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A robust exponential function based controller is designed to synchronize effectively a given class of Chua’s chaotic systems. The
stability of the drive-response systems framework is proved through the Lyapunov stability theory. Computer simulations are given
to illustrate and verify the method.

1. Introduction

Shortly after Pecora and Carroll showed the possibility of
synchronizing chaotic elements [1], applications stretched out
in many fields [2–4] giving rise to interdisciplinary research,
since this phenomenon appears in many systems in a variety
of ways [5–12]. Much research was done developing different
strategies in the quest of effective synchronization such as
adaptive synchronization [13–15], inverse synchronization
[16], and antisynchronization [17–24]. The robustness of
many of these methods, as surprising as it may appear, has
already been demonstrated in many cases in the presence of
noise, perturbations, or parameter mismatches [25–27].

For applications such as telecommunications, where the
transmission of messages is not possible unless transmitter
and receiver are synchronized [10–12], the investigation of
new chaotic systems as well as the most effective means
of synchronization is always of great importance. Thus,
mathematical models [28, 29], mechanical systems [30], and
electronic circuits [10, 13] are continually built. One of the
best known electronic circuits is the Chua’s oscillator [31, 32].
Although Chua’s circuit is one of the simplest circuits in the

literature, it has various complex chaotic dynamics properties
which has made it a topic of extensive study [31–34]. A
modified version of the circuit has also been topic of attention
[33–35]. Its theoretical analysis and numerical simulations
agree very well with experimental results.

Recently, some authors proposed a nonlinear controller
in order to force synchronization with the purpose of saving
energy [22, 23]. The nonlinear controllers used are based
on bounded nonlinear functions [22, 23]. In this work we
apply the exponential function based nonlinear controller to
achieve synchronization between the drive-response systems
when disturbances are present. Our controller has certain
properties which makes it more advantageous to use it,
such as the following properties: (1) it is easy to implement
in practice; (2) it needs no adaptation algorithm; hence
its electrical circuit remains simple; (3) it is faster than
the synchronization based on fixed feedback gain which is
usually used.

This work is organized as follows. In Section 2, the prob-
lem is formulated and the assumptions are given. Section 3
presents the main results. We use Lyapunov stability theory
to study the robustness of our proposed controller. We show
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Figure 1: Scheme of the circuit for the whole system: transmitter (blue box), controller (red box), and receiver (green box).

that with this controller the drive and response systems
are practically synchronized—the errors between the master
system and the slave system do not tend to zero but to
a limit value. In this case, it is shown that the derivative
of Lyapunov function is contained in a closed domain to
which the error between master and slave system converges.
Since the error is sufficiently small, using the principle
of the “ultimate boundedness property,” we arrive to the
conclusion that the system is globally stable because the
derivative of the Lyapunov function is negatively definite.
Ultimate boundedness is in particular compatible with local
instability about zero and implies global stability. This was
demonstrated by Ding and Cheng in [36]. They proposed
a new criterion of globally uniformly ultimate boundedness
for discrete-time nonlinear systems which helps to relax the
condition of stability based on Lyapunov function. The same
ideas were successfully applied by de la Sen and Alonso [37],
while in [38], Bitsoris et al. work on the robust positive
invariance and ultimate boundedness of nonlinear systems
with unknownparameters and disturbances, where only their
bounds of variance are known. In Section 4, numerical results
are presented and we compare the given scheme with that
using the simple fixed gain based controller. The conclusions
are given in Section 5.

2. Formulation of the Problem

In this paper, we study the master-slave synchronization of
a class of Chua’s chaotic systems, represented in Figure 1 and
described by the equations that follow.

The master system is given by:
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where 𝜏 is a dimensionless time, 𝑥

𝑖
(𝑡), 𝑖 = 1, 2, 3, are

the state variables, V(𝜏) is an external force, and 𝛼, 𝛽, 𝛾,
and 𝑅 are positive constant parameters of the system. The
function 𝑓(𝑥
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latter represents the behavior of a tunnel diode [32]. For an
autonomous system V(𝜏) is constant and 𝑑(𝜏) = 0.

The slave system is given by
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where 𝑦
𝑖
(𝜏), 𝑖 = 1, 2, 3, is the slave state variables and𝑈(𝜏) the

feedback coupling.
Here we present a scheme to solve the synchronization

problem for system (1). That is to say, if the uncertain system
(1) is regarded as the drive system, a suitable response system
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should be constructed to synchronize it with the help of the
driving signal 𝑥. In order to do so, we assume the following:

(i) There is a bounded region U ⊂ 𝑅

3 containing the
whole basin of the drive system (1) such that no orbit
of system (1) ever leaves it.

(ii) The disturbance 𝑑(𝜏) is bounded by an unknown
positive constant𝐷, namely,

‖𝑑 (𝜏)‖ ≤ 𝐷, (3)

where ‖ ⋅ ‖ denotes the euclidian norm of a vector.
(iii) All chaotic systems are supposed to be confined to a

limited domain; hence there exists a positive constant
𝐿 such that
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We will now try to synchronize the systems described in
(1) and (2) designing an appropriate control 𝑈(𝜏) in system
(2) such that
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≤ 𝑟, for 𝜏 → ∞, (5)

where 𝑟 is a sufficiently small positive constant.
Let us define the state errors between the transmitter and

the receiver systems as
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and the feedback coupling as

𝑈 (𝜏) = −𝜑 (exp (𝑘𝑒

1
(𝜏)) − 1) , (7)

where 𝜑 and 𝑘 are positive fixed constants.
Introducing the definition of the systems (1), (2), and (7)

into (2), the dynamics of the error states (6) becomes
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The problem is now reduced to demonstrating that with
the chosen control law 𝑈(𝜏), the error states 𝑒

𝑖
, 𝑖 = 1, 2, 3, in

(8) are at most a sufficiently small positive constant 𝑟, which
will prove the proposition.

3. Main Results

If we consider the master-slave chaotic systems (1) and (2)
with all the aforementioned assumptions (3) and with the
exponential function based feedback coupling given by the
relation (7), we will show that the overall system will be
practically synchronized, that is, ‖𝑦

𝑖
(𝜏) − 𝑥

𝑖
(𝜏)‖ ≤ 𝑟, where

𝑟 is a sufficiently small positive constant for large enough 𝜏.
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Figure 2: 3D chaotic attractor of the tunnel diode based modified
Chua’s system.

In order to do so, let us consider the following Lyapunov
function:
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Differentiating the function 𝑉 with respect to time yields
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Expanding the exponential function as follows:
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where 𝜃(𝑒
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) constitute the rest of the expansion in

order greater than 𝑛 for odd part and for even part of the
development, respectively, and substituting by the maximum
value of the disturbance,𝐷, it follows that
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where Θ(𝑟) ≥ max(𝜃(𝑒
1
)).



4 Abstract and Applied Analysis

0 20 40 60 80 100

0.1

0.2

𝜏

𝑥1(𝜏)
𝑦1(𝜏)

(a)

0 1 2 3 4
0.05

0.1

0.15

0.2

0.25

×10−55

Time (s)

𝑉𝑐1 (V)
𝑉𝑐3 (V)

(b)

0 20 40 60 80 100
0.22

0.24

0.26

0.28

0.3

𝜏

𝑥2(𝜏)
𝑦2(𝜏)

(c)

0 1 2 3 4 5
0.22

0.24

0.26

0.28

×10−5

Time (s)

𝑉𝑐2 (V)
𝑉𝑐4 (V)

(d)

0 20 40 60 80 100

𝑥3(𝜏)
𝑦3(𝜏)

𝜏

20

10

0

×10−3

(e)

0 1 2 3 4
−0.02

−0.01

0

0.01

×10−5

Time (s)
5

𝐼𝐿1 (A)
𝐼𝐿2 (A)

(f)

Figure 3: Time evolution of the master system (solid lines) and slave system (dashed lines) from Matlab simulations (left) and Pspice
simulations (right).

Here we use 𝑟 as an upper bound for the error in each axis.
Then we see that the derivative of the Lyapunov function (12)
is lower than that in (13), which in turn is smaller than the
one given by (14). Thus expression (14) is maximized and the
radius of the close domain to which the error is attracted is
determined. Defining
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Equation (16) is in principle a formof the ultimate bound-
edness property in the sense that if the error is sufficiently

small, then the system is globally stable because the upper-
bound is negative [36]. From (16), it follows that if
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therefore, ̇

𝑉(𝜏) < 0; hence 𝑉(𝜏) decreases, which implies
that ‖𝑒

1
‖ decreases. It then follows from standard invariance

arguments as in [23] that asymptotically for increasing time
the error satisfies the following bound
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< 𝐶, (18)

for any 𝐶 > √𝜙/𝜓.
So if 𝜙 is sufficiently small, the bound for the syn-

chronization error will also be sufficiently small. Therefore,
the synchronization state error would be contained within
a neighborhood of the origin, as we wanted to prove. In
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Figure 4: Time evolution of the synchronization errors fromMatlab simulations (left) and Pspice simulations (right).

addition as𝑉(𝜏) decreases, then there exists a continuous and
strictly increasing function  and a finite integer 𝜂, such that

𝑉 (𝑒 (𝜏 + 𝜂) , 𝜏 + 𝜂) − 𝑉 (𝑒 (𝜏) , 𝜏) ≤ − (‖𝑒 (𝜏)‖) , (19)

where 𝑒(𝜏) = (𝑒

1
(𝜏), 𝑒

2
(𝜏), 𝑒

3
(𝜏)).

Thus, the Lyapunov function respects [36, Theorem 3.1]
and then (8) is globally uniformly ultimate bounded near the
origin.

4. Numerical Simulations

4.1. Chaotic Systems. In this section, we present some numer-
ical results for the circuit shown in Figure 1, to illustrate
the effectiveness of the proposed scheme, where the three-
dimensional tunnel diode based modified Chua’s system [35]
is used as transmitter (blue box) and receiver (green box), the
controller appears inside the red box. With the initial con-
ditions selected as (𝑥

1
(0), 𝑥

2
(0), 𝑥

3
(0)) = (0.15, 0.27, 0.008)

and (𝑦

1
(0), 𝑦

2
(0), 𝑦

3
(0)) = (0.18, 0.24, 0.006) and with the

given system’s parameters: 𝛼 = 2.507463, 𝛽 = 0.2985075,
𝛾 = 0.20875, 𝑅 = 16, 𝑒 = 0.250, 𝑎

1
= 1.3242872, 𝑎

2
=

0.06922314, 𝑎
3
= 0.00539, and 𝑏 = 0.167, the systems behave

chaotically as shown in Figure 2. The disturbances 𝑑(𝜏) are
given by the relation 𝑑(𝜏) = 0.001wgn(1, 1, 1)(𝑥

1
(𝜏)+𝑥

2
(𝜏)),

where wgn(1, 1, 1) is Matlab white gaussian noise generator.

4.2. Simulation Results and Discussion. The controller’s
parameters are 𝜑 = 10 and 𝑘 = 3. The controller circuit
was realized through the following relations: 𝑘 = 𝑅

5
/𝑉

𝑇
𝑅

3
=

𝑅

6
/𝑉

𝑇
𝑅

4
and 𝜑 = 𝑅

7
𝐼

𝑠
where 𝑉

𝑇
≃ 0.026 Volt and 𝐼

𝑠
≃ 10

−12

are diode characteristics. The Voltage controlled current
source (VCCS) is used to minimize as much as possible the
mutual influence of between the slave system (Green box)
and the controller (Red box) and to only generate the current
which obliges the response system to follow the drive system.
The graphs of Figures 3 and 4 show that the synchronization
is reached around the dimensionless time 𝜏 = 60.

Remark 1. In Pspice simulations, the synchronization is
reached for high values of 𝑅

7
particularly if 𝑅

7
> 100 kΩ.

𝑅

7
role is to increase the value of the VCCS output current by

increasing the value of the voltage at its landmarks.

Considering the case without disturbances, if we compare
the proposed scheme with the one for which the controller is
given by the following relation:

𝑈 (𝑡) = −𝜁𝑒

1
(𝜏) , (20)

where 𝜁 is a positive constant chosen equal to 𝜑, it appears
that, as one can visually appreciate on the graphs of Figures 5
and 6, the exponential function based nonlinear controller is
faster than the linear controller with fixed gain.
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Figure 5: Time evolution of the synchronization errors norm with the propose scheme (7).
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Figure 6: Time evolution of the synchronization errors norm with linear controller (20).

5. Conclusion

In this paper the synchronization between two different
delayed chaotic systems is studied via a simple—exponential
function based—nonlinear controller. Although different
initial conditions and disturbances make synchronization
more difficult, a simple exponential function based nonlinear
controller is designedwhich facilitates the task.This is proven
through the Lyapunov stability theory; it is shown that both
master-slave systems should be practically synchronized. It
is important to note that the proposed scheme improves the
linear controller with fixed gain usually used. To show the
effectiveness of the proposed strategy, some numerical sim-
ulations are given; they show the efficiency of the proposed
strategy in front of the linear fixed gain based controller. The
electronic circuit of the used controller is also given followed
by some simulations.
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