].

Following the Camassa-Holm (1), some generalized types
of the equation have been deeply considered bymany authors,
for instance [13–18].The authors in [19] considered the three-
dimensional Camassa-Holm equations subject to periodic
boundary conditions:

𝜕

𝜕𝑡
(𝛼
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1
Δ𝑢) − ]Δ (𝛼

2

0
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2

1
Δ𝑢) − 𝑢

× (∇ × (𝛼
2

0
𝑢 − 𝛼

2

1
Δ𝑢)) +

1

𝜌
0

∇𝑝 = 𝑓 (𝑥) ,

∇ ⋅ 𝑢 = 0,

𝑢 (𝑥, 0) = 𝑢
0 (𝑥) .

(2)

They established the global regularity of solutions of the
equation and provided the estimates for the Hausdorff and
fractal dimensions of the global attractor.

In [20] the authors analyzed the effects produced by
stochastic perturbations in the deterministic version of
the three-dimensional Lagrangian averaged Navier-Stokes-𝛼
model:

𝜕

𝜕𝑡
(𝑢 − 𝛼Δ𝑢) + ] (𝐴𝑢 − 𝛼Δ (𝐴𝑢))

+ (𝑢 ⋅ ∇) (𝑢 − 𝛼Δ𝑢) − 𝛼∇𝑢
∗
⋅ Δ𝑢 + ∇𝑝

= 𝐹 (𝑡, 𝑢) + 𝐺 (𝑡, 𝑢) 𝑊̇ (𝑡) ,

∇ ⋅ 𝑢 = 0, in 𝐷 × (0, +∞) ,

𝑢 = 0, 𝐴𝑢 = 0, on 𝜕𝐷 × (0, +∞) ,

𝑢 (0) = 𝑢
0
,

(3)

that is, the persistence of exponential stability as well as
possible stabilization effects produced by the noise.
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In [21] the authors proved the existence of the pullback
and forward attractors for three-dimensional Lagrangian
averaged Navier-Stokes-𝛼 model with delay:

𝜕

𝜕𝑡
(𝑢 − 𝛼Δ𝑢) + ] (𝐴𝑢 − 𝛼Δ (𝐴𝑢))

+ (𝑢 ⋅ ∇) (𝑢 − 𝛼Δ𝑢) − 𝛼∇𝑢
∗
⋅ Δ𝑢 + ∇𝑝

= 𝑓 (𝑡) + 𝐹 (𝑡, 𝑢
𝑡
) ,

∇ ⋅ 𝑢 = 0, in 𝐷 × (𝜏, +∞) ,

𝑢 = 0, 𝐴𝑢 = 0, on 𝜕𝐷 × (𝜏, +∞) ,

𝑢 (𝑡) = 𝜙 (𝑡 − 𝜏) , in (𝜏 − ℎ, 𝜏) ,

𝑢 (𝜏) = 𝑢
0
.

(4)

In [22] the author investigated the existence of finite
dimensional uniform attractor for three-dimensional nonau-
tonomous Camassa-Holm equations with periodic boundary
conditions:

𝜕

𝜕𝑡
(𝛼
2

0
𝑢 − 𝛼

2

1
Δ𝑢) − ]Δ (𝛼

2

0
𝑢 − 𝛼

2

1
Δ𝑢)

− 𝑢 × (∇ × (𝛼
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1
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1

𝜌
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∇𝑝 = 𝑓 (𝑥, 𝑡) ,

∇ ⋅ 𝑢 = 0,

𝑢 (𝑥, 𝜏) = 𝑢
𝜏 (𝑥) .

(5)

In [23, 24] the author studied the existence of uniform
attractor and convergence of the attractor as 𝜀 → 0

+ for
a nonautonomous three-dimensional Lagrangian averaged
Navier-Stokes-𝛼 model with singularly oscillating external
force:

𝜕

𝜕𝑡
(𝑢 − 𝛼Δ𝑢) + ] (𝐴𝑢 − 𝛼Δ (𝐴𝑢))

+ (𝑢 ⋅ ∇) (𝑢 − 𝛼Δ𝑢) − 𝛼∇𝑢
∗
⋅ Δ𝑢 + ∇𝑝 = 𝑔

𝜀
,

∇ ⋅ 𝑢 = 0, in 𝐷 × (𝜏, +∞) ,

𝑢 = 0, 𝐴𝑢 = 0, on 𝜕𝐷 × (𝜏, +∞) ,

𝑢 (𝜏) = 𝑢
𝜏
,

(6)

where

𝑔
𝜀
(𝑥, 𝑦, 𝑧, 𝑡)

=
{

{

{

𝑔
0
(𝑥, 𝑦, 𝑧, 𝑡) +

1

𝜀𝜌
𝑔
1
(𝑥, 𝑦, 𝑧, 𝑡) , 𝜀 ∈(0, 1] , 𝜌∈[0, 1) ,

𝑔
0
(𝑥, 𝑦, 𝑧, 𝑡) , 𝜀 = 0.

(7)

Motivated by all their works, we initial our work to
investigate the equations perturbed by an additive noise. We
consider the following viscous version of three-dimensional

stochastic nonautonomous Camassa-Holm equation in the
periodic box [0, 𝑙]

3:
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where 𝑝/𝜌
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0
+ 𝛼
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0
|𝑢|
2
− 𝛼

2

1
(𝑢 ⋅ Δ𝑢) is the modified

pressure, while 𝜋 is the pressure, ] > 0 is the constant
viscosity, and 𝜌

0
> 0 is a constant density. The function

𝑓 is a given body forcing, and 𝛼
0

> 0, 𝛼
1

≥ 0 are
scale parameters. 𝑊(𝑡) are two-sided real-valued Wiener
processes on a probability space which will be specified later.
𝑄 : R𝑛 → 𝐿

2
([0, 𝑙]

3
)
3 is a bounded linear operator. Also

observing that at the limiting case 𝛼
0
= 1, 𝛼

1
= 0, we obtain

the three-dimensional stochastic Navier-Stokes with periodic
boundary conditions.

Attractor is an important concept to describe the long-
time behavior of solutions for a system in mathematical
physics [25–27]. The notion of uniform attractor parallelling
to that of the global autonomous systems has been systemat-
ically considered in [26]. In the approach presented in [27],
to construct the uniform attractor, instead of the associated
process {U

𝜎
(𝑡, 𝜏), 𝑡 ≥ 𝜏, 𝜏 ∈ R}, one should consider a family

of processes {U
𝜎
(𝑡, 𝑠)}, 𝜎 ∈ Σ, in some Banach space 𝐸 where

the functional parameter 𝜎
0
(𝑠), 𝑠 ∈ R, is called the symbol

and Σ is the symbol space including 𝜎
0
(𝑠). The approach

implies that the structure of uniform attractor is described
by the representation as a union of sections of all kernels of
the family of processes. The kernel is the set of all complete
trajectories of a process.

While in the real world, a system is usually uncertain due
to some external noise, which is random.The random effects
are considered not only as compensations for the defects in
some deterministic models but rather essential phenomena
[28–32]. In order to capture the essential dynamics of random
dynamical systems with wide fluctuations, the concept of
pullback random attractor was introduced in [29, 33, 34], as
an extension to stochastic systems of the theory of attractors
for deterministic systems in [25, 27, 35–43]. A pullback
random attractorA(𝜔) which can be constructed by a closed
random absorbing set K(𝜔) for an asymptotically compact
stochastic mapping S(𝑡, 𝑠, 𝜔) is given by

A (𝜔) = ⋂
𝑠≥𝜏

⋃
𝑡≥𝑠

S(𝑡, 𝜏, 𝜃
𝜏−𝑡

𝜔,K(𝜃
𝜏−𝑡

𝜔)), (9)

where 𝜃
𝑡
is the metric process on probability space. The

existence of random attractors for stochastic dynamical
systems has been investigated extensively by many authors
[29, 33, 34, 44–49]. In our paper, we associate with the
concepts of uniform attractor and random attractor together
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and give the concept of uniformly random attractor.Then we
consider (8) in an appropriate space and show that there is a
uniformly (with respect to 𝑓) random attractor A(𝜔) which
all solutions approach as 𝑡 → ∞. To our best knowledge,
the long-time dynamical behavior of the three-dimensional
stochastic nonautonomousCamassa-Holm equations has not
been discussed, and we believe that it is a significant work to
obtain a uniformly (with respect to 𝑓) random attractor for
the system.

The paper is organized as follows. In Section 2, we
present the abstract results describing the uniformly random
attractor and some relevant definitions. In Section 3, we give
some functional settings which are foundations for us to
obtain the existence of uniformly (with respect to 𝑓) random
attractor of (8). In Section 4, we convert (8) with an additive
noise to deterministic equations with random parameters
and define a process corresponding to the equations. In
Section 5, we obtain the existence of uniformly (with respect
to 𝑓) random attractors for (8) on the basis of the above
preparations.

2. Abstract Results

In this section, we associate with the concepts of uniform
attractor and random attractor and obtain the notion of uni-
formly random attractor. Let (𝐸, ‖ ⋅ ‖

𝐸
) be a separable Hilbert

space with the Borel 𝜎-algebra B(𝐸), and let (Ω,F,P) be a
probability space.

Definition 1. (𝜃
𝑡
)
𝑡∈R is called ameasurable flow on probability

space (Ω,F) if 𝜃 : R×Ω → Ω is (R×F,F)-measurable, 𝜃
0

is the identity onΩ, 𝜃
𝑠+𝑡

= 𝜃
𝑡
∘ 𝜃
𝑠
for all 𝑠, 𝑡 ∈ R, and 𝜃

𝑡
P = P

for all 𝑡 ∈ R.

Definition 2. A random bounded set {𝐵(𝜔)}
𝜔∈Ω

of 𝐸, is called
tempered with respect to (𝜃

𝑡
)
𝑡∈R if for P a.e. 𝜔 ∈ Ω,

lim
𝑡→∞

𝑒
−𝛽𝑡

𝑑 (𝐵 (𝜃
−𝑡
𝜔)) = 0 ∀𝛽 > 0, (10)

where 𝑑(𝐵) = sup
𝑥∈𝐸

‖𝑥‖
𝐸
.

Definition 3. A random set {K(𝜔)}
𝜔∈Ω

is called an absorbing
set of a stochastic mappingS(𝑡, 𝑠, 𝜔) in 𝐸 if for every random
bounded set 𝐵 and P a.e. 𝜔 ∈ Ω, there exists 𝑡

𝐵
(𝜔) > 0 such

that
S (𝑡, 𝑠, 𝜃

𝑠−𝑡
𝜔) 𝐵 (𝜃

𝑠−𝑡
(𝜔)) ⊆ K (𝜔) ∀𝑡 ≥ 𝑡

𝐵
(𝜔) . (11)

Let {U(𝑡, 𝜏, 𝜔)} = {U(𝑡, 𝜏, 𝜔), 𝑡 ≥ 𝜏, 𝑡, 𝜏 ∈ R, 𝜔 ∈ Ω} be a
three-parameter family of mappings acting on 𝐸:

U (𝑡, 𝜏, 𝜔) : 𝐸 󳨀→ 𝐸, 𝑡 ≥ 𝜏, 𝑡, 𝜏 ∈ R, 𝜔 ∈ Ω. (12)
Definition 4. A three-parameter family of random mappings
{U(𝑡, 𝜏, 𝜔)} is said to be a process in 𝐸 if it is (B(R+) ×

B(R+) ×F ×B(𝐸),B(𝐸))-measurable and for P a.e. 𝜔 ∈ Ω

it satisfies
U (𝑡, 𝑠, 𝜃

𝑠−𝜏
𝜔) ∘U (𝑠, 𝜏, 𝜔) = U (𝑡, 𝜏, 𝜔) ,

∀𝑡 ≥ 𝑠 ≥ 𝜏, 𝜏 ∈ R,

U (𝜏, 𝜏, 𝜔) = 𝐼𝑑, 𝜏 ∈ R.

(13)

Definition 5. A family of processesU
𝜎
(𝑡, 𝜏, 𝜔), 𝜎 ∈ Σ, acting

in𝐸 is said to be (𝐸×Σ, 𝐸)-continuous, if, forP a.e.𝜔 ∈ Ω and
fixed 𝑡, 𝜏, 𝑡 ≥ 𝜏, the random mapping (𝑢, 𝜎) 󳨃→ U

𝜎
(𝑡, 𝜏, 𝜔)𝑢

is continuous from 𝐸 × Σ into 𝐸.

Definition 6. A random curve 𝑢(𝑠, 𝜔), 𝑠 ∈ R, is said to be
a complete trajectory of the process {U(𝑡, 𝜏, 𝜔)} if for P a.e.
𝜔 ∈ Ω

{U (𝑡, 𝜏, 𝜔)} 𝑢 (𝜏, 𝜔) = 𝑢 (𝑡, 𝜔) , ∀𝑡 ≥ 𝜏, 𝑡, 𝜏 ∈ R. (14)

Definition 7. The random kernel N(𝜔) of the process
{U(𝑡, 𝜏, 𝜔)} consists of all bounded complete trajectories of
the process {U(𝑡, 𝜏, 𝜔)}:

N (𝜔) = {𝑢 (⋅, 𝜔) | 𝑢 (⋅, 𝜔) satisfies Definition 6

and ‖𝑢 (𝑠, 𝜔)‖𝐸 ≤ 𝑀
𝑢
(𝜔) for 𝑠 ∈ R} .

(15)

Definition 8. The random set

N (𝑠, 𝜔) = {𝑢 (𝑠, 𝜔) | 𝑢 (⋅, 𝜔) ∈ N (𝜔)} ⊆ 𝐸 (16)

is said to be the random kernel section at time 𝑡 = 𝑠, 𝑠 ∈ R.

Let 𝐵
𝑡
(𝜔) = ⋃

𝜎∈Σ
⋃
𝑠≥𝑡

U
𝜎
(𝑠, 𝑡, 𝜃

𝑡−𝑠
𝜔)𝐵(𝜃

𝑡−𝑠
𝜔), where

𝐵(𝜔) is a random set. Denote that 𝐵(𝜔) is closure of the set
𝐵(𝜔) and R

𝜏
= {𝑡 ∈ R | 𝑡 ≥ 𝜏}.

Definition 9. Arandom setW
𝜏,Σ

(𝐵)(𝜔) = ⋂
𝑡≥𝜏

𝐵
𝑡
(𝜔) is called

the uniformly (with respect to 𝜎 ∈ Σ) random (pullback)
omega-limit set of 𝐵(𝜔) which can be characterized as
follows, analogously to that for semigroups,

𝑦∈W
𝜏,Σ

(𝐵) (𝜔)⇐⇒ there are sequences {𝑥
𝑛
}⊂𝐵 (𝜃

𝜏−𝑡
𝑛

𝜔) ,

{𝜎
𝑛
} ⊂ Σ, {𝑡

𝑛
} ⊂ R

𝜏
,

such that 𝑡
𝑛
󳨀→ +∞ and

U
𝜎
𝑛

(𝑡
𝑛
, 𝜏, 𝜃

𝜏−𝑡
𝑛

𝜔) 𝑥
𝑛
󳨀→ 𝑦 (𝑛 󳨀→ ∞) .

(17)

Let 𝐵(𝜔) ∈ B(𝐸), and its Kuratowski measure of
noncompactness 𝜅(𝐵) is defined by

𝜅 (𝐵) = inf {𝛿 > 0 | 𝐵 admits a finit

covering by sets of diameter ≤ 𝛿} .
(18)

Definition 10. A family of processes {U
𝜎
(𝑡, 𝜏, 𝜔)}, 𝜎 ∈ Σ,

is said to be uniformly (with respect to 𝜎 ∈ Σ) random
(pullback) omega-limit compact if, for P a.e. 𝜔 ∈ Ω and
any 𝜏 ∈ R, the set 𝐵

𝑡
(𝜔) is bounded for every 𝑡 and

lim
𝑡→∞

𝜅(𝐵
𝑡
(𝜔)) = 0.

We now present a method to verify the uniformly (with
respect to 𝜎 ∈ Σ) random (pullback) omega-limit compact-
ness.

Definition 11. A family of processes {U
𝜎
(𝑡, 𝜏, 𝜔)}, 𝜎 ∈ Σ, is

said to satisfy uniformly (with respect to 𝜎 ∈ Σ) condition
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(C) if, for P a.e. 𝜔 ∈ Ω and any fixed 𝜏 ∈ R, tempered set
𝐵(𝜔) ∈ B(𝐸), 𝜀 > 0, there exist 𝑡

0
= 𝑡(𝜏, 𝐵, 𝜀, 𝜔) ≥ 𝜏 and a

finite dimensional subspace 𝐸
1
of 𝐸 such that

(i) Π(⋃
𝜎∈Σ

⋃
𝑡≥𝑡
0

U
𝜎
(𝑡, 𝜏, 𝜃

𝜏−𝑡
𝜔)𝐵(𝜃

𝜏−𝑡
𝜔)) is bounded,

and
(ii) ‖(𝐼 − Π)(⋃

𝜎∈Σ
⋃
𝑡≥𝑡
0

U
𝜎
(𝑡, 𝜏, 𝜃

𝜏−𝑡
𝜔)𝑥)‖ ≤ 𝜀, ∀𝑥 ∈

𝐵(𝜃
𝜏−𝑡

𝜔),

where Π : 𝐸 → 𝐸
1
is a bounded projector.

Therefore, we have the following results.

Theorem 12. Let Σ be a metric space, and let 𝑇(𝑡) be a
continuous invariant semigroup 𝑇(𝑡)Σ = Σ on Σ. A family
of processes {U(𝑡, 𝜏, 𝜔)}, 𝜎 ∈ Σ, acting in 𝐸 is (𝐸 × Σ, 𝐸)-
continuous (weakly) and possesses the compact uniformly (with
respect to 𝜎 ∈ Σ) random attractorA

Σ
(𝜔) satisfying

A
Σ (𝜔) = W

0,Σ
(𝐵
0 (𝜔)) = W

𝜏,Σ
(𝐵
0 (𝜔))

= ⋃
𝜎∈Σ

N
𝜎
(0, 𝜔) , ∀𝜏 ∈ R,

(19)

if it

(i) has a bounded uniformly (with respect to 𝜎 ∈ Σ)
random absorbing set 𝐵

0
(𝜔), and

(ii) satisfies uniformly (with respect to 𝜎 ∈ Σ) condition
(C).

Moreover, if 𝐸 is a uniformly convex Banach space, then
the converse is true.

3. Functional Setting

We consider the probability space (Ω,F,P) where

Ω = {𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇
∈ 𝐶 (R,R

𝑛
) : 𝜔 (0) = 0} . (20)

F is the Borel 𝜎-algebra induced by the compact-open
topology of Ω and P the corresponding Wiener measure on
(Ω,F). Then we will identify𝑊(𝑡) with

𝑊(𝑡) = (𝑤
1 (𝑡) , 𝑤2 (𝑡) , . . . , 𝑤𝑛 (𝑡))

𝑇
= 𝜔 (𝑡) for 𝑡 ∈ R.

(21)

Define the time shift by

𝜃
𝑡
𝜔 (⋅) = 𝜔 (⋅ + 𝑡) − 𝜔 (𝑡) , 𝜔 ∈ Ω, 𝑡 ∈ R. (22)

Then {𝜃
𝑡
}
𝑡∈R is a family of measure preserving transforma-

tions on probability space (Ω,F,P) in Definition 1.
Next we define a symbol space Σ(𝜎

0
) for (8). We assume

that the function 𝑓(⋅, 𝑡) =: 𝑓(𝑡) ∈ 𝐿
2

loc(R; 𝐸) is translation
bounded. That is, for 𝑓(𝑠) ∈ 𝐿

2

𝑏
(R; 𝐸), we have

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝐿
2

𝑏

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝐿
2

𝑏
(R;𝐸)

= sup
𝑡∈R

∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑓(𝑠)
󵄩󵄩󵄩󵄩
2

𝐸
𝑑𝑠 < ∞. (23)

Definition 13 (cf. [41]). A function 𝜑 ∈ 𝐿
2

loc(R; 𝐸) is said to be
normal if, for any 𝜀 > 0, there exists 𝛿 > 0 such that

sup
𝑡∈R

∫
𝑡+𝛿

𝑡

󵄩󵄩󵄩󵄩𝜑(𝑠)
󵄩󵄩󵄩󵄩
2

𝐸
𝑑𝑠 ≤ 𝜀. (24)

We denote by 𝐿
2

𝑛
(R; 𝐸) the set of all normal functions in

𝐿
2

loc(R; 𝐸). Obviously, 𝐿2
𝑛
(R; 𝐸) ⊂ 𝐿

2

𝑏
(R; 𝐸), and it is proved

in [41] that 𝐿
2

𝑛
(R; 𝐸) is a closed subset of 𝐿

2

𝑏
(R; 𝐸). Let a

fixed symbol 𝜎
0
(𝑠) = 𝑓

0
(𝑠) = 𝑓

0
(⋅, 𝑠) be normal functions in

𝐿
2

loc(R; 𝐸). That is, the family of translation {𝑓
0
(𝑠 + 𝜂), 𝜂 ∈

R} forms a normal function set in 𝐿
2

loc([𝑇1, 𝑇2]; 𝐸), where
[𝑇
1
, 𝑇
2
] is an arbitrary interval of the time axis R. Therefore,

Σ (𝜎
0
) = Σ (𝑓

0
) = {𝑓

0
(𝑥, 𝑠 + 𝜂) | 𝜂 ∈ R}

𝐿
2

loc(R;𝐸)
. (25)

After integrating (8), one can easily see that

𝑑

𝑑𝑡
∫
[0,𝑙]
3

(𝛼
2

0
𝑢 − 𝛼

2

1
Δ𝑢) 𝑑𝑥 = ∫

[0,𝑙]
3

𝑓𝑑𝑥 + ∫
[0,𝑙]
3

𝑄𝑊
𝑡
𝑑𝑥.

(26)

On the other hand, because of the spatial periodicity of
solution, we have ∫

[0,𝑙]
3 Δ𝑢𝑑𝑥 = 0. Then we have

𝑑

𝑑𝑡
∫
[0,𝑙]
3

𝛼
2

0
𝑢𝑑𝑥 = ∫

[0,𝑙]
3

𝑓𝑑𝑥 + ∫
[0,𝑙]
3

𝑄𝑊
𝑡
𝑑𝑥. (27)

That is, the mean of solution is invariant provided that the
means of the forcing termand the perturbing termare zero. In
this paper, we will consider the forcing term, perturbing term
and initial values with spatial means that are zero. That is, we
assume ∫

[0,𝑙]
3 𝑓𝑑𝑥 = 0, ∫

[0,𝑙]
3 𝑄𝑊

𝑡
𝑑𝑥 = 0, and ∫

[0,𝑙]
3 𝑢𝜏𝑑𝑥 = 0.

Next we introduce some essential functional spaces.

(i) We denote by V = {𝜑 : 𝜑 a vector-valued
trigonometric polynomial defined on [0, 𝑙]

3, such that
∇ ⋅ 𝜑 = 0 and ∫

[0,𝑙]
3 𝜑(𝑥)𝑑𝑥 = 0}, and we let

𝐻 and 𝑉 be the closure of V in 𝐿
2
([0, 𝑙]

3
)
3 and in

𝐻
1
([0, 𝑙]

3
)
3, respectively.We can observe that𝐻⊥, the

orthogonal complement of 𝐻 in 𝐿
2
([0, 𝑙]

3
)
3, is {∇𝑝 :

𝑝 ∈ 𝐻
1
([0, 𝑙]

3
)} (cf. [38, 41]).

(ii) We denote by 𝑃 : 𝐿
2
([0, 𝑙]

3
)
3

→ 𝐻 the 𝐿2 orthogonal
projection, usually referred to as Helmholtz-Leray
projector, and by 𝐴 = −𝑃Δ the Stokes operator with
domain 𝐷(𝐴) = 𝐻

2
([0, 𝑙]

3
)
3
⋂𝑉. Note that, in the

case of periodic boundary condition, 𝐴 = −Δ|
𝐷(𝐴)

is
a self-adjoint positive operator with compact inverse.
Hence, the space 𝐻 has an orthogonal basis {𝑒

𝑗
}
∞

𝑗
of

eigenfunctions of 𝐴, that is, 𝐴𝑒
𝑗
= 𝜆

𝑗
𝑒
𝑗
, with

0 < 𝜆
1
≤ 𝜆

2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑗
≤ ⋅ ⋅ ⋅ ,

𝜆
𝑗
→ +∞, as 𝑗 → ∞.

(28)

In fact, these eigenvalues have the form |𝑘|
2
4𝜋/𝐿

2

with 𝑘 ∈ Z3/{0}.
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(iii) We denote by (⋅, ⋅) the 𝐿
2
([0, 𝑙]

3
)
3 inner product

and by ‖ ⋅ ‖
2
the corresponding 𝐿

2
([0, 𝑙]

3
)
3 norm. By

virtue of Poincaré inequality one can show that there
is a constant 𝑐 > 0, such that

𝑐‖𝐴𝑢‖2 ≤ ‖𝑢‖𝐻2 ≤ 𝑐
−1
‖𝐴𝑢‖2

for every 𝑢 ∈ 𝐷 (𝐴) ,

𝑐
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑢
󵄩󵄩󵄩󵄩󵄩2

≤ ‖𝑢‖𝐻1 ≤ 𝑐
−1󵄩󵄩󵄩󵄩󵄩

𝐴
1/2

𝑢
󵄩󵄩󵄩󵄩󵄩2

for every 𝑢 ∈ 𝑉.

(29)

Moreover, one can show that 𝑉 = 𝐷(𝐴
1/2

) (cf. [38,
42]). We denote by 𝑉

󸀠 the dual of 𝑉. Hereafter 𝑐

will denote a generic scale invariant positive constant
which is independent of the physical parameters in
the equation.

(iv) Following the notation for the Navier-Stokes equa-
tions we denote yhat 𝐵(𝑢, V) = 𝑃[(𝑢 ⋅ ∇)V], and we
set 𝐵(V)𝑢 = 𝐵(𝑢, V) for every 𝑢, V ∈ 𝑉. That is, for
every fixed V ∈ 𝑉, 𝐵(V) is a linear operator acting on
𝑢. Note that

(𝐵 (𝑢, V) , 𝑤) = − (𝐵 (𝑢, 𝑤) , V)

for every 𝑢, V, 𝑤 ∈ 𝑉.
(30)

We also denote that 𝐵(𝑢, V) = −𝑃(𝑢 × (∇ × V)) for every 𝑢, V ∈

𝑉. Using the identity

(𝑏 ⋅ ∇) 𝑎 +

3

∑
𝑗=1

𝑎
𝑗
∇𝑏
𝑗
= −𝑏 × (∇ × 𝑎) + ∇ (𝑎 ⋅ 𝑏) , (31)

one can easily show that

(𝐵 (𝑢, V) , 𝑤) = (𝐵 (𝑢, V) , 𝑤) − (𝐵 (𝑤, V) , 𝑢)

= (𝐵 (V) 𝑢 − 𝐵
∗
(V) 𝑢, 𝑤)

(32)

for every 𝑢, V, 𝑤 ∈ 𝑉, where 𝐵
∗
(V) denotes the adjoint

operator of the linear operator 𝐵(V) defined above. As a result
we have

𝐵 (𝑢, V) = (𝐵 (V) − 𝐵
∗
(V)) 𝑢 for every 𝑢, V ∈ 𝑉. (33)

The next lemma will present some properties of the
bilinear operator 𝐵.

Lemma 14 (cf. [19]). The operator 𝐵 can be extended continu-
ously from 𝑉 × 𝑉 with values in 𝑉

󸀠, and it satisfies
󵄨󵄨󵄨󵄨󵄨
⟨𝐵 (𝑢, V) , 𝑤⟩

𝑉
󸀠

󵄨󵄨󵄨󵄨󵄨
≤ 𝑐‖𝑢‖

1/2

2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑢
󵄩󵄩󵄩󵄩󵄩

1/2

2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑤
󵄩󵄩󵄩󵄩󵄩2
,

󵄨󵄨󵄨󵄨󵄨
⟨𝐵 (𝑢, V) , 𝑤⟩

𝑉
󸀠

󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑢
󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩2
‖𝑤‖

1/2

2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑤
󵄩󵄩󵄩󵄩󵄩

1/2

2

(34)

for every 𝑢, V, 𝑤 ∈ 𝑉. Moreover,

⟨𝐵 (𝑢, V) , 𝑤⟩
𝑉
󸀠
= −⟨𝐵 (𝑤, V) , 𝑢⟩

𝑉
󸀠
, for every 𝑢, V, 𝑤 ∈ 𝑉

(35)

and in particular

⟨𝐵 (𝑢, V) , 𝑢⟩
𝑉
󸀠
≡ 0 for every 𝑢, V ∈ 𝑉. (36)

Furthermore, one has
󵄨󵄨󵄨󵄨󵄨󵄨
⟨𝐵 (𝑢, V) , 𝑤⟩

𝐷(𝐴)
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐‖𝑢‖2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑤
󵄩󵄩󵄩󵄩󵄩

1/2

2
‖𝐴𝑤‖

1/2

2

(37)

for every 𝑢 ∈ 𝐻, V ∈ 𝑉, and 𝑤 ∈ 𝐷(𝐴) and by symmetry one
has

󵄨󵄨󵄨󵄨󵄨󵄨
⟨𝐵 (𝑢, V) , 𝑤⟩

𝐷(𝐴)
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑢
󵄩󵄩󵄩󵄩󵄩

1/2

2
‖𝐴𝑢‖

1/2

2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩2
‖𝑤‖2

(38)

for every 𝑢 ∈ 𝐷(𝐴), V ∈ 𝑉, and 𝑤 ∈ 𝐻. Also
󵄨󵄨󵄨󵄨󵄨󵄨
⟨𝐵 (𝑢, V) , 𝑤⟩

𝐷(𝐴)
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐 (‖𝑢‖
1/2

2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑢
󵄩󵄩󵄩󵄩󵄩

1/2

2
‖V‖2‖𝐴𝑤‖2

+‖V‖2
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑢
󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑤
󵄩󵄩󵄩󵄩󵄩

1/2

2
‖𝐴𝑤‖

1/2

2
)

(39)

for every 𝑢 ∈ 𝑉, V ∈ 𝐻, and 𝑤 ∈ 𝐷(𝐴). In addition,
󵄨󵄨󵄨󵄨󵄨󵄨
⟨𝐵 (𝑢, V) , 𝑤⟩

𝐷(𝐴)
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐 (
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑢
󵄩󵄩󵄩󵄩󵄩

1/2

2
‖𝐴𝑢‖

1/2

2
‖V‖2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑤
󵄩󵄩󵄩󵄩󵄩2

+‖V‖2‖𝐴𝑢‖2‖𝑤‖
1/2

2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑤
󵄩󵄩󵄩󵄩󵄩

1/2

2
)

(40)

for every 𝑢 ∈ 𝐷(𝐴), V ∈ 𝐻, and 𝑤 ∈ 𝑉.

4. Stochastic Nonautonomous
Camassa-Holm Equations

We now apply the result in Section 2 to the stochastic
nonautonomous Camassa-Holm equations. To associate a
family of processes U

𝜎
(𝑡, 𝑠, 𝜔) with the stochastic equations

over (Σ, 𝑇(𝑡)) and (Ω,F,P, (𝜃
𝑡
)
𝑡∈R), we need to convert

the stochastic equations with a random additive term into
deterministic equations with a random parameter.

First we define the bounded linear operator 𝑄 in (8) as
follows:

𝑄𝑥 =

𝑛

∑
𝑗=1

𝑥
𝑗
ℎ
𝑗
, 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
∈ R

𝑛
, (41)

where ℎ
𝑗
∈ 𝐷(𝐴), 𝑗 = 1, 2, . . . , 𝑛.

Given 𝑗 = 1, 2, . . . , 𝑛, consider the Ornstein-Uhlenbeck
equation:

𝑑𝑦
𝑗
+ 𝜇𝑦

𝑗
𝑑𝑡 = 𝑑𝑤

𝑗
(𝑡) . (42)

One can easily check that a solution to (42) is given by

𝑦
𝑗 (𝑡) = 𝑦

𝑗
(𝜃
𝑡
𝜔
𝑗
) = −𝜇∫

0

−∞

𝑒
𝜇𝜏

(𝜃
𝑡
𝜔
𝑗
) (𝜏) 𝑑𝜏, 𝑡 ∈ R.

(43)
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It is known that the random variable |𝑦
𝑗
(𝜔
𝑗
)| is tempered and

that𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) isP a.e is continuous.Nowweput 𝑧(𝜃

𝑡
𝜔) = (𝛼

2

0
+

𝛼
2

1
𝐴)
−1

∑
𝑚

𝑗=1
ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
). By (42) we have

𝑑 (𝛼
2

0
𝑧 (𝜃

𝑡
𝜔) + 𝛼

2

1
𝐴𝑧 (𝜃

𝑡
𝜔))

+ 𝜇 (𝛼
2

0
𝑧 (𝜃

𝑡
𝜔) 𝑑𝑡 + 𝛼

2

1
𝐴𝑧 (𝜃

𝑡
𝜔)) 𝑑𝑡

=

𝑛

∑
𝑗=1

ℎ
𝑗
𝑑𝑤

𝑗
(𝑡) .

(44)

Employing Cauchy-Schwarz’s inequality, we get

󵄩󵄩󵄩󵄩𝑧 (𝜃
𝑡
𝜔)

󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑧 (𝜃
𝑡
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝐴𝑧 (𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩
2

2

≤ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

,

(45)

To show that (8) corresponds to a process {U
𝜎
(𝑡, 𝜏, 𝜔)},

we let V = 𝑢 − 𝑧(𝜃
𝑡
𝜔), where 𝑢 is a solution of (8). Then for

V(𝑡, 𝜔), we have

𝜕

𝜕𝑡
(𝛼
2

0
V + 𝛼

2

1
𝐴V)

+ ]𝐴(𝛼
2

0
V + 𝛼

2

1
𝐴V + 𝛼

2

0
𝑧 (𝜃

𝑡
𝜔) + 𝛼

2

1
𝐴𝑧 (𝜃

𝑡
𝜔))

− (V + 𝑧 (𝜃
𝑡
𝜔))

× (∇ × (𝛼
2

0
V + 𝛼

2

1
𝐴V + 𝛼

2

0
𝑧 (𝜃

𝑡
𝜔) + 𝛼

2

1
𝐴𝑧 (𝜃

𝑡
𝜔)))

+
1

𝜌
0

∇𝑝

= 𝑓 (𝑥, 𝑡) + 𝜇𝛼
2

0
𝑧 (𝜃

𝑡
𝜔) + 𝜇𝛼

2

1
𝐴𝑧 (𝜃

𝑡
𝜔)

(46)

defined in the periodic box [0, 𝑙]
3, satisfying

∇ ⋅ V = 0,

V (𝑥, 𝜏, 𝜔) = V
𝜏
(𝑥, 𝜔) = 𝑢

𝜏
(𝑥) − 𝑧 (𝜃

𝜏
𝜔) ∈ 𝐻.

(47)

We apply𝑃 to (46) and use the notation in Section 3 to obtain
the equivalent system of equations

𝜕

𝜕𝑡
(𝛼
2

0
V + 𝛼

2

1
𝐴V)

+ ]𝐴(𝛼
2

0
V + 𝛼

2

1
𝐴V + 𝛼

2

0
𝑧 (𝜃

𝑡
𝜔) + 𝛼

2

1
𝐴𝑧 (𝜃

𝑡
𝜔))

+ 𝐵 (V + 𝑧 (𝜃
𝑡
𝜔) , 𝛼

2

0
V + 𝛼

2

1
𝐴V

+𝛼
2

0
𝑧 (𝜃

𝑡
𝜔) + 𝛼

2

1
𝐴𝑧 (𝜃

𝑡
𝜔))

= 𝑃𝑓 (𝑥, 𝑡) + 𝜇𝛼
2

0
𝑧 (𝜃

𝑡
𝜔) + 𝜇𝛼

2

1
𝐴𝑧 (𝜃

𝑡
𝜔)

(48)

satisfying the initial condition

V (𝑥, 𝜏, 𝜔) = V
𝜏
(𝑥, 𝜔) . (49)

By a Galerkin method as in [19], it can be proved that if
𝑓(𝑥, 𝑡) ∈ 𝐿

2

loc((0, 𝑇);𝐻) and V
𝜏
∈ 𝑉, for P a.e. 𝜔 ∈ Ω, (48)

has a unique solution satisfying for any 𝑇 > 𝜏

V (𝑡, 𝜔, V
𝜏
) ∈ 𝐶 ([𝜏, 𝑇) ; 𝑉)⋂𝐿

2
([𝜏, 𝑇) ; 𝐷 (𝐴)) ,

𝑑V

𝑑𝑡
∈ 𝐿

2
([𝜏, 𝑇) ;𝐻)

(50)

and such that, for almost all 𝑡 ∈ [𝜏, 𝑇) and for any 𝑤 ∈ 𝐷(𝐴),

⟨
𝑑

𝑑𝑡
(𝛼
2

0
V + 𝛼

2

1
𝐴V) , 𝑤⟩

𝐷(𝐴)
󸀠

+ ] ⟨𝐴 (𝛼
2

0
V + 𝛼

2

1
𝐴V

+𝛼
2

0
𝑧 (𝜃

𝑡
𝜔) + 𝛼

2

1
𝐴𝑧 (𝜃

𝑡
𝜔)) , 𝑤⟩

𝐷(𝐴)
󸀠

+ ⟨𝐵 (V + 𝑧 (𝜃
𝑡
𝜔) , 𝛼

2

0
V + 𝛼

2

1
𝐴V

+𝛼
2

0
𝑧(𝜃

𝑡
𝜔) + 𝛼

2

1
𝐴𝑧(𝜃

𝑡
𝜔)) , 𝑤⟩

𝐷(𝐴)
󸀠

= (𝑃𝑓 (𝑥, 𝑡) + 𝜇𝛼
2

0
𝑧 (𝜃

𝑡
𝜔) + 𝜇𝛼

2

1
𝐴𝑧 (𝜃

𝑡
𝜔) , 𝑤) .

(51)

Now for any 𝑓(𝑥, 𝑡) ∈ Σ(𝑓
0
), (48) with 𝑓 instead of 𝑓

0

possesses a corresponding process {U
𝑓
(𝑡, 𝜏, 𝜔)} acting on 𝑉.

It is analogous to the proof in [27] to prove that, for P a.e
𝜔 ∈ Ω, the family {U

𝑓
(𝑡, 𝜏, 𝜔) | 𝑓 ∈ Σ(𝑓

0
)} of processes is

(𝑉 × Σ(𝑓
0
); 𝑉)-continuous. Let

N
𝑓 (𝜔) = {V

𝑓 (𝑥, 𝑡, 𝜔) for 𝑡 ∈ R | V
𝑓 (𝑥, 𝑡, 𝜔)

is solution of (48) satisfying
󵄩󵄩󵄩󵄩󵄩
V
𝑓
(𝑥, 𝑡, 𝜔)

󵄩󵄩󵄩󵄩󵄩𝐻
≤ 𝑀

𝑓
(𝜔) ∀𝑡 ∈ R}

(52)

be the so-called kernel of the process {U
𝑓
(𝑡, 𝜏, 𝜔)}.

5. Uniformly Random Attractor for Stochastic
Nonautonomous Camassa-Holm Equation

In [19], the authors have shown that the semigroup corre-
sponding to the autonomous systempossesses a global attrac-
tor. In [21–24], the authors have proved that the deterministic
version of nonautonomous system has a uniform attractor.
Themain objective of this section is to obtain the existence of
uniformly (with respect to 𝑓 ∈ Σ(𝑓

0
)) random attractor for

the stochastic nonautonomous Camassa-Holm equations in
𝑉 and𝐷(𝐴).

Lemma 15. Let {𝐵(𝜔)}
𝜔∈Ω

be tempered and V
𝜏
(𝜔) ∈ 𝐵(𝜔).

Then the process {U
𝑓
(𝑡, 𝜏, 𝜔)} corresponding to (48) possesses

a uniformly (with respect to 𝑓 ∈ Σ(𝑓
0
)) random absorbing set

K
0
(𝜔) in 𝑉.
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Proof. Letting 𝑤 = V in (51), we have

1

2

𝑑

𝑑𝑡
(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
) + ] (𝛼2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
)

= −](
𝑛

∑
𝑗=1

𝐴ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) , V)

− (𝐵(V + 𝑧 (𝜃
𝑡
𝜔) , 𝛼

2

0
V + 𝛼

2

1
𝐴V +

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)) , V)

+ (𝑃𝑓 (𝑥, 𝑡) , V) + (

𝑛

∑
𝑗=1

𝜇ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) , V) .

(53)

Now we estimate the second term of (53) on the right-hand
side. Applying Lemma 14 we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝐵(V + 𝑧 (𝜃
𝑡
𝜔) , 𝛼

2

0
V + 𝛼

2

1
𝐴V +

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)) , V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝐵(𝑧 (𝜃
𝑡
𝜔) , 𝛼

2

0
V + 𝛼

2

1
𝐴V +

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)) , V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑧(𝜃
𝑡
𝜔)

󵄩󵄩󵄩󵄩󵄩

1/2

2

󵄩󵄩󵄩󵄩𝐴𝑧(𝜃
𝑡
𝜔)

󵄩󵄩󵄩󵄩
1/2

2

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
2

0
V + 𝛼

2

1
𝐴V +

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩2

+ 𝑐
󵄩󵄩󵄩󵄩𝐴𝑧 (𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
2

0
V + 𝛼

2

1
𝐴V +

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

× ‖V‖1/2
2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

1/2

2

≤ 𝑐
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑧(𝜃
𝑡
𝜔)

󵄩󵄩󵄩󵄩󵄩2
‖V‖2

2
+ 𝑐

󵄩󵄩󵄩󵄩𝐴𝑧(𝜃
𝑡
𝜔)

󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2

+
]𝛼2
1

4
‖𝐴V‖2

2

+ 𝑐
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑧(𝜃
𝑡
𝜔)

󵄩󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩𝐴𝑧(𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝑐
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2

𝑧(𝜃
𝑡
𝜔)

󵄩󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩𝐴𝑧(𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩2

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝑐
󵄩󵄩󵄩󵄩𝐴𝑧 (𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩2‖V‖
2

2
+
]𝛼2
1

4
‖𝐴V‖2

2

+ 𝑐
󵄩󵄩󵄩󵄩𝐴𝑧(𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩
2

2
‖V‖2

2
+ 𝑐

󵄩󵄩󵄩󵄩𝐴𝑧(𝜃
𝑡
𝜔)

󵄩󵄩󵄩󵄩
2

2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝑐
󵄩󵄩󵄩󵄩𝐴𝑧(𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩
2

2
+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

≤
]𝛼2
1

2
‖𝐴V‖2

2
+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨
(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

.

(54)

By Poincaré’s inequality, we have

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(

𝑛

∑
𝑗=1

𝐴ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) , V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
]𝛼2
0

6

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

,

󵄨󵄨󵄨󵄨(𝑃𝑓 (𝑥, 𝑡) , V)󵄨󵄨󵄨󵄨 ≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑉󸀠‖V‖2 ≤
]𝛼2
0

6

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝑐

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑉
󸀠 ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(

𝑛

∑
𝑗=1

𝜇ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) , V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
]𝛼2
0

6

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

.

(55)

Associating with the above inequalities and employing
Poincaré’s inequality, we have

𝑑

𝑑𝑡
(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

+ ]𝜆
1
(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

≤ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨
(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑐
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝑉
󸀠 .

(56)

Applying Gronwall’s lemma, we have

𝛼
2

0
‖V (𝑡, 𝜔)‖

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑡, 𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2

≤ 𝑒
𝐽
1
(𝜏,𝑡,𝜔)

(𝛼
2

0

󵄩󵄩󵄩󵄩V𝜏 (𝜔)
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

𝜏
(𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
)

+ ∫
𝑡

𝜏

(𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑐
󵄩󵄩󵄩󵄩𝑓 (𝑠)

󵄩󵄩󵄩󵄩
2

𝑉
󸀠)𝑒

𝐽
1
(𝑠,𝑡,𝜔)

𝑑𝑠,

(57)
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where

𝐽
1
(𝜏, 𝑡, 𝜔) = − ]𝜆

1
𝑡 + ]𝜆

1
𝜏 + 𝑐

𝑛

∑
𝑗=1

∫
𝑡

𝜏

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+ 𝑐

𝑛

∑
𝑗=1

∫
𝑡

𝜏

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠.

(58)

Replacing 𝜔 by 𝜃
−𝑡
𝜔 in (57) and (58), we have

𝛼
2

0

󵄩󵄩󵄩󵄩V (𝑡, 𝜃−𝑡𝜔)
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝑡, 𝜃

−𝑡
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2

≤ 𝑒
𝐽
1
(𝜏−𝑡,0,𝜔)

(𝛼
2

0

󵄩󵄩󵄩󵄩V𝜏 (𝜃−𝑡𝜔)
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

𝜏
(𝜃
−𝑡
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
)

+ ∫
0

𝜏−𝑡

(𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑐
󵄩󵄩󵄩󵄩𝑓 (𝑠 + 𝑡)

󵄩󵄩󵄩󵄩
2

𝑉
󸀠)𝑒

𝐽
1
(𝑠,0,𝜔)

𝑑𝑠.

(59)

Note that {|𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)|}
𝑛

𝑗=1
are stationary and ergodic (cf. [24]),

then it follows from ergodic theorem that

lim
𝑡→∞

1

𝑡
∫
0

−𝑡

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝜏 = 𝐸 (

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨
) . (60)

On the other hand, we have

lim
𝑡→∞

1

𝑡
∫
0

−𝑡

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝜏 = 𝐸 (

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨
) =

𝑐

√𝜇
,

lim
𝑡→∞

1

𝑡
∫
0

−𝑡

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏 = 𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

) =
𝑐

𝜇
.

(61)

Employing (61), we have

lim
𝑠→−∞

𝐽
1 (𝑠, 0, 𝜔)

𝑠
= lim
𝑠→−∞

(]𝜆
1
+ 𝑐

𝑚

∑
𝑗=1

1

𝑠
∫
0

𝑠

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝜏

+𝑐

𝑚

∑
𝑗=1

1

𝑠
∫
0

𝑠

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏)

= (]𝜆
1
−

𝑐

√𝜇
−

𝑐

𝜇
) .

(62)

So for P a.e. 𝜔 ∈ Ω, there are 𝑇
0
(𝜔) > 0 and 𝜇

0
> 0 such that,

for 𝑠 ≥ 𝑇
1
(𝜔) and 𝜇 ≥ 𝜇

0
,

𝐽
1 (𝑠, 0, 𝜔)

𝑠
= ]𝜆

1
+ 𝑐

𝑚

∑
𝑗=1

1

𝑠
∫
0

𝑠

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝜏

+𝑐

𝑚

∑
𝑗=1

1

𝑠
∫
0

𝑠

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏 < 0,

𝐽
1
(𝑠, 0, 𝜔) 󳨀→ −∞, as 𝑠 󳨀→ −∞.

(63)

Since {|𝑦
𝑗
(𝜔
𝑗
)|}
𝑛

𝑗=1
are tempered, the integral

𝑟
1
(𝜔) = ∫

0

−∞

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑒
𝐽
1
(𝑠,0,𝜔)

𝑑𝑠 (64)

is convergent. For any 𝑡 > 𝜏, there exists 𝐾 ∈ N such that
−𝐾 < 𝜏 − 𝑡, and we have

∫
0

𝜏−𝑡

󵄩󵄩󵄩󵄩𝑓 (𝑠 + 𝑡)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
𝐽
1
(𝑠,0,𝜔)

𝑑𝑠

= ∫
0

𝜏−𝑡

󵄩󵄩󵄩󵄩𝑓0(𝑠 + 𝑡 + 𝜂)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
𝐽
1
(𝑠,0,𝜔)

𝑑𝑠

≤ ∫
0

−𝐾

󵄩󵄩󵄩󵄩𝑓0(𝑠 + 𝑡 + 𝜂)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
𝐽
1
(𝑠,0,𝜔)

𝑑𝑠.

(65)

Then by piecewise integration, we have

∫
0

−𝐾

󵄩󵄩󵄩󵄩𝑓0 (𝑠 + 𝑡 + 𝜂)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
𝐽
1
(𝑠,0,𝜔)

𝑑𝑠

=

𝐾

∑
𝑗=1

∫
−𝑛+𝑗

−𝑛+𝑗−1

󵄩󵄩󵄩󵄩𝑓0 (𝑠 + 𝑡 + 𝜂)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
𝐽
1
(𝑠,0,𝜔)

𝑑𝑠.

(66)

By differential mean value theorem, for each 1 ≤ 𝑗 ≤ 𝐾, there
exists 𝑠

𝑗
∈ [−𝑛 + 𝑗 − 1, −𝑛 + 𝑗], such that

𝐾

∑
𝑗=1

∫
−𝑛+𝑗

−𝑛+𝑗−1

󵄩󵄩󵄩󵄩𝑓0 (𝑠 + 𝑡 + 𝜂)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
𝐽
1
(𝑠,0,𝜔)

𝑑𝑠

=

𝐾

∑
𝑗=1

𝑒
𝐽
1
(𝑠
𝑗
,0,𝜔)

∫
−𝑛+𝑗

−𝑛+𝑗−1

󵄩󵄩󵄩󵄩𝑓0(𝑠 + 𝑡 + 𝜂)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑑𝑠.

(67)

By the property of normal function, there exists 𝑀
𝑓
0

, which
just depends on 𝑓

0
, such that

sup
𝑡∈R

∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑓0(𝑠)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑑𝑠 < 𝑀

𝑓
0

. (68)

It is easy to check that the series ∑∞
𝑗=1

𝑒
𝐽
1
(𝑠
𝑗
,0,𝜔) is convergent.

Associating with (65)–(68), for any 𝑡 > 𝜏, we have

∫
0

𝜏−𝑡

󵄩󵄩󵄩󵄩𝑓(𝑠 + 𝑡)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
𝐽
1
(𝑠,0,𝜔)

𝑑𝑠 ≤ 𝑟
2 (𝜔) , (69)

where

𝑟
2
(𝜔) = 𝑀

𝑓
0

∞

∑
𝑗=1

𝑒
𝐽
1
(𝑠
𝑗
,0,𝜔)

. (70)

Therefore (64) and (69) imply that, for 𝑡 > 𝜏, the second term
on the right-hand side of (59) can be bounded by

∫
0

𝜏−𝑡

(𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑐
󵄩󵄩󵄩󵄩𝑓 (𝑠 + 𝑡)

󵄩󵄩󵄩󵄩
2

𝑉
󸀠)𝑒

𝐽
1
(𝑠,0,𝜔)

𝑑𝑠 ≤ 𝑟
3
(𝜔) ,

(71)

where 𝑟
3
(𝜔) = 𝑐𝑟

1
(𝜔) + 𝑐𝑟

2
(𝜔). For V

𝜏
(𝜔) ∈ 𝐵(𝜔) being

tempered, there exists 𝑇
1
(𝜔) > 0 such that, when 𝑡 ≥ 𝑇

2
(𝜔),

𝑒
𝐽
1
(𝜏−𝑡,0,𝜔)

(𝛼
2

0

󵄩󵄩󵄩󵄩V𝜏 (𝜃−𝑡𝜔)
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

𝜏
(𝜃
−𝑡
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
) < 𝑟

3 (𝜔) .

(72)
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Letting𝑇
3
(𝜔) = max{𝑇

1
(𝜔), 𝑇

2
(𝜔)} and 𝑟

4
(𝜔) = 2𝑟

3
(𝜔), when

𝑡 ≥ 𝑇
3
(𝜔), we have

𝛼
2

0

󵄩󵄩󵄩󵄩V(𝑡, 𝜃−𝑡𝜔)
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝑡, 𝜃

−𝑡
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
≤ 𝑟

4
(𝜔) ,

∀𝑡 ≥ 𝑇
3
(𝜔) , 𝑓 ∈ Σ (𝑓

0
) .

(73)

We define

K
1
(𝜔) = {V (𝜔) ∈ 𝑉 | 𝛼

2

0
‖V(𝜔)‖

2

2

+𝛼
2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
≤ 𝑟

4
(𝜔)} .

(74)

In conclusion, K
1
(𝜔) is a uniformly random absorbing set

for {U(𝑡, 𝜏, 𝜔)} in 𝑉, which complete the proof.

Lemma 16. Let {𝐵(𝜔)}
𝜔∈Ω

be tempered and V
𝜏
(𝜔) ∈ 𝐵(𝜔).

Then the process {U
𝑓
(𝑡, 𝜏, 𝜔)} corresponding to (48) possesses

a uniformly (with respect to 𝑓 ∈ Σ(𝑓
0
)) random absorbing set

K
2
(𝜔) in 𝐷(𝐴).

Proof. Integrating (56) into [𝑡, 𝑡+1]where 𝑡 ≥ 𝑇
3
(𝜔), we have

𝛼
2

0
‖V (𝑡 + 1, 𝜔)‖

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑡 + 1, 𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2

+ ]∫
𝑡+1

𝑡

(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑠, 𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V (𝑠, 𝜔)‖

2

2
) 𝑑𝑠

≤ (𝛼
2

0
‖V (𝑡, 𝜔)‖

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑡, 𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
)

+ 𝑐

𝑛

∑
𝑗=1

∫
𝑡+1

𝑡

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

× (𝛼
2

0
‖V (𝑠, 𝜔)‖

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑠, 𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
) 𝑑𝑠

+ 𝑐

𝑛

∑
𝑗=1

∫
𝑡+1

𝑡

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

× (𝛼
2

0
‖V (𝑠, 𝜔)‖

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑠, 𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
) 𝑑𝑠

+ 𝑐

𝑛

∑
𝑗=1

∫
𝑡+1

𝑡

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠.

(75)

Replacing 𝜔 by 𝜃
−𝑡−1

𝜔 in (75), we have

]∫
𝑡+1

𝑡

(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑠, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V (𝑠, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2
) 𝑑𝑠

≤ 𝑐

𝑛

∑
𝑗=1

∫
𝑡+1

𝑡

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠−𝑡−1

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨
(𝛼
2

0

󵄩󵄩󵄩󵄩V (𝑠, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2

+𝛼
2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑠, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
) 𝑑𝑠

+ 𝑐

𝑛

∑
𝑗=1

∫
𝑡+1

𝑡

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠−𝑡−1

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(𝛼
2

0

󵄩󵄩󵄩󵄩V (𝑠, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2

+𝛼
2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑠, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
) 𝑑𝑠

+ 𝑐

𝑛

∑
𝑗=1

∫
𝑡+1

𝑡

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠−𝑡−1

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

+ (𝛼
2

0

󵄩󵄩󵄩󵄩V (𝑡, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑡, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
) .

(76)

As the previous consideration in Lemma 15, for 𝑠 ∈ [𝑡, 𝑡 + 1)

where 𝑡 ≥ 𝑇
2
(𝜔), we have

𝛼
2

0

󵄩󵄩󵄩󵄩V(𝑠, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑠, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
≤ 𝑟

5 (𝜔) , (77)

where 𝑟
5
(𝜔) = 𝑒

]𝜆
1𝑟
4
(𝜔).

Associating (76) with (77), we have

∫
𝑡+1

𝑡

(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑠, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V (𝑠, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2
) 𝑑𝑠

≤ 𝑟
6
(𝜔) ,

(78)

where

𝑟
6 (𝜔) = 𝑐𝑟

5 (𝜔)

𝑛

∑
𝑗=1

∫
0

−1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+ 𝑐𝑟
5 (𝜔)

𝑛

∑
𝑗=1

∫
0

−1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

+ 𝑐

𝑛

∑
𝑗=1

∫
0

−1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠 + 𝑟
5 (𝜔) .

(79)

Now we let 𝑤 = 𝐴V in (51), and we have

1

2

𝑑

𝑑𝑡
(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
)

+ ] (𝛼2
0
‖𝐴V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
3/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

= −](
𝑛

∑
𝑗=1

𝐴ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) , 𝐴V)

− (𝐵(V + 𝑧 (𝜃
𝑡
𝜔) , 𝛼

2

0
V + 𝛼

2

1
𝐴V

+

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)) ,𝐴V)

+ (𝑃𝑓 (𝑥, 𝑡) , 𝐴V) + (

𝑛

∑
𝑗=1

𝜇ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) , 𝐴V) .

(80)
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Employing Lemma 14, the bilinear term in (80) can be
bounded by

(𝐵(V + 𝑧 (𝜃
𝑡
𝜔) , 𝛼

2

0
V + 𝛼

2

1
𝐴V +

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)) ,𝐴V)

≤ 𝑐(
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V + 𝐴

1/2
𝑧 (𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩󵄩

1/2

2

󵄩󵄩󵄩󵄩𝐴V + 𝐴𝑧(𝜃
𝑡
𝜔)

󵄩󵄩󵄩󵄩
1/2

2

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
2

0
V + 𝛼

2

1
𝐴V +

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
𝐴
3/2V

󵄩󵄩󵄩󵄩󵄩2
)

+ 𝑐(
󵄩󵄩󵄩󵄩𝐴V + 𝐴𝑧 (𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
2

0
V + 𝛼

2

1
𝐴V +

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

×‖𝐴V‖1/2
2

󵄩󵄩󵄩󵄩󵄩
𝐴
3/2V

󵄩󵄩󵄩󵄩󵄩

1/2

2
)

≤ ]𝛼2
1

󵄩󵄩󵄩󵄩󵄩
𝐴
3/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+
]𝛼2
0

4
‖𝐴V‖2

2

+ 𝑐(𝛼
2

0
‖V‖2

2
+ 𝛼

2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)
2

+ 𝑐(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

0
‖𝐴V‖2

2
)
2

+ 𝑐 (𝛼
2

0
‖V‖2

2
+ 𝛼

2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
) (𝛼

2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

0
‖𝐴V‖2

2
)

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(𝛼
2

0
‖V‖2

2
+ 𝛼

2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

0
‖𝐴V‖2

2
)

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

.

(81)

The other terms are bounded by

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(

𝑛

∑
𝑗=1

𝐴ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) , 𝐴V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
]𝛼2
0

4
‖𝐴V‖2

2
+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

.

󵄨󵄨󵄨󵄨(𝑃𝑓 (𝑥, 𝑡) , 𝐴V)󵄨󵄨󵄨󵄨 ≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑉󸀠‖𝐴V‖2 ≤
]𝛼2
0

4
‖𝐴V‖2

2
+ 𝑐

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑉
󸀠 .

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) , 𝐴V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
]𝛼2
0

4
‖𝐴V‖2

2
+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

.

(82)

Associating with all the above inequalities, we have

𝑑

𝑑𝑡
(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
)

≤ 𝑐(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)
2

+ 𝑐(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
)
2

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

+ 𝑐 (𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

× (𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
)

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

+ 𝑐
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝑉
󸀠

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
) .

(83)

Applying Gronwall’s lemma on [𝑠, 𝑡 + 1] where 𝑠 ∈ (𝑡, 𝑡 + 1)

and 𝑡 ≥ 𝑇
3
(𝜔), we have

𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝑡 + 1, 𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V (𝑡 + 1, 𝜔)‖

2

2

≤ (𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑠, 𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V (𝑠, 𝜔)‖

2

2
) 𝑒
𝐽
2
(𝑠,𝑡+1,𝜔)

+ 𝑐∫
𝑡+1

𝑠

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑒
𝐽
2
(𝜏,𝑡+1,𝜔)

𝑑𝜏

+ 𝑐∫
𝑡+1

𝑠

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

𝑒
𝐽
2
(𝜏,𝑡+1,𝜔)

𝑑𝜏

+ 𝑐∫
𝑡+1

𝑠

󵄩󵄩󵄩󵄩𝑓(𝜏)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
𝐽
2
(𝜏,𝑡+1,𝜔)

𝑑𝜏

+ 𝑐∫
𝑡+1

𝑠

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

× (𝛼
2

0
‖V (𝜏, 𝜔)‖

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝜏, 𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
) 𝑒
𝐽
2
(𝜏,𝑡+1,𝜔)

𝑑𝜏

+ 𝑐∫
𝑡+1

𝑠

(𝛼
2

0
‖V (𝜏, 𝜔)‖

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝜏, 𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
)
2

𝑒
𝐽
2
(𝜏,𝑡+1,𝜔)

𝑑𝜏,

(84)



Abstract and Applied Analysis 11

where

𝐽
2
(𝑠, 𝑡, 𝜔)

= 𝑐∫
𝑡

𝑠

(𝛼
2

0
‖V (𝜏, 𝜔)‖

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝜏, 𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
) 𝑑𝜏

+ 𝑐∫
𝑡

𝑠

(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝜏, 𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V (𝜏, 𝜔)‖

2

2
) 𝑑𝜏

+ 𝑐∫
𝑡

𝑠

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏.

(85)

Replacing 𝜔 by 𝜃
−𝑡−1

𝜔 in (84) and (85), we have

𝐽
2
(𝜏, 𝑡 + 1, 𝜃

−𝑡−1
𝜔)

≤ 𝑐∫
𝑡+1

𝑡

(𝛼
2

0

󵄩󵄩󵄩󵄩V (𝜏, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2

+ 𝛼
2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝜏, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
) 𝑑𝜏

+ 𝑐∫
𝑡+1

𝑡

(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝜏, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝛼
2

1

󵄩󵄩󵄩󵄩𝐴V(𝜏, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2
) 𝑑𝜏

+ 𝑐

𝑛

∑
𝑗=1

∫
𝑡+1

𝑡

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏−𝑡−1

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏

≤ 𝑐𝑟
5
(𝜔) + 𝑐𝑟

6
(𝜔) + 𝑐

𝑛

∑
𝑗=1

∫
0

−1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏

󳵻

= 𝑟
7
(𝜔) .

(86)

And then

𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑡 + 1, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V(𝑡 + 1, 𝜃
−𝑡−1

𝜔)
󵄩󵄩󵄩󵄩
2

2

≤ (𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝑠, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V (𝑠, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2
) 𝑒
𝑟
7
(𝜔)

+ 𝑐𝑒
𝑟
7
(𝜔)

𝑟
5
(𝜔)

2
+ 𝑐𝑒

𝑟
7
(𝜔)

∫
0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏

+ 𝑐𝑒
𝑟
7
(𝜔)

∫
0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

𝑑𝜏

+ 𝑐𝑒
𝑟
7
(𝜔)

∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑓(𝜏)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑑𝜏

+ 𝑐𝑒
𝑟
7
(𝜔)

𝑟
5
(𝜔) ∫

0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏.

(87)

Integrating (87)with respect to 𝑠 over (𝑡, 𝑡+1)where 𝑡 ≥ 𝑇
3
(𝜔)

and employing the property of normal function in (68), we
have

𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑡 + 1, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V (𝑡 + 1, 𝜃
−𝑡−1

𝜔)
󵄩󵄩󵄩󵄩
2

2

≤ 𝑟
8
(𝜔) , ∀𝑡 ≥ 𝑇

3
(𝜔) , 𝑓 ∈ Σ (𝑓

0
) ,

(88)

where

𝑟
8
(𝜔) = 𝑟

6
(𝜔) 𝑒

𝑟
7
(𝜔)

+ 𝑐𝑒
𝑟
7
(𝜔)

𝑟
5
(𝜔)

2

+ 𝑐𝑒
𝑟
7
(𝜔)

∫
0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏

+ 𝑐𝑒
𝑟
7
(𝜔)

∫
0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

𝑑𝜏

+ 𝑐𝑒
𝑟
7
(𝜔)

𝑀
𝑓
0

+ 𝑐𝑒
𝑟
7
(𝜔)

𝑟
5
(𝜔) ∫

0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏.

(89)

We define

K
2
(𝜔) = {V (𝜔) ∈ 𝐷 (𝐴) | 𝛼

2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2

+𝛼
2

1
‖𝐴V(𝜔)‖

2

2
≤ 𝑟

8
(𝜔)} .

(90)

In conclusion, K
2
(𝜔) is a uniformly random absorbing set

for {U(𝑡, 𝜏, 𝜔)} in𝐷(𝐴), which complete the proof.

Somuch for that we have proved the existence of bounded
uniformly (with respect to 𝑓 ∈ Σ(𝑓

0
)) random absorbing sets

in 𝑉 and 𝐷(𝐴). Next we derive the existence of uniformly
(with respect to𝑓 ∈ Σ(𝑓

0
)) random attractors in𝑉 and𝐷(𝐴).

Theorem 17. If 𝑓
0
(𝑥, 𝑠) is a normal function in 𝐿

2

loc(R, 𝑉
󸀠
),

then the process {U
𝑓
0

(𝑡, 𝜏, 𝜔)} corresponding to (48) possess a
compact uniformly (with respect to 𝜏 ∈ R) random attractor
A
1
(𝜔) in𝑉which coincides with the uniformly (with respect to

𝑓 ∈ Σ(𝑓
0
)) random attractor A

Σ(𝑓
0
)
of the family of processes

{U
𝑓
(𝑡, 𝜏, 𝜔)}, 𝑓 ∈ Σ(𝑓

0
) :

A
1
(𝜔) = A

Σ(𝑓
0
)
(𝜔) = W

0,Σ(𝑓
0
)
(K

1
) = ⋃

𝑓∈Σ(𝑓
0
)

N
𝑓
(0, 𝜔) ,

(91)

where K
1
(𝜔) is the uniformly (with respect to 𝑓 ∈ Σ(𝑓

0
))

random absorbing set in 𝑉 and N
𝑓
(𝜔) is the kernel of

the process {U
𝑓
(𝑡, 𝜏, 𝜔)}. Furthermore, the kernel N

𝑓
(𝜔) is

nonempty for all 𝑓 ∈ Σ(𝑓
0
).

Proof. We only have to verify condition(C). As the previous
section, for fixed𝑚, let𝐻

1
be the subspace spanned by {𝑒

𝑗
}
𝑚

𝑗=1

and𝐻
2
the orthogonal complement of𝐻

1
in𝐻. We write

V = V
1
+ V

2
, V

1
∈ 𝐻

1
, V
2
∈ 𝐻

2
for any V ∈ 𝐻. (92)
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The proof of boundary of V
1
is similar to the proof in

Lemma 15. We need to estimate V
2
, where V = V

1
+ V

2
is a

solution of (48). Letting 𝑤 = V
2
in (51), we have

1

2

𝑑

𝑑𝑡
(𝛼
2

0

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2

󵄩󵄩󵄩󵄩󵄩

2

2
) + ] (𝛼2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V2
󵄩󵄩󵄩󵄩
2

2
)

= −](
𝑛

∑
𝑗=1

𝐴ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) , V

2
)

− (𝐵(V + 𝑧 (𝜃
𝑡
𝜔) , 𝛼

2

0
V + 𝛼

2

1
𝐴V

+

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)) , V

2
)

+ (𝑃𝑓 (𝑥, 𝑡) , V2) + 𝜇(

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) , V

2
) .

(93)

Employing Lemma 14, the second term on the right-hand
side of (93) can be bounded by

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝐵(V + 𝑧 (𝜃
𝑡
𝜔) , 𝛼

2

0
V + 𝛼

2

1
𝐴V

+

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)) , V

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
󵄩󵄩󵄩󵄩V + 𝑧 (𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩
1/2

2

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V + 𝐴

1/2
𝑧 (𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩󵄩

1/2

2

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
2

0
V + 𝛼

2

1
𝐴V +

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝐴V2
󵄩󵄩󵄩󵄩2

+ 𝑐
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V + 𝐴

1/2
𝑧 (𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩󵄩2

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
2

0
V + 𝛼

2

1
𝐴V +

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

×
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2

󵄩󵄩󵄩󵄩󵄩

1/2

2

󵄩󵄩󵄩󵄩𝐴V2
󵄩󵄩󵄩󵄩
1/2

2

≤
]𝛼2
0

8

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2

󵄩󵄩󵄩󵄩󵄩

2

2
+
]𝛼2
1

2

󵄩󵄩󵄩󵄩𝐴V2
󵄩󵄩󵄩󵄩
2

2

+ 𝑐 (𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

× (𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
)

+ 𝑐(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)
2

+ 𝑐(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
)
2

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑗
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑗
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑗
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑗
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
) .

(94)

By Poincaré’s inequality, note that

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(

𝑛

∑
𝑗=1

𝐴ℎ
𝑗
𝑦
𝑗
(𝜃
𝑗
𝜔
𝑗
) , V

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
]𝛼2
0

8

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

,

󵄨󵄨󵄨󵄨(𝑃𝑓, V2)
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑉󸀠

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩 ≤

]𝛼2
0

8

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝑐

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑉
󸀠 ,

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) , V

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
]𝛼2
0

8

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑗
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

.

(95)

Associating with (93)–(95) and applying Poincaré inequality,
we have

𝑑

𝑑𝑡
(𝛼
2

0

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2

󵄩󵄩󵄩󵄩󵄩

2

2
)

+ ]𝜆
𝑚+1

(𝛼
2

0

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2

󵄩󵄩󵄩󵄩󵄩

2

2
)

≤ 𝑐
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝑉
󸀠 + 𝐺 (𝑡, 𝜔) ,

(96)

where

𝐺 (𝑡, 𝜔)

= 𝑐(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)
2

+ 𝑐(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
)
2

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑐 (𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

× (𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
)

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4
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+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
) .

(97)

Applying Gronwall Lemma on [𝑡, 𝑡 + 1] where 𝑡 ≥ 𝑇
3
(𝜔), we

have

𝛼
2

0

󵄩󵄩󵄩󵄩V2(𝑡 + 1, 𝜔)
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2
(𝑡 + 1, 𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2

≤ 𝑒
−]𝜆
𝑚+1 (𝛼

2

0

󵄩󵄩󵄩󵄩V2 (𝑡, 𝜔)
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2 (𝑡, 𝜔)
󵄩󵄩󵄩󵄩󵄩

2

2
)

+ ∫
𝑡+1

𝑡

𝐺 (𝑠, 𝜔) 𝑒
−]𝜆
𝑚+1𝑑𝑠

+ 𝑐∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑓(𝑠)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
−]𝜆
𝑚+1𝑑𝑠.

(98)

Replacing 𝜔 by 𝜃
−𝑡−1

𝜔 in (98), we have

𝛼
2

0

󵄩󵄩󵄩󵄩V2 (𝑡 + 1, 𝜃
−𝑡−1

𝜔)
󵄩󵄩󵄩󵄩
2

2

+ 𝛼
2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2
(𝑡 + 1, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2

≤ 𝑒
−]𝜆
𝑚+1 (𝛼

2

0

󵄩󵄩󵄩󵄩V2 (𝑡, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2

+𝛼
2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2
(𝑡, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
)

+ ∫
𝑡+1

𝑡

𝐺 (𝑠, 𝜃
−𝑡−1

𝜔) 𝑒
−]𝜆
𝑚+1𝑑𝑠

+ 𝑐∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑓(𝑠)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
−]𝜆
𝑚+1𝑑𝑠.

(99)

Now we need to estimate the second term on the right-hand
side of (99). As the previous consideration in Lemma 15, for
𝑠 ∈ [𝑡, 𝑡 + 1) where 𝑡 ≥ 𝑇

3
(𝜔), we have

𝛼
2

0

󵄩󵄩󵄩󵄩V(𝑠, 𝜃−𝑡−2)
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑠, 𝜃

−𝑡−2
)
󵄩󵄩󵄩󵄩󵄩

2

2
≤ 𝑟

9
(𝜔) , (100)

where 𝑟
9
(𝜔) = 𝑒

2]𝜆
1𝑟
4
(𝜔). As the previous consideration in

Lemma 16, we have

∫
𝑡+1

𝑡

(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝑠, 𝜃

−𝑡−2
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2

+𝛼
2

1

󵄩󵄩󵄩󵄩𝐴V(𝑠, 𝜃−𝑡−2𝜔)
󵄩󵄩󵄩󵄩
2

2
) 𝑑𝑠 ≤ 𝑟

10 (𝜔) ,

(101)

where

𝑟
10

(𝜔) = 𝑐𝑟
9
(𝜔)

𝑛

∑
𝑗=1

∫
0

−2

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+ 𝑐𝑟
9 (𝜔)

𝑛

∑
𝑗=1

∫
0

−2

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

+ 𝑐

𝑛

∑
𝑗=1

∫
0

−2

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠 + 𝑟
9
(𝜔) .

(102)

Replacing 𝜔 by 𝜃
−𝑡−2

𝜔 in (84), we have

𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝑡 + 1, 𝜃

−𝑡−2
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V(𝑡 + 1, 𝜃
−𝑡−2

𝜔)
󵄩󵄩󵄩󵄩
2

2

≤ (𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝑠, 𝜃

−𝑡−2
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2

+𝛼
2

1

󵄩󵄩󵄩󵄩𝐴V(𝑠, 𝜃−𝑡−2𝜔)
󵄩󵄩󵄩󵄩
2

2
) 𝑒
𝐽
2
(𝑠,𝑡+1,𝜃

−𝑡−2
𝜔)

+ 𝑐∫
𝑡+1

𝑡

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏−𝑡−2

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑒
𝐽
2
(𝜏,𝑡+1,𝜃

−𝑡−2
𝜔)
𝑑𝜏

+ 𝑐∫
𝑡+1

𝑡

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏−𝑡−2

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

𝑒
𝐽
2
(𝜏,𝑡+1,𝜃

−𝑡−2
𝜔)
𝑑𝜏

+ 𝑐∫
𝑡+1

𝑡

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏−𝑡−2

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

× (𝛼
2

0

󵄩󵄩󵄩󵄩V(𝜏, 𝜃−𝑡−2𝜔)
󵄩󵄩󵄩󵄩
2

2

+ 𝛼
2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝜏, 𝜃

−𝑡−2
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
) 𝑒
𝐽
2
(𝜏,𝑡+1,𝜃

−𝑡−2
𝜔)
𝑑𝜏

+ 𝑐∫
𝑡+1

𝑡

(𝛼
2

0

󵄩󵄩󵄩󵄩V(𝜏, 𝜃−𝑡−2𝜔)
󵄩󵄩󵄩󵄩
2

2

+𝛼
2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝜏, 𝜃

−𝑡−2
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
)
2

𝑒
𝐽
2
(𝜏,𝑡+1,𝜃

−𝑡−2
𝜔)
𝑑𝜏

+ 𝑐∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑓(𝜏)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
𝐽
2
(𝜏,𝑡+1,𝜃

−𝑡−2
𝜔)
𝑑𝜏.

(103)

Analogously to the previous estimates, we have

𝐽
2
(𝜏, 𝑡 + 1, 𝜃

−𝑡−2
𝜔)

≤ 𝑐∫
𝑡+1

𝑡

(𝛼
2

0

󵄩󵄩󵄩󵄩V (𝜏, 𝜃−𝑡−2𝜔)
󵄩󵄩󵄩󵄩
2

2

+𝛼
2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝜏, 𝜃

−𝑡−2
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
) 𝑑𝜏

+ 𝑐∫
𝑡+1

𝑡

(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝜏, 𝜃

−𝑡−2
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2

+𝛼
2

1

󵄩󵄩󵄩󵄩𝐴V (𝜏, 𝜃−𝑡−2𝜔)
󵄩󵄩󵄩󵄩
2

2
) 𝑑𝜏

+ 𝑐

𝑛

∑
𝑗=1

∫
𝑡+1

𝑡

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏−𝑡−2

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏

≤ 𝑟
11

(𝜔) ,

(104)

where

𝑟
11

(𝜔) = 𝑐𝑟
9
(𝜔) + 𝑐𝑟

10
(𝜔) + 𝑐

𝑛

∑
𝑗=1

∫
0

−2

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏. (105)
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Integrating (103) with respect to 𝑠 ∈ (𝑡, 𝑡+1) associating (100),
(101), and (104) with (68), we have

𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝑡 + 1, 𝜃

−𝑡−2
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V(𝑡 + 1, 𝜃
−𝑡−2

𝜔)
󵄩󵄩󵄩󵄩
2

2

≤ 𝑟
12

(𝜔) ,

(106)

where

𝑟
12 (𝜔) = 𝑐𝑟

10 (𝜔) 𝑒
𝑟
11
(𝜔)

+ 𝑐𝑒
𝑟
11
(𝜔)

∫
0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏

+ 𝑐𝑒
𝑟
11
(𝜔)

∫
0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

𝑑𝜏

+ 𝑐𝑟
9 (𝜔) 𝑒

𝑟
11
(𝜔)

∫
0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏

+ 𝑐𝑟
9(𝜔)

2
𝑒
𝑟
11
(𝜔)

+ 𝑐𝑀
𝑓
0

𝑒
𝑟
11
(𝜔)

.

(107)

Replacing 𝑠, 𝑡 + 1, and 𝜔 by 𝑡, 𝑠, and 𝜃
−𝑡−1

𝜔, respectively, in
(84) where 𝑠 ∈ (𝑡, 𝑡 + 1) and 𝑡 ≥ 𝑇

3
(𝜔), we have

𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V (𝑠, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V(𝑠, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2

≤ (𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝑡, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2

+𝛼
2

1

󵄩󵄩󵄩󵄩𝐴V(𝑡, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2
) 𝑒
𝐽
2
(𝑡,𝑡+1,𝜃

−𝑡−1
𝜔)

+ 𝑐∫
𝑡+1

𝑡

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏−𝑡−1

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑒
𝐽
2
(𝜏,𝑡+1,𝜃

−𝑡−1
𝜔)
𝑑𝜏

+ 𝑐∫
𝑡+1

𝑡

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏−𝑡−1

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

𝑒
𝐽
2
(𝜏,𝑡+1,𝜃

−𝑡−1
𝜔)
𝑑𝜏

+ 𝑐∫
𝑡+1

𝑡

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏−𝑡−1

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

× (𝛼
2

0

󵄩󵄩󵄩󵄩V (𝜏, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2

+𝛼
2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝜏, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
) 𝑒
𝐽
2
(𝜏,𝑡+1,𝜃

−𝑡−1
𝜔)
𝑑𝜏

+ 𝑐∫
𝑡+1

𝑡

(𝛼
2

0

󵄩󵄩󵄩󵄩V(𝜏, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2

+𝛼
2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V(𝜏, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
)
2

𝑒
𝐽
2
(𝜏,𝑡+1,𝜃

−𝑡−1
𝜔)
𝑑𝜏

+ 𝑐∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑓(𝜏)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
𝐽
2
(𝜏,𝑡+1,𝜃

−𝑡−1
𝜔)
𝑑𝜏

≤ 𝑟
12

(𝜔) 𝑒
𝑟
7
(𝜔)

+ 𝑐𝑒
𝑟
7
(𝜔)

∫
0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏

+ 𝑐𝑒
𝑟
7
(𝜔)

∫
0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

𝑑𝜏 + 𝑐𝑒
𝑟
7
(𝜔)

𝑀
𝑓
0

+ 𝑐𝑟
5(𝜔)

2
𝑒
𝑟
7
(𝜔)

+ 𝑐𝑟
5 (𝜔) 𝑒

𝑟
7
(𝜔)

∫
0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝜏
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏

󳵻

= 𝑟
13

(𝜔) .

(108)

Associating with the above inequalities, we have

∫
𝑡+1

𝑡

𝐺 (𝑠, 𝜃
−𝑡−1

𝜔) 𝑑𝑠 ≤ 𝑟
14

(𝜔) , (109)

where

𝑟
14 (𝜔) = 𝑐𝑟

5(𝜔)
2
+ 𝑐𝑟

13(𝜔)
2

+ 𝑐∫
0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

+ 𝑐𝑟
5 (𝜔) 𝑟13 (𝜔)

+ 𝑐∫
0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

𝑑𝑠

+ 𝑐𝑟
5
(𝜔) ∫

0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

+ 𝑐𝑟
13

(𝜔) ∫
0

−1

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑠
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠.

(110)

According to the property of {𝜆
𝑗
}
∞

𝑗=1
mentioned in Section 3,

for P a.e 𝜔 ∈ Ω and ∀𝜀 > 0, there exists 𝑀 such that for
𝑚 ≥ 𝑀

𝑒
−]𝜆
𝑚+1 (𝛼

2

0

󵄩󵄩󵄩󵄩V2(𝑡, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2
(𝑡, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
)

≤
𝑟
5 (𝜔)

𝑒]𝜆𝑚+1
≤ 𝜀𝑟

5
(𝜔) ,

∫
𝑡+1

𝑡

𝐺 (𝑠, 𝜃
−𝑡−1

𝜔) 𝑒
−]𝜆
𝑚+1𝑑𝑠 ≤

𝑟
14

(𝜔)

𝑒]𝜆𝑚+1
≤ 𝜀𝑟

14
(𝜔) ,

𝑐 ∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑓(𝑠)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
−]𝜆
𝑚+1𝑑𝑠 ≤

𝑐𝑀
𝑓
0

𝑒]𝜆𝑚+1
≤ 𝜀.

(111)
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Therefore, we deduce from (99) that, for P a.e. 𝜔 ∈ Ω,

𝛼
2

0

󵄩󵄩󵄩󵄩V2(𝑡, 𝜃−𝑡𝜔)
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2
(𝑡, 𝜃

−𝑡
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2

≤ 𝜀 + 𝜀𝑟
5 (𝜔) + 𝜀𝑟

14 (𝜔) , ∀𝑡 ≥ 𝑇
3 (𝜔) , 𝑓 ∈ Σ (𝑓

0
) ,

(112)

which indicates {U
𝑓
(𝑡, 𝜏, 𝜔)}, 𝑓 ∈ Σ(𝑓

0
) satisfying uniform

(with respect to 𝑓 ∈ Σ(𝑓
0
)) condition(C) in 𝑉. According to

Theorem 12, the proof is completed.

In the following we prove the existence of uniformly
random attractor for the families of processes {U

𝑓
(𝑡, 𝜏, 𝜔)},

𝑓 ∈ Σ(𝑓
0
) corresponding to (48) in𝐷(𝐴).

Theorem 18. If 𝑓
0
(𝑥, 𝑠) is a normal function in 𝐿

2

loc(R, 𝑉
󸀠
),

then the process {U
𝑓
0

(𝑡, 𝜏, 𝜔)} corresponding to (48) possess a
compact uniformly (with respect to 𝜏 ∈ R) random attractor
A
2
(𝜔) in 𝐷(𝐴) which coincides with the uniformly (with

respect to 𝑓 ∈ Σ(𝑓
0
)) random attractor A

Σ(𝑓
0
)
of the family

of processes {U
𝑓
(𝑡, 𝜏, 𝜔)}, 𝑓 ∈ Σ(𝑓

0
) :

A
2
(𝜔) = A

Σ(𝑓
0
)
(𝜔) = W

0,Σ(𝑓
0
)
(K

2
) = ⋃

𝑓∈Σ(𝑓
0
)

N
𝑓
(0, 𝜔) ,

(113)

where K
2
(𝜔) is the uniformly (with respect to 𝑓 ∈ Σ(𝑓

0
))

random absorbing set in 𝐷(𝐴) and N
𝑓
(𝜔) is the kernel of

the process {U
𝑓
(𝑡, 𝜏, 𝜔)}. Furthermore, the kernel N

𝑓
(𝜔) is

nonempty for all 𝑓 ∈ Σ(𝑓
0
).

Proof. In Lemma 16, we have proved that the semigroup of
processes {U

𝑓
(𝑡, 𝜏, 𝜔)}, 𝑓 ∈ Σ(𝑓

0
), has a uniformly random

absorbing set in 𝐷(𝐴). Now we testify that the semigroup
of processes corresponding to (48) satisfies uniform (with
respect to𝑓 ∈ Σ(𝑓

0
)) condition (C). Analogously to the proof

in Lemma 16, we easily check that V
1
is bounded in 𝐷(𝐴).

Letting 𝑤 = 𝐴V
2
in (51), we have

1

2

𝑑

𝑑𝑡
(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V2
󵄩󵄩󵄩󵄩
2

2
)

+ ] (𝛼2
0

󵄩󵄩󵄩󵄩𝐴V2
󵄩󵄩󵄩󵄩
2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
3/2V

2

󵄩󵄩󵄩󵄩󵄩

2

2
)

= −](
𝑛

∑
𝑗=1

𝐴ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) , 𝐴V

2
)

− (𝐵(V + 𝑧 (𝜃
𝑡
𝜔) , 𝛼

2

0
V + 𝛼

2

1
𝐴V

+

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)) ,𝐴V

2
)

+ (𝑃𝑓 (𝑥, 𝑡) , 𝐴V
2
)

+ 𝜇(

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) , 𝐴V

2
) .

(114)

Applying Lemma 14, the second term on the right-hand side
of (114) can be bounded by

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝐵(V + 𝑧 (𝜃
𝑡
𝜔) , 𝛼

2

0
V + 𝛼

2

1
𝐴V

+

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)) ,𝐴V

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
]𝛼2
0

8

󵄩󵄩󵄩󵄩𝐴V2
󵄩󵄩󵄩󵄩
2

2
+
]𝛼2
1

2

󵄩󵄩󵄩󵄩󵄩
𝐴
3/2V

2

󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝑐 (𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)

× (𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
)

+ 𝑐(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)
2

+ 𝑐(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
)
2

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(𝛼
2

0
‖V‖2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
)
2

+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1
‖𝐴V‖2

2
)
2

.

(115)

Note that

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔j) , 𝐴V2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
]𝛼2
0

8

󵄩󵄩󵄩󵄩𝐴V2
󵄩󵄩󵄩󵄩
2

2
+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

,

󵄨󵄨󵄨󵄨(𝑃𝑓 (𝑥, 𝑡) , 𝐴V
2
)
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑉󸀠

󵄩󵄩󵄩󵄩𝐴V2
󵄩󵄩󵄩󵄩2 ≤

]𝛼2
0

8

󵄩󵄩󵄩󵄩𝐴V2
󵄩󵄩󵄩󵄩
2

2
+ 𝑐

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑉
󸀠 ,

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(

𝑛

∑
𝑗=1

ℎ
𝑗
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
) , 𝐴V

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
]𝛼2
0

8

󵄩󵄩󵄩󵄩𝐴V2
󵄩󵄩󵄩󵄩
2

2
+ 𝑐

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

.

(116)
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Associating with (114)–(116) and applying Poincaré’s inequal-
ity, we have

𝑑

𝑑𝑡
(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V2
󵄩󵄩󵄩󵄩
2

2
)

+ ]𝜆
𝑚+1

(𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V2
󵄩󵄩󵄩󵄩
2

2
)

≤ 𝐺 (𝑡, 𝜔) + 𝑐
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝑉
󸀠 .

(117)

ApplyingGronwall’s lemmaover 𝑠 ∈ [𝑡, 𝑡+1]where 𝑡 ≥ 𝑇
2
(𝜔),

we have

𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2
(𝑡 + 1, 𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V2(𝑡 + 1, 𝜔)
󵄩󵄩󵄩󵄩
2

2

≤ (𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2 (𝑡, 𝜔)
󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V2 (𝑡, 𝜔)
󵄩󵄩󵄩󵄩
2

2
) 𝑒
−]𝜆
𝑚+1

+ ∫
𝑡+1

𝑡

𝐺 (𝑠, 𝜔) 𝑒
−]𝜆
𝑚+1𝑑𝑠 + 𝑐∫

𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
−]𝜆
𝑚+1𝑑𝑠.

(118)

Replacing 𝜔 by 𝜃
−𝑡−1

𝜔 in (118), we have

𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2
(𝑡 + 1, 𝜃

−t−1𝜔)
󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝛼
2

1

󵄩󵄩󵄩󵄩𝐴V2(𝑡 + 1, 𝜃
−𝑡−1

𝜔)
󵄩󵄩󵄩󵄩
2

2

≤ (𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2
(𝑡, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2

+𝛼
2

1

󵄩󵄩󵄩󵄩𝐴V2(𝑡, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2
) 𝑒
−]𝜆
𝑚+1

+ ∫
𝑡+1

𝑡

𝐺 (𝑠, 𝜃
−𝑡−1

𝜔) 𝑒
−]𝜆
𝑚+1𝑑𝑠

+ 𝑐∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
−]𝜆
𝑚+1𝑑𝑠.

(119)

Analogously to the consideration in Theorem 17, for P a.e.
𝜔 ∈ Ω and ∀𝜀 > 0, there exists 𝑀 such that, for𝑚 > 𝑀,

𝑒
−]𝜆
𝑚+1 (𝛼

2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2
(𝑡, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V2(𝑡, 𝜃−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2

2
)

≤
𝑟
12

(𝜔)

𝑒]𝜆𝑚+1
≤ 𝜀𝑟

12 (𝜔) ,

∫
𝑡+1

𝑡

𝐺 (𝑠, 𝜃
−𝑡−1

𝜔) 𝑒
−]𝜆
𝑚+1𝑑𝑠 ≤

𝑟
14

(𝜔)

𝑒]𝜆𝑚+1
≤ 𝜀𝑟

14
(𝜔) ,

𝑐 ∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑓(𝑠)
󵄩󵄩󵄩󵄩
2

𝑉
󸀠𝑒
−]𝜆
𝑚+1𝑑𝑠 ≤

𝑐𝑀
𝑓
0

𝑒]𝜆𝑚+1
≤ 𝜀.

(120)

Therefore, we deduce from (119) that, for P a.e 𝜔 ∈ Ω,

𝛼
2

0

󵄩󵄩󵄩󵄩󵄩
𝐴
1/2V

2
(𝑡 + 1, 𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛼

2

1

󵄩󵄩󵄩󵄩𝐴V2 (𝑡 + 1, 𝜃
−𝑡−1

𝜔)
󵄩󵄩󵄩󵄩
2

2

≤ 𝜀 + 𝜀𝑟
12

(𝜔) + 𝜀𝑟
14

(𝜔) , ∀𝑡 ≥ 𝑇
3
(𝜔) , 𝑓 ∈ Σ (𝑓

0
) .

(121)

which indicates {U
𝑓
(𝑡, 𝜏, 𝜔)}, 𝑓 ∈ Σ(𝑓

0
) satisfying uniform

(with respect to𝑓 ∈ Σ(𝑓
0
)) condition (C) in𝐷(𝐴). According

toTheorem 12, the proof is completed.

Now we introduce a homeomorphism Φ(𝜃
𝑡
𝜔)𝑢 = 𝑢 +

𝑧(𝜃
𝑡
𝜔), 𝑢 ∈ 𝐸, whose inverse homeomorphism Φ

−1
(𝜃
𝑡
𝜔)𝑢 =

𝑢 − 𝑧(𝜃
𝑡
𝜔). Then the transformation

V
𝜎
(𝑡, 𝜏, 𝜔) = Φ (𝜃

𝑡
𝜔) ∘U

𝜎
(𝑡, 𝜏, 𝜔) ∘ Φ

−1
(𝜃
𝜏
𝜔) (122)

generates a process corresponding to (8). Note that the two
processes are equivalent by (122). It is easy to check that
V
𝜎
(𝑡, 𝜏, 𝜔) has a uniformly (with respect to 𝜎 ∈ Σ) random

attractor provided U
𝜎
(𝑡, 𝜏, 𝜔) possesses a uniformly (with

respect to 𝜎 ∈ Σ) random attractor. As a result Theorem 17
and Theorem 18 imply that (8) has a uniformly (with respect
to 𝑓 ∈ Σ(𝑓

0
)) random attractor in 𝑉 and𝐷(𝐴).
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[26] A. Haraux, Systèmes Dynamiques Dissipatifs et Applications,
Masson, Paris, France, 1991.

[27] V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of
Mathematical Physics, American Mathematical Society, Provi-
dence, RI, USA, 2002.

[28] L. Arnold, Random Dynamical Systems, Springer, Berlin, Ger-
many, 1998.

[29] H. Crauel and F. Flandoli, “Attractors for random dynamical
systems,” Probability Theory and Related Fields, vol. 100, no. 3,
pp. 365–393, 1994.

[30] I. Chueshov, Monotone Random Systems Theory and Applica-
tions, Springer, Berlin, Germany, 2002.

[31] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite
Dimensions, CambridgeUniversity Press, Cambridge,UK, 1992.

[32] B. Øksendal, Stochastic Differential Equations, Springer, Berlin,
Germany, 2000.

[33] H. Crauel, A. Debussche, and F. Flandoli, “Random attractors,”
Journal of Dynamics and Differential Equations, vol. 9, no. 2, pp.
307–341, 1997.

[34] F. Flandoli and B. Schmalfuss, “Random attractors for the
3D stochastic Navier-Stokes equation with multiplicative white
noise,” Stochastics and Stochastics Reports, vol. 59, no. 1-2, pp.
21–45, 1996.

[35] J. K. Hale,Asymptotic Behavior of Dissipative Systems, American
Mathematical Society, Providence, RI, USA, 1988.

[36] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cam-
bridge University Press, Cambridge, UK, 2001.

[37] G. R. Sell and Y. You, Dynamics of Evolutionary Equations,
Springer, New York, NY, USA, 2002.

[38] R. Teman, Infinite-Dimensional Dynamical Systems in Machan-
ics and Physics, Springer, New York, NY, USA, 1998.
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