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Received 7 April 2013; Accepted 15 May 2013

Academic Editor: Sotiris Ntouyas

Copyright © 2013 Z. Fan and G. Mophou. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We discuss the continuity of analytic resolvent in the uniform operator topology and then obtain the compactness of Cauchy
operator by means of the analytic resolvent method. Based on this result, we derive the existence of mild solutions for nonlocal
fractional differential equations when the nonlocal item is assumed to be Lipschitz continuous and neither Lipschitz nor compact,
respectively. An example is also given to illustrate our theory.

1. Introduction

In this paper, we are concerned with the existence of mild
solutions for a fractional differential equation with nonlocal
conditions of the form

𝐷
𝛼

𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝐽
1−𝛼

𝑡
𝑓 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 ≤ 𝑏,

𝑢 (0) = 𝑢
0
− 𝑔 (𝑢) ,

(1)

where 𝐷
𝛼 is the Caputo fractional derivative of order 𝛼 with

0 < 𝛼 < 1, 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is the infinitesimal generator
of a resolvent 𝑆

𝛼
(𝑡), 𝑡 ≥ 0, 𝑋 is a real Banach space endowed

with the norm ‖ ⋅ ‖, and 𝑓 and 𝑔 are appropriate continuous
functions to be specified later.

The theory of fractional differential equations has
received much attention over the past twenty years, since
they are important in describing the natural models such as
diffusion processes, stochastic processes, finance, and hydrol-
ogy. Many notions associated with resolvent are developed
such as integral resolvent, solution operators, 𝛼-resolvent
operator functions, (𝑎, 𝑘)-regularized resolvent, and 𝛼-order
fractional semigroups. All of these notions play a central role
in the study of Volterra equations, especially the fractional
differential equations. Concerning the literature, we refer the

reader to the books [1, 2], the recent papers [3–20], and the
references therein.

On the other hand, abstract differential equations with
nonlocal conditions have also been studied extensively in the
literature, since it is demonstrated that the nonlocal problems
have better effects in applications than the classical ones. It
was Byszewski and Lakshmikantham [21] who first studied
the existence and uniqueness of mild solutions for nonlocal
differential equations. And the main difficulty in dealing
with the nonlocal problem is how to get the compactness of
solution operator at zero, especially when the nonlocal item
is only assumed to be Lipschitz continuous or continuous.
Many authors developed different techniques and methods
to solve this problem. For more details on this topic, we refer
to [10, 11, 22–33] and references therein.

In this paper, we combine the above two directions
and study the nonlocal fractional differential equation (1)
governed by operator 𝐴 generating an analytic resolvent.
A standard approach in deriving the mild solution of (1)
is to define the solution operator 𝑄. Then, conditions are
given such that some fixed point theorems such as Browder’s
and Schauder’s fixed point theorems can be applied to get
a fixed point for solution operator 𝑄, which gives rise to a
mild solution of (1). The key step of using this approach is
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to prove the compactness of Cauchy operator 𝐺 associated
with solution operator 𝑄. When the operator 𝐴 generates a
compact semigroup, it is well known that theCauchy operator
𝐺 is also compact. However, to the best of our knowledge,
it is unknown when 𝐴 generates a compact resolvent. The
main difficulty of this problem lies in the fact that there is no
property of semigroups for resolvent.

To this end, wewill first discuss the continuity of resolvent
in the uniform operator topology in this paper. In fact, we
prove that the compact analytic resolvent is continuous in
the uniform operator topology. Based on this result, we can
prove the compactness of Cauchy operator. As a consequence,
we obtain the existence of mild solutions for (1) when the
nonlocal item is Lipschitz continuous. At the same time, we
also derive the existence of mild solutions for (1) without
the Lipschitz or compact assumption on the nonlocal item
𝑔 by using the techniques developed in [24, 30]. Actually,
we only assume that 𝑔 is continuous on 𝐶([0, 𝑏], 𝑋) and 𝑔 is
completely determined on [𝛿, 𝑏] for some small 𝛿 > 0 or 𝑔

is continuous on 𝐶([0, 𝑏], 𝑋) with 𝐿
1

([0, 𝑏], 𝑋) topology (see
Corollaries 17–19).

This paper has four sections. In Section 2, we recall
some definitions on Caputo fractional derivatives, analytic
resolvent, and mild solutions to (1). In Section 3, we prove
the compactness of Cauchy operator. Finally, in Section 4
we establish the existence of mild solutions of (1) when the
nonlocal item satisfies different conditions. An example is
also given in this section.

2. Preliminaries

Throughout this paper, let 𝑏 > 0 be fixed, and let N, R,
and R

+
be the set of positive integers, real numbers, and

nonnegative real numbers, respectively. We denote by 𝑋 the
Banach space with the norm ‖ ⋅ ‖, 𝐶([0, 𝑏], 𝑋) the space of
all 𝑋-valued continuous functions on [0, 𝑏] with the norm
‖𝑢‖ = sup{‖𝑢(𝑡)‖, 𝑡 ∈ [0, 𝑏]}, and 𝐿

𝑝

([0, 𝑏], 𝑋) the space of𝑋-
valued Bochner integrable functions on [0, 𝑏] with the norm
‖𝑓‖
𝐿
𝑝 = (∫

𝑏

0

‖𝑓(𝑡)‖
𝑝d𝑡)1/𝑝, where 1 ≤ 𝑝 < ∞. Also, we denote

by L(𝑋) the space of bounded linear operators from 𝑋 into
𝑋 endowed with the norm of operators.

Now, let us recall some basic definitions and results on
fractional derivative and fractional differential equations.

Definition 1 (see [1]). The fractional order integral of the
function 𝑓 ∈ 𝐿

1

([0, 𝑏], 𝑋) of order 𝛼 > 0 is defined by

𝐽
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) d𝑠, (2)

where Γ is the Gamma function.

Definition 2 (see [1]). TheRiemann-Liouville fractional order
derivative of order 𝛼 of a function 𝑓 ∈ 𝐿

1

([0, 𝑏], 𝑋) given on
the interval [0, 𝑏] is defined by

𝐷
𝛼

𝐿
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓 (𝑠) d𝑠, (3)

where 𝛼 ∈ (𝑛 − 1, 𝑛], 𝑛 ∈ N.

Definition 3 (see [1]). The Caputo fractional order derivative
of order 𝛼 of a function𝑓 ∈ 𝐿

1

([0, 𝑏], 𝑋) given on the interval
[0, 𝑏] is defined by

𝐷
𝛼

𝑓 (𝑡) =
1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓
(𝑛)

(𝑠) d𝑠, (4)

where 𝛼 ∈ (𝑛 − 1, 𝑛], 𝑛 ∈ N.

In the remainder of this paper, we always suppose that 0 <

𝛼 < 1 and 𝐴 is a closed and densely defined linear operator
on 𝑋.

Definition 4. A family {𝑆
𝛼
(𝑡)}
𝑡≥0

⊆ L(𝑋) of bounded linear
operators in 𝑋 is called a resolvent (or solution operator)
generating by 𝐴 if the following conditions are satisfied:

(S1) 𝑆
𝛼
(𝑡) is strong continuous on R

+
and 𝑆
𝛼
(0) = 𝐼;

(S2) 𝑆
𝛼
(𝑡)𝐷(𝐴) ⊆ 𝐷(𝐴) and 𝐴𝑆

𝛼
(𝑡)𝑥 = 𝑆

𝛼
(𝑡)𝐴𝑥 for all 𝑥 ∈

𝐷(𝐴) and 𝑡 ≥ 0;
(S3) the resolvent equation holds

𝑆
𝛼
(𝑡) 𝑥 = 𝑥 + ∫

𝑡

0

𝑔
𝛼
(𝑡 − 𝑠) 𝐴𝑆

𝛼
(𝑠) 𝑥d𝑠 ∀𝑥 ∈ 𝐷 (𝐴) , 𝑡 ≥ 0.

(5)

For 𝜔, 𝜃 ∈ R, let

∑(𝜔, 𝜃) := {𝜆 ∈ C :
󵄨󵄨󵄨󵄨arg (𝜆 − 𝜔)

󵄨󵄨󵄨󵄨 < 𝜃} . (6)

Definition 5. A resolvent 𝑆
𝛼
(𝑡) is called analytic, if the

function 𝑆
𝛼
(⋅) : R

+
→ L(𝑋) admits analytic extension

to a sector ∑(0, 𝜃
0
) for some 0 < 𝜃

0
≤ 𝜋/2. An analytic

resolvent 𝑆
𝛼
(𝑡) is said to be of analyticity type (𝜔

0
, 𝜃
0
) if for

each 𝜃 < 𝜃
0
and 𝜔 > 𝜔

0
there is 𝑀

1
= 𝑀
1
(𝜔, 𝜃) such that

‖𝑆(𝑧)‖ ≤ 𝑀
1
𝑒
𝜔Re 𝑧 for 𝑧 ∈ ∑(0, 𝜃), where Re 𝑧 denotes the

real part of 𝑧.

Definition 6. A resolvent 𝑆
𝛼
(𝑡) is called compact for 𝑡 > 0 if

for every 𝑡 > 0, 𝑆
𝛼
(𝑡) is a compact operator.

According to Proposition 1.2 in [2], we can give the
following definition of mild solutions for (1).

Definition 7. A function 𝑢 ∈ 𝐶([0, 𝑏], 𝑋) is called a mild
solution of fractional evolution equation (1) if it satisfies

𝑢 (𝑡) = 𝑆
𝛼
(𝑡) [𝑢
0
− 𝑔 (𝑢)]

+ ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) d𝑠, 0 ≤ 𝑡 ≤ 𝑏

(7)

for every 𝑢
0
∈ 𝑋.

Next, we introduce the Hausdorff measure of noncom-
pactness 𝛽(⋅) defined on each bounded subset Ω of Banach
space 𝑌 by

𝛽 (Ω) = inf {𝜀 > 0; Ω has a finite 𝜀-net in 𝑌} . (8)

Some basic properties of 𝛽(⋅) are given in the following
lemma.
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Lemma 8 (see [34]). Let 𝑌 be a real Banach space and let
𝐵, 𝐶 ⊆ 𝑌 be bounded; then the following properties are
satisfied:

(1) 𝐵 is precompact if and only if 𝛽(𝐵) = 0;

(2) 𝛽(𝐵) = 𝛽(𝐵) = 𝛽(conv 𝐵), where 𝐵 and conv 𝐵 mean
the closure and convex hull of 𝐵, respectively;

(3) 𝛽(𝐵) ≤ 𝛽(𝐶) when 𝐵 ⊆ 𝐶;

(4) 𝛽(𝐵 + 𝐶) ≤ 𝛽(𝐵) + 𝛽(𝐶), where 𝐵 + 𝐶 = {𝑥 + 𝑦; 𝑥 ∈

𝐵, 𝑦 ∈ 𝐶};

(5) 𝛽(𝐵 ∪ 𝐶) ≤ max{𝛽(𝐵), 𝛽(𝐶)};

(6) 𝛽(𝜆𝐵) = |𝜆|𝛽(𝐵) for any 𝜆 ∈ R;

(7) if the map𝑄 : 𝐷(𝑄) ⊆ 𝑌 → 𝑍 is Lipschitz continuous
with constant 𝑘, then 𝛽(𝑄𝐵) ≤ 𝑘𝛽(𝐵) for any bounded
subset 𝐵 ⊆ 𝐷(𝑄), where 𝑍 is a Banach space.

The map 𝑄 : 𝑊 ⊆ 𝑌 → 𝑌 is said to be a 𝛽-contraction
if there exists a positive constant 𝑘 < 1 such that 𝛽(𝑄𝐶) ≤

𝑘𝛽(𝐶) for any bounded closed subset 𝐶 ⊆ 𝑊, where 𝑌 is a
Banach space.

Lemma 9 ([34], Darbo-Sadovskii). If 𝑊 ⊆ 𝑌 is bounded
closed and convex, the continuous map 𝑄 : 𝑊 → 𝑊 is a
𝛽-contraction, then the map 𝑄 has at least one fixed point in
𝑊.

3. Compactness of Cauchy Operators

Let Cauchy operator 𝐺 : 𝐶([0, 𝑏], 𝑋) → 𝐶([0, 𝑏], 𝑋) be def-
ined by

(𝐺𝑓) (𝑡) = ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) d𝑠, 𝑡 ∈ [0, 𝑏] . (9)

If 𝑆
𝛼
(𝑡) is a compact 𝐶

0
-semigroup, it is well known that

𝐺 is compact. However, it is unknown in case of compact
resolvent. The main difficulty is that the resolvent does not
have the property of semigroups. Thus, it seems to be more
complicated to prove the compactness of Cauchy operator.
Here, we will first discuss the continuity of resolvent in the
uniform operator topology. Then, we can give the positive
answer to the above problem.

In the remainder of this paper, we always assume that
𝑀 = sup

𝑡∈[0,𝑏]
‖𝑆
𝛼
(𝑡)‖ < +∞.

Lemma 10. Suppose 𝑆
𝛼
(𝑡) is a compact analytic resolvent of

analyticity type (𝜔
0
, 𝜃
0
). Then the following are hold:

(i) lim
ℎ→0

‖𝑆
𝛼
(𝑡 + ℎ) − 𝑆

𝛼
(𝑡)‖ = 0 for 𝑡 > 0;

(ii) lim
ℎ→0

+‖𝑆
𝛼
(𝑡 + ℎ) − 𝑆

𝛼
(ℎ)𝑆
𝛼
(𝑡)‖ = 0 for 𝑡 > 0;

(iii) lim
ℎ→0

+‖𝑆
𝛼
(𝑡) − 𝑆

𝛼
(ℎ)𝑆
𝛼
(𝑡 − ℎ)‖ = 0 for 𝑡 > 0.

Proof. (i) Let 𝑆
𝛼
(𝑡) be an analytic resolvent of analyticity type

(𝜔
0
, 𝜃
0
), and let 𝑡 > 0 be given. Then, by means of Cauchy

integral formula, we have

𝑆
󸀠

𝛼
(𝑡) =

1

2𝜋𝑖
∫
|𝑧−𝑡|=𝑡 sin 𝜃

𝑆
𝛼
(𝑧)

(𝑧 − 𝑡)
2
d𝑧. (10)

Thus, for any 𝜔 > 𝜔
0
, 0 < 𝜃 < 𝜃

0
, there exists a constant

𝑀
1
= 𝑀
1
(𝜔, 𝜃) such that

󵄩󵄩󵄩󵄩󵄩
𝑆
󸀠

𝛼
(𝑡)

󵄩󵄩󵄩󵄩󵄩
≤ 𝑀
1
(2𝜋)
−1

∫

𝜋

−𝜋

𝑒
𝜔(𝑡+𝑡 sin 𝜃 cos 𝛾)

(𝑡 sin 𝜃)
−1d𝛾

≤ 𝑀
1
𝑒
2𝜔𝑡

(𝑡 sin 𝜃)
−1

.

(11)

Now, let ‖𝑥‖ ≤ 1 and |ℎ| < 𝑡. It follows from (11) that there
exists a constant 𝑀󸀠 such that

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 + ℎ) 𝑥 − 𝑆
𝛼
(𝑡) 𝑥

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡+ℎ

𝑡

𝑆
󸀠

𝛼
(𝑠) 𝑥 d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀
󸀠

‖𝑥‖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡+ℎ

𝑡

𝑠
−1 d𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀
󸀠

|ln (𝑡 + ℎ) − ln 𝑡| 󳨀→ 0 as ℎ 󳨀→ 0,

(12)

which implies that 𝑆
𝛼
(𝑡) is continuous in the uniform opera-

tor topology for 𝑡 > 0, that is,

lim
ℎ→0

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 + ℎ) − 𝑆
𝛼
(𝑡)

󵄩󵄩󵄩󵄩 = 0 for 𝑡 > 0. (13)

(ii) Let ‖𝑥‖ ≤ 1, 𝑡 > 0, and 𝜀 > 0 be given. Since
𝑆
𝛼
(𝑡) is compact, the set 𝑊

𝑡
:= {𝑆

𝛼
(𝑡)𝑥 : ‖𝑥‖ ≤ 1} is

also compact. Thus, there exists a finite family {𝑆
𝛼
(𝑡)𝑥
1
,

𝑆
𝛼
(𝑡)𝑥
2
, . . . , 𝑆

𝛼
(𝑡)𝑥
𝑚
} ⊂ 𝑊

𝑡
such that for any 𝑥 with ‖𝑥‖ ≤ 1,

there exists 𝑥
𝑖
(1 ≤ 𝑖 ≤ 𝑚) such that

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) 𝑥 − 𝑆
𝛼
(𝑡) 𝑥
𝑖

󵄩󵄩󵄩󵄩 ≤
𝜀

3 (𝑀 + 1)
. (14)

From the strong continuity of 𝑆
𝛼
(𝑡), 𝑡 ≥ 0, there exists 0 <

ℎ
1
< min{𝑡, 𝑏} such that

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) 𝑥𝑖 − 𝑆
𝛼
(ℎ) 𝑆
𝛼
(𝑡) 𝑥
𝑖

󵄩󵄩󵄩󵄩 ≤
𝜀

3
, ∀0 ≤ ℎ ≤ ℎ

1
, 1 ≤ 𝑖 ≤ 𝑚.

(15)

On the other hand, from (i), there exists 0 < ℎ
2

< min{𝑡, 𝑏}
such that

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 + ℎ) 𝑥 − 𝑆
𝛼
(𝑡) 𝑥

󵄩󵄩󵄩󵄩 ≤
𝜀

3
, ∀0 ≤ ℎ ≤ ℎ

2
, ‖𝑥‖ ≤ 1.

(16)
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Thus, for 0 ≤ ℎ ≤ min{ℎ
1
, ℎ
2
} and ‖𝑥‖ ≤ 1, it follows from

(14)–(16) that

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 + ℎ) 𝑥 − 𝑆
𝛼
(ℎ) 𝑆
𝛼
(𝑡) 𝑥

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 + ℎ) 𝑥 − 𝑆

𝛼
(𝑡) 𝑥

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) 𝑥 − 𝑆

𝛼
(𝑡) 𝑥
𝑖

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) 𝑥𝑖 − 𝑆

𝛼
(ℎ) 𝑆
𝛼
(𝑡) 𝑥
𝑖

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑆𝛼 (ℎ) 𝑆𝛼 (𝑡) 𝑥𝑖 − 𝑆

𝛼
(ℎ) 𝑆
𝛼
(𝑡) 𝑥

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 + ℎ) 𝑥 − 𝑆

𝛼
(𝑡) 𝑥

󵄩󵄩󵄩󵄩

+ (𝑀 + 1)
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) 𝑥 − 𝑆

𝛼
(𝑡) 𝑥
𝑖

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) 𝑥𝑖 − 𝑆

𝛼
(ℎ) 𝑆
𝛼
(𝑡) 𝑥
𝑖

󵄩󵄩󵄩󵄩

≤
𝜀

3
+

𝜀

3
+

𝜀

3

≤ 𝜀,

(17)

which implies that lim
ℎ→0

+‖𝑆
𝛼
(𝑡+ℎ)−𝑆

𝛼
(ℎ)𝑆
𝛼
(𝑡)‖ = 0 for all

𝑡 > 0.
(iii) Let 𝑡 > 0 and 0 < ℎ < min{𝑡, 𝑏}. Then, there exists

𝑀 > 0 such that

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) − 𝑆
𝛼
(ℎ) 𝑆
𝛼
(𝑡 − ℎ)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) − 𝑆

𝛼
(𝑡 + ℎ)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 + ℎ) − 𝑆

𝛼
(ℎ) 𝑆
𝛼
(𝑡)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑆𝛼 (ℎ) 𝑆𝛼 (𝑡) − 𝑆

𝛼
(ℎ) 𝑆
𝛼
(𝑡 − ℎ)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) − 𝑆

𝛼
(𝑡 + ℎ)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 + ℎ) − 𝑆

𝛼
(ℎ) 𝑆
𝛼
(𝑡)

󵄩󵄩󵄩󵄩

+ 𝑀
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) − 𝑆

𝛼
(𝑡 − ℎ)

󵄩󵄩󵄩󵄩 .

(18)

It follows from (i) and (ii) that

lim
ℎ→0

+

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) − 𝑆
𝛼
(ℎ) 𝑆
𝛼
(𝑡 − ℎ)

󵄩󵄩󵄩󵄩 = 0 for 𝑡 > 0. (19)

This completes the proof.

Lemma 11. Suppose 𝑆
𝛼
(𝑡) is a compact analytic resolvent of

analyticity type (𝜔
0
, 𝜃
0
). Then Cauchy operator 𝐺 defined by

(9) is a compact operator.

Proof. We will show 𝐺 : 𝐶([0, 𝑏], 𝑋) → 𝐶([0, 𝑏], 𝑋) is
compact by using the Arzela-Ascoli theorem. Let 𝐷

𝑙
=

{𝑓 ∈ 𝐶([0, 𝑏], 𝑋) : ‖𝑓‖ ≤ 𝑙} be any bounded subset of
𝐶([0, 𝑏], 𝑋).

First, we claim that the set 𝐺𝐷
𝑙
is equicontinuous on

𝐶([0, 𝑏], 𝑋). In fact, let 0 ≤ 𝑡
1

≤ 𝑡
2

≤ 𝑏 and 𝑓 ∈ 𝐷
𝑙
; then

we have

𝐼 :=
󵄩󵄩󵄩󵄩(𝐺𝑓) (𝑡

2
) − (𝐺𝑓) (𝑡

1
)
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡2

0

𝑆
𝛼
(𝑡
2
− 𝑠) 𝑓 (𝑠) d𝑠 − ∫

𝑡1

0

𝑆
𝛼
(𝑡
1
− 𝑠) 𝑓 (𝑠) d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫

𝑡1

0

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) − 𝑆
𝛼
(𝑡
1
− 𝑠)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑓 (𝑠)
󵄩󵄩󵄩󵄩 d𝑠

+ ∫

𝑡2

𝑡1

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) 𝑓 (𝑠)
󵄩󵄩󵄩󵄩 d𝑠

≤ 𝑙 ∫

𝑡1

0

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) − 𝑆
𝛼
(𝑡
1
− 𝑠)

󵄩󵄩󵄩󵄩 d𝑠 + 𝑀𝑙 (𝑡
2
− 𝑡
1
) .

(20)

If 𝑡
1
= 0, it is easy to see that

lim
𝑡2→0

𝐼 = 0, uniformly for 𝑓 ∈ 𝐷
𝑙
. (21)

If 0 < 𝑡
1
< 𝑏, for 0 < 𝛿 < 𝑡

1
, we have

𝐼 ≤ 𝑙 ∫

𝑡1−𝛿

0

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) − 𝑆
𝛼
(𝑡
1
− 𝑠)

󵄩󵄩󵄩󵄩 d𝑠

+ 𝑙 ∫

𝑡1

𝑡1−𝛿

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) − 𝑆
𝛼
(𝑡
1
− 𝑠)

󵄩󵄩󵄩󵄩 d𝑠 + 𝑀𝑙 (𝑡
2
− 𝑡
1
)

≤ 𝑏𝑙 sup
𝑠∈[0,𝑡1−𝛿]

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) − 𝑆
𝛼
(𝑡
1
− 𝑠)

󵄩󵄩󵄩󵄩

+ 2𝑀𝑙𝛿 + 𝑀𝑙 (𝑡
2
− 𝑡
1
) .

(22)

Note that from Lemma 10(i), we know 𝑆
𝛼
(𝑡) is operator norm

continuous uniformly for 𝑡 ∈ [𝛿, 𝑏]. Combining this and
the arbitrariness of 𝛿 with the above estimation on 𝐼, we can
conclude that

lim
|𝑡1−𝑡2|→ 0

𝐼 = 0, uniformly for 𝑓 ∈ 𝐷
𝑙
. (23)

Thus, 𝐺𝐷
𝑙
is equicontinuous on 𝐶([0, 𝑏], 𝑋).

Next, we will show that the set {(𝐺𝑓)(𝑡) : 𝑓 ∈ 𝐷
𝑙
} is

precompact in 𝑋 for every 𝑡 ∈ [0, 𝑏]. It is easy to see that the
set {(𝐺𝑓)(0) : 𝑓 ∈ 𝐷

𝑙
} is precompact in 𝑋. Now, let 0 < 𝑡 ≤ 𝑏

be given and 0 < 𝜀 < 𝑡. Then

{𝑆
𝛼
(𝜀) ∫

𝑡−𝜀

0

𝑆
𝛼
(𝑡 − 𝑠 − 𝜀) 𝑓 (𝑠) d𝑠 : 𝑓 ∈ 𝐷

𝑙
} (24)
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is precompact since 𝑆
𝛼
(𝜀) is compact. Moreover, for arbitrary

𝜀 < 𝛿 < 𝑡, we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
𝛼
(𝜀) ∫

𝑡−𝜀

0

𝑆
𝛼
(𝑡 − 𝑠 − 𝜀) 𝑓 (𝑠) d𝑠 − ∫

𝑡−𝜀

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑙 ∫

𝑡−𝜀

0

󵄩󵄩󵄩󵄩𝑆𝛼 (𝜀) 𝑆𝛼 (𝑡 − 𝑠 − 𝜀) − 𝑆
𝛼
(𝑡 − 𝑠)

󵄩󵄩󵄩󵄩 d𝑠

≤ 𝑙 ∫

𝑡−𝛿

0

󵄩󵄩󵄩󵄩𝑆𝛼 (𝜀) 𝑆𝛼 (𝑡 − 𝑠 − 𝜀) − 𝑆
𝛼
(𝑡 − 𝑠)

󵄩󵄩󵄩󵄩 d𝑠

+ 𝑙 ∫

𝑡−𝜀

𝑡−𝛿

󵄩󵄩󵄩󵄩𝑆𝛼 (𝜀) 𝑆𝛼 (𝑡 − 𝑠 − 𝜀) − 𝑆
𝛼
(𝑡 − 𝑠)

󵄩󵄩󵄩󵄩 d𝑠

≤ 𝑙 ∫

𝑡−𝛿

0

󵄩󵄩󵄩󵄩𝑆𝛼 (𝜀) 𝑆𝛼 (𝑡 − 𝑠 − 𝜀) − 𝑆
𝛼
(𝑡 − 𝑠)

󵄩󵄩󵄩󵄩 d𝑠 + 𝑙𝛿 (𝑀
2

+ 𝑀) .

(25)

From Lemma 10(iii), we know

𝑆
𝛼
(𝜀) 𝑆
𝛼
(𝑡 − 𝑠 − 𝜀) − 𝑆

𝛼
(𝑡 − 𝑠) 󳨀→ 0,

as 𝜀 󳨀→ 0 for 𝑠 ∈ [0, 𝑡 − 𝛿] .

(26)

Then, it follows from the Lebesgue dominated convergence
theorem and the arbitrariness of 𝛿 that

lim
𝜀→0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
𝛼
(𝜀) ∫

𝑡−𝜀

0

𝑆
𝛼
(𝑡 − 𝑠 − 𝜀) 𝑓 (𝑠) d𝑠

−∫

𝑡−𝜀

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0.

(27)

On the other hand,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
𝛼
(𝜀) ∫

𝑡−𝜀

0

𝑆
𝛼
(𝑡 − 𝑠 − 𝜀) 𝑓 (𝑠) d𝑠 − ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
𝛼
(𝜀) ∫

𝑡−𝜀

0

𝑆
𝛼
(𝑡 − 𝑠 − 𝜀) 𝑓 (𝑠) d𝑠

−∫

𝑡−𝜀

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡−𝜀

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) d𝑠 − ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
𝛼
(𝜀) ∫

𝑡−𝜀

0

𝑆
𝛼
(𝑡 − 𝑠 − 𝜀) 𝑓 (𝑠) d𝑠

−∫

𝑡−𝜀

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 𝑙𝜀𝑀.

(28)

Thus,

lim
𝜀→0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
𝛼
(𝜀) ∫

𝑡−𝜀

0

𝑆
𝛼
(𝑡 − 𝑠 − 𝜀) 𝑓 (𝑠) d𝑠

−∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0,

(29)

which implies that {(𝐺𝑓)(𝑡) : 𝑓 ∈ 𝐷
𝑙
} is precompact in 𝑋 by

using the total boundedness, and therefore 𝐺 is compact in
view of Arzela-Ascoli theorem.

4. Nonlocal Problems

In this section, we always assume that 𝑢
0

∈ 𝑋 and that the
operator 𝐴 generates a compact analytic resolvent 𝑆

𝛼
(𝑡) of

analyticity type (𝜔
0
, 𝜃
0
), and we will prove the existence of

mild solutions of (1) when the nonlocal item 𝑔 is assumed to
be Lipschitz continuous and neither Lipschitz nor compact,
respectively.

Let 𝑟 be a fixed positive real number and

𝑊
𝑟
:= {𝑢 ∈ 𝐶 ([0, 𝑏] , 𝑋) : ‖𝑢‖ ≤ 𝑟} . (30)

Clearly,𝑊
𝑟
is a bounded closed and convex set. We make the

following assumptions.

(H1) 𝑓 : [0, 𝑏] × 𝑋 → 𝑋 is continuous.

(H2) 𝑔 : 𝐶([0, 𝑏], 𝑋) → 𝑋 is Lipschitz continuous with
Lipschitz constant 𝑘 such that 𝑀𝑘 < 1.

Under these assumptions, we can prove the first main
result in this paper.

Theorem 12. Assume that conditions (H1) and (H2) are
satisfied. Then the nonlocal problem (1) has at least one mild
solution provided that

𝑀[
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩 + sup
𝑢∈𝑊𝑟

󵄩󵄩󵄩󵄩𝑔 (𝑢)
󵄩󵄩󵄩󵄩 + 𝑏 sup
𝑠∈[0,𝑏],𝑢∈𝑊𝑟

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑢 (𝑠))
󵄩󵄩󵄩󵄩] ≤ 𝑟.

(31)

Proof. We consider the solution operator 𝑄 : 𝐶([0, 𝑏], 𝑋) →

𝐶([0, 𝑏], 𝑋) defined by

(𝑄𝑢) (𝑡) = 𝑆
𝛼
(𝑡) [𝑢
0
− 𝑔 (𝑢)] + ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) d𝑠

:= (𝑄
1
𝑢) (𝑡) + (𝑄

2
𝑢) (𝑡) , 𝑡 ∈ [0, 𝑏] .

(32)

It is easy to see that the fixed point of 𝑄 is the mild solution
of nonlocal Cauchy problem (1). Subsequently, we will prove
that𝑄 has a fixed point by using Lemma 9 (Darbo-Sadovskii’s
fixed point theorem).

Firstly, we prove that the mapping 𝑄 is continuous on
𝐶([0, 𝑏], 𝑋). For this purpose, let {𝑢

𝑛
}
𝑛≥1

be a sequence in
𝐶([0, 𝑏], 𝑋) with lim

𝑛→∞
𝑢
𝑛
= 𝑢 in 𝐶([0, 𝑏], 𝑋). Then

󵄩󵄩󵄩󵄩𝑄𝑢
𝑛
− 𝑄𝑢

󵄩󵄩󵄩󵄩

≤ 𝑀[
󵄩󵄩󵄩󵄩𝑔 (𝑢
𝑛
)−𝑔 (𝑢)

󵄩󵄩󵄩󵄩 + 𝑏 sup
𝑠∈[0,𝑏]

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑢
𝑛
(𝑠))−𝑓 (𝑠, 𝑢 (𝑠))

󵄩󵄩󵄩󵄩] .

(33)

By the continuity of 𝑓 and 𝑔, we deduce that𝑄 is continuous
on 𝐶([0, 𝑏], 𝑋).
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Secondly, we claim that 𝑄𝑊
𝑟
⊆ 𝑊
𝑟
, where 𝑊

𝑟
is defined

by (30). In fact, for any 𝑢 ∈ 𝑊
𝑟
, by (31), we have

‖𝑄𝑢‖ ≤ 𝑀(
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑔 (𝑢)

󵄩󵄩󵄩󵄩 + ∫

𝑏

0

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑢 (𝑠))
󵄩󵄩󵄩󵄩 d𝑠)

≤ 𝑀(
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩 + sup
𝑢∈𝑊𝑟

󵄩󵄩󵄩󵄩𝑔 (𝑢)
󵄩󵄩󵄩󵄩 + 𝑏 sup
𝑠∈[0,𝑏],𝑢∈𝑊𝑟

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑢 (𝑠))
󵄩󵄩󵄩󵄩)

≤ 𝑟,

(34)

which implies that 𝑄 maps 𝑊
𝑟
into itself.

Now, according to Lemma 9, it remains to prove that𝑄 is
a 𝛽-contraction in 𝑊

𝑟
. From condition (H2), we get that 𝑄

1
:

𝑊
𝑟

→ 𝐶([0, 𝑏], 𝑋) is Lipschitz continuous with constant
𝑀𝑘. In fact, for 𝑢, V ∈ 𝑊

𝑟
, by (H2), we have

󵄩󵄩󵄩󵄩𝑄1𝑢 − 𝑄
1
V󵄩󵄩󵄩󵄩 ≤ 𝑀

󵄩󵄩󵄩󵄩𝑔 (𝑢) − 𝑔 (V)󵄩󵄩󵄩󵄩 ≤ 𝑀𝑘 ‖𝑢 − V‖ . (35)

Thus, it follows from Lemma 8-(30) that 𝛽(𝑄
1
𝑊
𝑟
) ≤

𝑀𝑘𝛽(𝑊
𝑟
).

For operator 𝑄
2

: 𝑊
𝑟

→ 𝐶([0, 𝑏], 𝑋), we have 𝑄
2
𝑢 =

𝐺𝑓
𝑢
, where 𝑓

𝑢
(⋅) = 𝑓(⋅, 𝑢(⋅)) is continuous on [0, 𝑏] and

𝐺 is the Cauchy operator defined by (9). Thus, in view of
Lemma 11, we know that 𝑄

2
is compact on 𝐶([0, 𝑏], 𝑋), and

hence 𝛽(𝑄
2
𝑊
𝑟
) = 0. Consequently,

𝛽 (𝑄𝑊
𝑟
) ≤ 𝛽 (𝑄

1
𝑊
𝑟
) + 𝛽 (𝑄

2
𝑊
𝑟
) ≤ 𝑀𝑘𝛽 (𝑊

𝑟
) . (36)

Since 𝑀𝑘 < 1, the mapping 𝑄 is a 𝛽-contraction on 𝑊
𝑟
. By

Darbo-Sadovskii’s fixed point theorem, the operator 𝑄 has a
fixed point in 𝑊

𝑟
, which is just the mild solution of nonlocal

Cauchy problem (1).

Now, we give the following technical condition on func-
tion 𝑔.

(H) 𝑔 : 𝐶([0, 𝑏], 𝑋) → 𝑋 is continuous, and the set
𝑔(conv𝑄𝑊

𝑟
) is precompact, where conv𝐵 denotes the

convex closed hull of set 𝐵 ⊆ 𝐶([0, 𝑇], 𝑋), and 𝑄 is
given by (32).

Remark 13. It is easy to see that condition (H) is weaker than
the compactness and convexity of 𝑔. The same hypothesis
can be seen from [24, 30], where the authors considered the
existence of mild solutions for semilinear nonlocal problems
of integer order when 𝐴 is a linear, densely defined operator
on𝑋 which generates a 𝐶

0
-semigroup. After the proof of our

main results, we will give some special types of nonlocal item
𝑔 which is neither Lipschitz nor compact, but satisfies the
condition (H) in the next Corollaries.

Theorem 14. Assume that conditions (H1) and (H) are sat-
isfied. Then the nonlocal problem (1) has at least one mild
solution provided that (31) holds.

Proof. We will prove that 𝑄 has a fixed point by using
Schauder’s fixed point theorem. According to the proof of
Theorem 12, we have proven that 𝑄 : 𝑊

𝑟
→ 𝑊

𝑟
is

continuous. Next, we will prove that there exists a set𝑊 ⊆ 𝑊
𝑟

such that 𝑄 : 𝑊 → 𝑊 is compact.
For this purpose, let 0 < 𝑡 ≤ 𝑏 and 0 < 𝛿 < 𝑡. It is easy to

see that the set

{𝑆
𝛼
(𝛿) 𝑆
𝛼
(𝑡 − 𝛿) [𝑢

0
− 𝑔 (𝑢)] : 𝑢 ∈ 𝑊

𝑟
} (37)

is precompact since 𝑆
𝛼
(𝛿) is compact. On the other hand, by

Lemma 10(iii), we obtain

lim
𝛿→0

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) [𝑢0 − 𝑔 (𝑢)]

−𝑆
𝛼
(𝛿) 𝑆
𝛼
(𝑡 − 𝛿) [𝑢

0
− 𝑔 (𝑢)]

󵄩󵄩󵄩󵄩 = 0, ∀𝑢 ∈ 𝑊
𝑟
,

(38)

which implies that 𝑄
1
𝑊
𝑟
(𝑡) is precompact in 𝑋 by using the

total boundedness. Next, we claim 𝑄
1
𝑊
𝑟
is equicontinuous

on [𝜂, 𝑏] for any small positive number 𝜂. In fact, for 𝑢 ∈ 𝑊
𝑟

and 𝜂 ≤ 𝑡
1
≤ 𝑡
2
≤ 𝑏, we have

󵄩󵄩󵄩󵄩(𝑄1𝑢) (𝑡2) − (𝑄
1
𝑢) (𝑡
1
)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2) − 𝑆

𝛼
(𝑡
1
)
󵄩󵄩󵄩󵄩 (

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑔 (𝑢)
󵄩󵄩󵄩󵄩) .

(39)

By Lemma 10(i), 𝑆
𝛼
(𝑡) is operator norm continuous for 𝑡 >

0. Thus 𝑆
𝛼
(𝑡) is operator norm continuous uniformly for 𝑡 ∈

[𝜂, 𝑏], and hence

lim
|𝑡2−𝑡1|→ 0

󵄩󵄩󵄩󵄩(𝑄1𝑢) (𝑡2) − (𝑄
1
𝑢) (𝑡
1
)
󵄩󵄩󵄩󵄩 = 0,

uniformly for 𝑢 ∈ 𝑊
𝑟
,

(40)

that is, 𝑄
1
𝑊
𝑟
is equicontinuous on [𝜂, 𝑏]. Note that 𝑄

2
is

compact by Lemma 11.Therefore, we have proven that𝑄𝑊
𝑟
(𝑡)

is precompact for every 𝑡 ∈ (0, 𝑏] and𝑄𝑊
𝑟
is equicontinuous

on [𝜂, 𝑏] for any small positive number 𝜂.
Now, let 𝑊 = conv𝑄𝑊

𝑟
, we get that 𝑊 is a bounded

closed and convex subset of 𝐶([0, 𝑏], 𝑋) and 𝑄𝑊 ⊆ 𝑊. It is
easy to see that𝑄𝑊(𝑡) is precompact in𝑋 for every 𝑡 ∈ (0, 𝑏]

and 𝑄𝑊 is equicontinuous on [𝜂, 𝑏] for any small positive
number 𝜂. Moreover, we have that 𝑔(𝑊) = 𝑔(conv𝑄𝑊

𝑟
) is

precompact due to condition (H).
Thus, we can now claim that 𝑄 : 𝑊 → 𝑊 is compact. In

fact, it is easy to see that 𝑄
1
𝑊(0) = 𝑢

0
− 𝑔(𝑊) is precompact

since𝑔(𝑊) = 𝑔(conv𝑄𝑊
𝑟
) is precompact. It remains to prove

that 𝑄
1
𝑊 is equicontinuous on [0, 𝑏]. To this end, let 𝑢 ∈ 𝑊

and 0 ≤ 𝑡
1
< 𝑡
2
≤ 𝑏; then we have

󵄩󵄩󵄩󵄩(𝑄1𝑢) (𝑡2) − (𝑄
1
𝑢) (𝑡
1
)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2) − 𝑆
𝛼
(𝑡
1
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑢0 − 𝑔 (𝑢)
󵄩󵄩󵄩󵄩 .

(41)

In view of the compactness of 𝑔(𝑊) and the strong continuity
of 𝑆
𝛼
(𝑡) on [0, 𝑏], we obtain the equicontinuous of 𝑄

1
𝑊 on

[0, 𝑏]. Thus, 𝑄
1

: 𝑊 → 𝐶([0, 𝑏], 𝑋) is compact by Arzela-
Ascoli theorem, and hence 𝑄 : 𝑊 → 𝑊 is also compact.
Now, Schauder’s fixed point theorem implies that 𝑄 has a
fixed point on 𝑊, which gives rise to a mild solution of
nonlocal problem (1).

The following theorem is a direct consequence of
Theorem 14.
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Theorem 15. Assume that conditions (H1) and (H) are satis-
fied for each 𝑟 > 0. If

󵄩󵄩󵄩󵄩𝑔 (𝑢)
󵄩󵄩󵄩󵄩

‖𝑢‖
󳨀→ 0, ‖𝑢‖ 󳨀→ ∞,

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥)
󵄩󵄩󵄩󵄩

‖𝑥‖
󳨀→ 0, ‖𝑥‖ 󳨀→ ∞

(42)

uniformly for 𝑡 ∈ [0, 𝑏], then the nonlocal problem (1) has at
least one mild solution.

Remark 16. It is easy to see that if there exist constants 𝐿
1
,

𝐿
2
> 0 and 𝛾

1
, 𝛾
2
∈ [0, 1) such that
󵄩󵄩󵄩󵄩𝑔 (𝑢)

󵄩󵄩󵄩󵄩 ≤ 𝐿
1
(1 + ‖𝑢‖)

𝛾1 ,

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝐿
2
(1 + ‖𝑥‖)

𝛾2

(43)

for 𝑡 ∈ [0, 𝑏], then conditions (42) are satisfied.

Next, we will give special types of nonlocal item 𝑔 which
is neither Lipschitz nor compact, but satisfies condition (H).

We give the following assumptions.

(H3) 𝑔 : 𝐶([0, 𝑏], 𝑋) → 𝑋 is a continuous mapping which
maps𝑊

𝑟
into a bounded set, and there is a 𝛿 = 𝛿(𝑟) ∈

(0, 𝑏) such that 𝑔(𝑢) = 𝑔(V) for any 𝑢, V ∈ 𝑊
𝑟
with

𝑢(𝑠) = V(𝑠), 𝑠 ∈ [𝛿, 𝑏].
(H4) 𝑔 : (𝐶([0, 𝑏], 𝑋), ‖ ⋅ ‖

𝐿
1) → 𝑋 is continuous.

Corollary 17. Assume that conditions (H1) and (H3) are
satisfied. Then the nonlocal problem (1) has at least one mild
solution on [0, 𝑏] provided that (31) holds.

Proof. Let

(𝑄𝑊
𝑟
)
𝛿
= {𝑢 ∈ 𝐶 ([0, 𝑏] , 𝑋) ; 𝑢 (𝑡) = V (𝑡) for 𝑡 ∈ [𝛿, 𝑏] ,

𝑢 (𝑡) = 𝑢 (𝛿) for 𝑡 ∈ [0, 𝛿) ,where V ∈ 𝑄𝑊
𝑟
} .

(44)

From the proof of Theorem 14, we know that (𝑄𝑊
𝑟
)
𝛿
is

precompact in 𝐶([0, 𝑏], 𝑋). Moreover, by condition (H3),
𝑔(conv𝑄𝑊

𝑟
) = 𝑔(conv(𝑄𝑊

𝑟
)
𝛿
) is also precompact in

𝐶([0, 𝑏], 𝑋). Thus, all the hypotheses in Theorem 14 are
satisfied. Therefore, there is at least one mild solution of
nonlocal problem (1).

Corollary 18. Let condition (H1) be satisfied. Suppose that
𝑔(𝑢) = ∑

𝑝

𝑗=1
𝑐
𝑗
𝑢(𝑡
𝑗
), where 𝑐

𝑗
are given positive constants, and

0 < 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑝
≤ 𝑏. Then the nonlocal problem (1) has

at least one mild solution on [0, 𝑏] provided that

𝑀[

[

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩 +

𝑝

∑

𝑗=1

𝑐
𝑗
𝑟 + 𝑏 sup
𝑠∈[0,𝑏],𝑢∈𝑊𝑟

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑢 (𝑠))
󵄩󵄩󵄩󵄩
]

]

≤ 𝑟. (45)

Proof. It is easy to see that the mapping 𝑔 with 𝑔(𝑢) =

∑
𝑝

𝑗=1
𝑐
𝑗
𝑢(𝑡
𝑗
) satisfies condition (H3). And all the conditions

in Corollary 17 are satisfied. So the conclusion holds.

Corollary 19. Assume that conditions (H1) and (H4) are
satisfied. Then the nonlocal problem (1) has at least one mild
solution on [0, 𝑏] provided that (31) holds.

Proof. According to Theorem 14, it is sufficient to prove that
the hypothesis (H) is satisfied. For arbitrary 𝜖 > 0, there exists
0 < 𝛿 < 𝑏 such that ∫𝛿

0

‖𝑢(𝑠)‖d𝑠 < 𝜖 for all 𝑢 ∈ 𝑄𝑊
𝑟
. Let

(𝑄𝑊
𝑟
)
𝛿
= {𝑢 ∈ 𝐶 ([0, 𝑏] , 𝑋) ; 𝑢 (𝑡) = V (𝑡) for 𝑡 ∈ [𝛿, 𝑏] ,

𝑢 (𝑡) = 𝑢 (𝛿) for 𝑡 ∈ [0, 𝛿) ,where V ∈ 𝑄𝑊
𝑟
} .

(46)

From the proof of Theorem 14, we know that (𝑄𝑊
𝑟
)
𝛿
is

precompact in 𝐶([0, 𝑏], 𝑋), which implies that (𝑄𝑊
𝑟
)
𝛿
is

precompact in 𝐿
1

([0, 𝑏], 𝑋). Thus, 𝑄𝑊
𝑟
is precompact in

𝐿
1

([0, 𝑏], 𝑋) as it has an 𝜖-net (𝑄𝑊
𝑟
)
𝛿
. By condition 𝑔 :

(𝐶([0, 𝑏], 𝑋), ‖ ⋅ ‖
𝐿
1) → 𝑋 is continuous and conv𝑄𝑊

𝑟
⊆

(𝐿)conv𝑄𝑊
𝑟
, it follows that condition (H) is satisfied, where

(𝐿)conv𝐵 denotes the convex and closed hull of 𝐵 in
𝐿
1

([0, 𝑏], 𝑋). Therefore, the nonlocal problem (1) has at least
one mild solution on [0, 𝑏].

Finally, we give a simple example to illustrate our theory.

Example 20. Consider the following fractional partial differ-
ential heat equation in R:

𝐷
𝛼

𝑡
𝑤 (𝑡, 𝑥)

=
𝜕
2

𝑤 (𝑡, 𝑥)

𝜕𝑥2

+ 𝐽
1−𝛼

𝑡
𝐹 (𝑡, 𝑤 (𝑡, 𝑥)) , 0 < 𝑥 < 1, 0 < 𝑡 < 1,

𝑤 (𝑡, 0) = 𝑤 (𝑡, 1) , 𝑤
󸀠

𝑥
(𝑡, 0) = 𝑤

󸀠

𝑥
(𝑡, 1) , 0 ≤ 𝑡 ≤ 1,

𝑤 (0, 𝑥) = 𝑤
0
(𝑥) −

𝑝

∑

𝑗=1

𝑐
𝑗
𝑤(𝑡
𝑗
, 𝑥) , 0 < 𝑥 < 1, 0 < 𝑡

𝑗
≤ 1,

(47)

where 0 < 𝛼 < 1 and 𝐷
𝛼

𝑡
denotes the Caputo fractional

derivative.
We introduce the abstract frame as follows. Let 𝑋 = {𝑢 ∈

𝐶([0, 1],R) : 𝑢(0) = 𝑢(1)}. Let 𝐴 be the linear operator
in 𝑋 defined by 𝐷(𝐴) = {𝑢 ∈ 𝑋 : 𝑢

󸀠

, 𝑢
󸀠󸀠

∈ 𝑋} and
for 𝑢 ∈ 𝐷(𝐴), 𝐴𝑢 = 𝑢

󸀠󸀠. Then, it is well known that 𝐴

generates a compact 𝐶
0
semigroup 𝑇(𝑡) for 𝑡 > 0 on𝑋. From

the subordination principle [6, Theorems 3.1 and 3.3], 𝐴 also
generates a compact resolvent 𝑆

𝛼
(𝑡) for 𝑡 > 0.

Assume that 𝑓 : [0, 1] × 𝑋 → 𝑋 is a continuous
function defined by 𝑓(𝑡, 𝑧)(𝑥) = 𝐹(𝑡, 𝑧(𝑥)), 0 ≤ 𝑥 ≤ 1 and
𝑔 : 𝐶([0, 1], 𝑋) → 𝑋 is also a continuous function defined
by 𝑔(𝑢)(𝑥) = 𝑤

0
(𝑥) − ∑

𝑝

𝑗=1
𝑐
𝑗
𝑢(𝑡
𝑗
)(𝑥), 0 ≤ 𝑡, 𝑥 ≤ 1, where

𝑢(𝑡)(𝑥) := 𝑤(𝑡, 𝑥).
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Under these assumptions, the fractional partial differen-
tial heat equation (47) can be reformulated as the abstract
problem (1). If the inequality

𝑀[

[

󵄩󵄩󵄩󵄩𝑤0
󵄩󵄩󵄩󵄩 +

𝑝

∑

𝑗=1

𝑐
𝑗
𝑟 + sup
𝑠∈[0,1],𝑢∈𝑊𝑟

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑢 (𝑠))
󵄩󵄩󵄩󵄩
]

]

≤ 𝑟 (48)

holds for some constant 𝑟 > 0, there exists at least one mild
solution for fractional equation (47) in view of Corollary 18.
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