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This paper investigates the problem of synchronization for two different stochastic chaotic systems with unknown parameters and
uncertain terms. The main work of this paper consists of the following aspects. Firstly, based on the Lyapunov theory in stochastic
differential equations and the theory of sliding mode control, we propose a simple sliding surface and discuss the occurrence of
the sliding motion. Secondly, we design an adaptive sliding mode controller to realize the asymptotical synchronization in mean
squares. Thirdly, we design an adaptive sliding mode controller to realize the almost surely synchronization. Finally, the designed
adaptive sliding mode controllers are used to achieve synchronization between two pairs of different stochastic chaos systems
(Lorenz-Chen and Chen-Lu) in the presence of the uncertainties and unknown parameters. Numerical simulations are given to
demonstrate the robustness and efficiency of the proposed robust adaptive sliding mode controller.

1. Introduction

In the past few years, chaotic synchronization has received
particular interests [1–3] mainly due to its wide applica-
tions in secure communications, ecological systems, system
identification, and so forth. During the past decades, many
methods and experimental techniques have been presented
to realize the synchronization of two identical chaotic sys-
tems [4–10], such as adaptive control [4, 5], sliding mode
control [6, 7], nonlinear feedback control [8, 9], and fuzzy
system based control [10]. Among all these methods, sliding
mode control method has been used widely to treat the
unknown parameters and uncertainties [11, 12]. For example,
synchronization and finite synchronization between two
different chaotic systems with uncertainties and unknown
parameters via sliding modemethod are discussed in [13, 14],
respectively. However, we have noted that in all of the above
mentioned papers, the chaotic systems are deterministic
differential equations without any random parameters or
random excitation.

Recently, the stochastic modeling has played an impor-
tant role in engineering application [15, 16] and there are
some works in the field of control and synchronization
on stochastic neural networks [17–25]. In accordance with
the Lyapunov control theory, synchronization of stochastic
delayed neural networks has been investigated in terms of
linear matrix inequalities in [17]. Reference [18] discussed
the adaptive lag synchronization between stochastic neural
networks with time delay and [19] discussed the lag synchro-
nization between stochastic neural networks with unknown
parameters using adaptive control method. Reference [20]
considered the robust decentralized adaptive control for
stochastic delayed Hopfield neural networks using sling
mode controlmethod and [21, 22] discussed the almost surely
exponential stability for stochastic neural networks. The
almost surely synchronization between different stochastic
chaotic systems is discussed in [23] using linearmatrix equal-
ity technique. However, the parameters of the system need to
be known, and the authors have not considered the chaotic
system contained unknown parameters and uncertainties.



2 Abstract and Applied Analysis

In [24], the authors designed an adaptive controller to
make sure the synchronization error trajectories between two
different stochastic Chua’s systems enter a small zone around
zero. The control of unstable periodic orbits of stochastic
chaos is discussed in [25] using sliding mode method. As
far as we know, there are no results on the asymptotical
synchronization and almost surely synchronization for two
different stochastic chaotic systems using adaptive sliding
mode control method.

In this paper, we discussed the asymptotical synchro-
nization and almost surely synchronization for two different
stochastic chaotic systems with unknown parameters and
uncertain terms using sliding mode method. The structure
of this paper is outlined as follows. In Section 2, we introduce
the model of chaotic systems with unknown parameters and
uncertain terms and give several assumptions, definitions,
and lemmas. Section 3 presents themain results of this paper;
we design two adaptive slidingmode controllers to realize the
synchronization. Numerical examples are given in Section 4
to show the effectiveness of our proposed results. Finally,
some concluding remarks are made in Section 5.

2. Problem Statement and
Mathematic Preliminaries

In this paper, we consider the following stochastic systems
with uncertain parameters in the following form:

d𝑥
𝑖
= (𝑓
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
) + 𝐹
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
) 𝜃

+Δ𝑓
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
)) d𝑡

+ 𝜎
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
) d𝑤 (𝑡) , 𝑖 = 1, 2, . . . , 𝑛

(1)

or, in a compact form:

d𝑥 = (𝑓 (𝑥) + 𝐹 (𝑥) 𝜃 + Δ𝑓 (𝑥)) d𝑡 + 𝜎 (𝑥) d𝑤 (𝑡) . (2)

We consider the model (1) as the drive system. The
response chaotic system is

d𝑦
𝑖
= (𝑔
𝑖
(𝑦
1
, . . . , 𝑦

𝑛
) + 𝐺
𝑖
(𝑦
1
, . . . , 𝑦

𝑛
) 𝜃

+Δ𝑔
𝑖
(𝑦
1
, . . . , 𝑦

𝑛
) + 𝑢
𝑖 (

𝑡)) d𝑡

+ 𝜎
𝑖
(𝑦
1
, . . . , 𝑦

𝑛
) d𝑤 (𝑡) , 𝑖 = 1, 2, . . . , 𝑛

(3)

or, in a compact form:

d𝑦 = (𝑔 (𝑦) + 𝐺 (𝑦) 𝜃 + Δ𝑔 (𝑦) + 𝑢 (𝑡)) d𝑡 + 𝜎 (𝑦) d𝑤 (𝑡) ,

(4)

where 𝑥, 𝑦 ∈ R𝑛 are the state vectors, 𝑢(𝑡) ∈ R𝑛 is
the control input, 𝑓(𝑥), 𝑔(𝑦) ∈ 𝐶

1
(R𝑛,R𝑛), 𝐹(𝑥), 𝐺(𝑦) ∈

𝐶
1
(R𝑛,R𝑛×𝑚), and 𝜎(𝑥), 𝜎(𝑦) ∈ 𝐶

1
(R𝑛,R𝑛×𝑝) are function

matrices of 𝑥 and 𝑦, respectively. 𝜃 ∈ R𝑚 and 𝜓 ∈ R𝑚

are the vectors of uncertain parameters, Δ𝑓(𝑥) and Δ𝑔(𝑦)

represent the nonlinear vectors that may include unknown
uncertainties and other external disturbances for the master
system and slave system, and 𝑤(𝑡) is a 𝑝-dimensional Brown

motion defined on a complete probability space (Ω,F,P)

with a natural filtration {F
𝑡
} generated by {𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡},

where we associate Ω with the canonical space generated by
{𝑤(𝑡)} and denotedF the associated 𝜎-algebra generated by
{𝑤(𝑡)} with the probability measureP. Here the white noise
d𝑤
𝑖
(𝑡) is independent of d𝑤

𝑗
(𝑡) for 𝑖 ̸= 𝑗.

(A1) The networks (2) and (4) are chaotic, and if 𝑥, 𝑦

are bounded, then |Δ𝑓
𝑖
(𝑥)|, |Δ𝑔

𝑖
(𝑥)| are bounded and

satisfy Δ𝑓
𝑖
(0) = Δ𝑔

𝑖
(0) = 0 for 𝑖 = 1, . . . , 𝑛, that is,





Δ𝑓
𝑖 (

𝑥)




≤ 𝛼
𝑖
,





Δ𝑔
𝑖 (

𝑥)




≤ 𝛽
𝑖
, (5)

where 𝛼
𝑖
and 𝛽

𝑖
are unknown parameters.

(A2) The noise intensity function matrices 𝜎
𝑖

: 𝑅
𝑛

→

𝑅
𝑝 are locally Lipschitz continuous and satisfying the

following condition. Moreover, 𝜎
𝑖
satisfies

[𝜎
𝑖 (

𝑥) − 𝜎
𝑖
(𝑦)]

T
[𝜎
𝑖 (

𝑥) − 𝜎
𝑖
(𝑦)] ≤

𝑛

∑

𝑗=1

𝑘
𝑖𝑗
(𝑥
𝑗
− 𝑦
𝑗
)

2

, (6)

where 𝑘
𝑖𝑗
are unknown parameters.

Remark 1. Note that condition (A1) is very weak. We do not
impose the usual conditions such as Lipschitz condition and
differentiability on the unknown uncertainties functions. It
can be discontinuous or even impulsive functions. Since the
trajectories of chaotic systems are always bounded, hence,
condition (A1) can be easily satisfied.

Remark 2. The condition (A2) is the linear growth condition
in fact, it is easy to see this condition is equivalent to the
condition in [23].

Throughout this paper, we always assume the nonlinear
function matrix satisfies 𝑓(0) = 𝑔(0) = 𝐹(0) = 𝐺(0) = 0. It
implies that (2) and (4) have a unique global solution on 𝑡 ≥ 0

for the initial conditions since (A1) and (A2) hold [26].
Let 𝑒(𝑡) = 𝑥(𝑡) − 𝑦(𝑡), then with subtracting (3) from (1)

the error dynamics is obtained as follows:

d𝑒
𝑖
= (𝑓
𝑖 (

𝑥) − 𝑔
𝑖
(𝑦) + 𝐹

𝑖 (
𝑥) 𝜃 − 𝐺 (𝑦)𝜓 + Δ𝑓

𝑖 (
𝑥)

−Δ𝑔
𝑖
(𝑦) − 𝑢

𝑖 (
𝑡)) d𝑡 + (𝜎

𝑖 (
𝑥) − 𝜎

𝑖
(𝑦)) d𝑤 (𝑡) .

(7)

It is clear that the synchronization problem can be
transformed to be the equivalent problem of stabilizing the
error system (7).

Remark 3. From themathematical point of view, themodel is
more general. If the noise intensity function matrices 𝜎(𝑥) =

𝜎(𝑦) = 0, (7) becomes the model in [13]. Furthermore, if
Δ𝑓(𝑥) = Δ𝑔(𝑦) = 0, the system will be the model in [14].
If Δ𝑓(𝑥) = Δ𝑔(𝑦) = 0 and 𝜃, 𝜓 are the known vectors, this
will be the model discussed in [23].

Definition 4 (see [19]). The error system (7) is said to be
globally stable in mean squares if for any given initial
condition such that

lim
𝑡→∞

𝐸‖𝑒 (𝑡)‖
2
= 0, (8)

where 𝐸[⋅] is the mathematical expectation.
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Definition 5 (see [26]). The trivial solution of the error system
(7) is said to be almost surely exponentially stable, if for
almost all sample paths of the solution 𝑒(𝑡), we have

lim sup
𝑡→∞

1

𝑡

log ‖𝑒 (𝑡)‖ < 0, (9)

that is, the the drive system and response system are almost
surely synchronization.

Remark 6. If 𝑒(𝑡) = 0, this means that 𝑥(𝑡) = 𝑦(𝑡), so
𝑢(𝑡) = 𝑓(𝑥) + 𝐹(𝑥)𝜃 + Δ𝑓(𝑥) − 𝑔(𝑦) − 𝐺(𝑦)𝜓 − Δ𝑔(𝑥) +

(𝜎(𝑥) − 𝜎(𝑦))�̇�(𝑡), where �̇�(𝑡) = d𝑤(𝑡)/d𝑡. This implies that
𝑢(𝑡) directly depends on white Gaussian noises and it is an
accessible causal signal; this means that the synchronization
cannot be realized completely.

The purpose of this paper is to consider the adaptive
feedback synchronization problem for stochastic chaotic
systems with unknown parameters and uncertainties. The
main work of this paper consists of the following aspects.
(i) Design an adaptive controller such that the asymptotical
stability of the error system (7) can be achieved in mean
squares that lim

𝑡→∞
𝐸‖𝑒(𝑡)‖

2
= 0. (ii) Design an adaptive

control such that the error system (7) can be almost surely
stable, that means the almost surely synchronization could be
achieved between drive system and response system.

Before proposing the main results, we introduce some
lemmas which will be used in the following sections.

Lemma 7 (see [20, 27]). The trivial solution of a stochastic
differential equation as follows

d𝑥 (𝑡) = 𝑎 (𝑡, 𝑥) d𝑡 + 𝑏 (𝑡, 𝑥) d𝜔 (𝑡) , (10)

with 𝑎(𝑡, 𝑥) and 𝑏(𝑡, 𝑥) sufficiently differentiable maps, is
globally asymptotically stable in probability if there exists a
function𝑉(𝑡, 𝑥)which is positive definite in the Lyapunov sense
and satisfies

L𝑉 (𝑡, 𝑥) = 𝑉
𝑡 (

𝑡, 𝑥) + 𝑉
𝑥 (

𝑡, 𝑥) ⋅ 𝑎 (𝑡, 𝑥)

+

1

2

tr {𝑏T
(𝑡, 𝑥) 𝑉𝑥𝑥 (

𝑡, 𝑥) 𝑏 (𝑡, 𝑥)} < 0,

(11)

for 𝑥 ̸= 0, where𝑉
𝑡
(𝑡, 𝑥) = 𝜕𝑉(𝑡, 𝑥)/𝜕𝑡,𝑉

𝑥
(𝑡, 𝑥) = 𝜕𝑉(𝑡, 𝑥)/𝜕𝑥,

and 𝑉
𝑥𝑥

(𝑡, 𝑥) = (𝜕
2
𝑉(𝑡, 𝑥)/𝜕𝑥

𝑖
𝜕𝑥
𝑗
)
𝑛×𝑛

.

Lemma 8 (see [23, 26]). Suppose there exist a nonnegative
function 𝑉(𝑥, 𝑡) ∈ 𝐶

2,1
(𝑅
𝑛
× [𝑡
0
, +∞), 𝑅

+
) and three positive

numbers 𝑝, 𝛼, and 𝜆 such that, for all 𝑥 ̸= 0 and 𝑡 ≥ 𝑡
0
,

𝛼|𝑥|
𝑝

≤ 𝑉 (𝑥, 𝑡) , L𝑉 (𝑡, 𝑥) < −𝜆𝑉 (𝑡, 𝑥) (12)

holds, then for any 𝑥
0
∈ 𝑅
𝑛, the trivial solution of (10) is almost

surely exponentially asymptotically stable; that is,

lim sup
𝑡→∞

1

𝑡

log 



𝑥 (𝑡, 𝑡
0
, 𝑥
0
)




< −

𝜆

𝑝

(13)

holds almost surely.

3. Main Results

To design the adaptive feedback controller to realize the
synchronization for stochastic chaotic systemswith unknown
parameters and uncertainties, we use the sliding mode
control method. In this section, the nonsingular terminal
sliding mode is chosen as

𝑠
𝑖 (

𝑡) = 𝜆
𝑖
𝑒
𝑖 (

𝑡) , 𝑖 = 1, . . . , 𝑛, (14)

where 𝑠
𝑖
(𝑡) ∈ 𝑅, 𝑠(𝑡) = [𝑠

1
(𝑡), 𝑠
2
(𝑡), . . . , 𝑠

𝑛
(𝑡)]

T and 𝜆
𝑖
> 0 are

constants.

3.1. Design of an Adaptive Controller to Realize Asymptotical
Synchronization in Mean Squares. In this section, we are
going to design an adaptive controller with updating laws
such that the state trajectories will move to the sliding surface
in mean squares. To ensure the occurrence of the sliding
motion, an adaptive sliding mode controller is proposed as

𝑢
𝑖 (

𝑡) = 𝑓
𝑖 (

𝑥) + 𝐹
𝑖 (

𝑥)
̂
𝜃 − 𝑔
𝑖
(𝑦) − 𝐺

𝑖
(𝑦) �̂�

+ (�̂�
𝑖
+

̂
𝛽
𝑖
) sign (𝑠

𝑖 (
𝑡)) + 𝑘

𝑖
𝑠
𝑖 (

𝑡)

+

𝑛

∑

𝑗=1

𝜆
2

𝑗

𝜆
3

𝑖

̂
𝑘
𝑗𝑖
𝑠
𝑖 (

𝑡) , 𝑖 = 1, 2, . . . , 𝑛,

(15)

where ̂
𝜃, �̂�, �̂�

𝑖
, ̂𝛽
𝑖
, ̂𝑘
𝑖𝑗
are the estimations for 𝜃, 𝜓, 𝛼

𝑖
, 𝛽
𝑖
, 𝑘
𝑖𝑗
,

respectively. 𝑘
𝑖
> 0 is the switching gain and a constant, 𝑖 =

1, 2, . . . , 𝑛.
To tackle the uncertainties and unknown parameters,

appropriate adaptive laws are defined as follows:

̇
̂
𝜃 = 𝐹

T
(𝑥) 𝛾 (𝑡) ,

̂
𝜃 (0) =

̂
𝜃
0

̇
�̂� = −𝐺

T
(𝑦) 𝛾 (𝑡) , �̂� (0) = �̂�

0

̇
�̂�
𝑖
= 𝜆
𝑖





𝑠
𝑖 (

𝑡)




, �̂�

𝑖 (
0) = �̂�

𝑖0

̇
̂
𝛽
𝑖
= 𝜆
𝑖





𝑠
𝑖 (

𝑡)




,

̂
𝛽
𝑖 (

0) =
̂
𝛽
𝑖0

̇
̂
𝑘
𝑖𝑗

=

𝜆
2

𝑖

𝜆
2

𝑗

𝑠
2

𝑗
(𝑡) ,

̂
𝑘
𝑖𝑗 (

0) =
̂
𝑘
𝑖𝑗0

,

(16)

where 𝛾(𝑡) = [𝜆
1
𝑠
1
(𝑡), 𝜆
2
𝑠
2
(𝑡), . . . , 𝜆

𝑛
𝑠
𝑛
(𝑡)]

T, and ̂
𝜃
0
, �̂�
0
,

�̂�
𝑖0
, and ̂

𝛽
𝑖0
are the initial values of the update parameters,

respectively.
The proposed control input in (15) with the updat-

ing laws in (16) will guarantee the reaching condition
lim
𝑡→∞

𝐸‖𝑠(𝑡)‖
2
= 0 and ensure the occurrence of the sliding

motion, which is proved in the following theorem.

Theorem 9. Suppose that the assumption conditions (A1) and
(A2) hold; consider the error dynamics (7); this system is
controlled by 𝑢(𝑡) in (15) with updating laws in (16), then the
error system trajectories will converge to the sliding surface
𝑠(𝑡) = 0 in mean squares.
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Proof. Select a positive definite function as a Lyapunov
function candidate in the form of

𝑉 (𝑡) =

1

2

𝑛

∑

𝑖=1

(𝑠
2

𝑖
(𝑡) + (�̂�

𝑖
− 𝛼
𝑖
)
2
+ (

̂
𝛽
𝑖
− 𝛽
𝑖
)

2

)

+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(
̂
𝑘
𝑖𝑗
− 𝑘
𝑖𝑗
)

2

+

1

2







̂
𝜃 − 𝜃







2

+

1

2





�̂� − 𝜓






2
.

(17)

Since d𝑠
𝑖
(𝑡) = 𝜆

𝑖
d𝑒
𝑖
(𝑡), by Itô’s differential rule, the stochastic

derivative of𝑉(𝑡) along trajectories of error system (7) can be
obtained as follows:

d𝑉 (𝑡) = L𝑉 (𝑡) d𝑡 +

𝑛

∑

𝑖=1

𝜆
𝑖
𝑠
𝑖 (

𝑡) (𝜎𝑖 (
𝑥) − 𝜎

𝑖
(𝑦)) d𝑤 (𝑡) ,

(18)

where the weak infinitesimal operatorL is given by

L𝑉 (𝑡)

=

𝑛

∑

𝑖=1

[𝜆
𝑖
𝑠
𝑖 (

𝑡) ((𝑓𝑖 (
𝑥) − 𝑔

𝑖
(𝑦) + 𝐹

𝑖 (
𝑥) 𝜃

−𝐺
𝑖
(𝑦) 𝜓 + Δ𝑓

𝑖 (
𝑥) − Δ𝑔

𝑖
(𝑦) − 𝑢

𝑖 (
𝑡)))]

+

𝑛

∑

𝑗=1

𝜆
2

𝑖
(𝜎
𝑖 (

𝑥 (𝑡)) − 𝜎
𝑖
(𝑦 (𝑡)))

T

× (𝜎
𝑖 (

𝑥 (𝑡)) − 𝜎
𝑖
(𝑦 (𝑡))) + (�̂�

𝑖
− 𝛼
𝑖
)

̇
�̂�
𝑖

+ (
̂
𝛽
𝑖
− 𝛽
𝑖
)

̇
̂
𝛽
𝑖

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(
̂
𝑘
𝑖𝑗
− 𝑘
𝑖𝑗
)

̇
̂
𝑘
𝑖𝑗
+ (

̂
𝜃 − 𝜃)

T ̇
̂
𝜃 + (�̂� − 𝜓)

T ̇
�̂�

≤

𝑛

∑

𝑖=1

[𝜆
𝑖
𝑠
𝑖 (

𝑡) 𝐹𝑖 (
𝑥) (𝜃 −

̂
𝜃) − 𝜆

𝑖
𝑠
𝑖 (

𝑡) 𝐺𝑖
(𝑦) (𝜓 − �̂�)

+ 𝛼
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)




+ 𝛽
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)




− �̂�
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)





−
̂
𝛽
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)




− 𝑘
𝑖
𝜆
𝑖
𝑠
𝑖(
𝑡)
2

− 𝜆
𝑖
𝑠
𝑖 (

𝑡)

𝑛

∑

𝑗=1

𝜆
2

𝑗

𝜆
3

𝑖

̂
𝑘
𝑗𝑖
𝑠
𝑖 (

𝑡) +

𝑛

∑

𝑗=1

𝜆
2

𝑖
𝑘
𝑖𝑗
𝑒
2

𝑗
(𝑡)

+ (�̂�
𝑖
− 𝛼
𝑖
)

̇
�̂�
𝑖
+ (

̂
𝛽
𝑖
− 𝛽
𝑖
)

̇
̂
𝛽
𝑖
]

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(
̂
𝑘
𝑖𝑗
− 𝑘
𝑖𝑗
)

̇
̂
𝑘
𝑖𝑗
+ (

̂
𝜃 − 𝜃)

T ̇
̂
𝜃 + (�̂� − 𝜓)

T ̇
�̂�.

(19)

Using the facts ∑
𝑛

𝑖=1
𝜆
𝑖
𝑠
𝑖
(𝑡)𝐹
𝑖
(𝑥)𝜃 = 𝜃

T
𝐹
T
(𝑥)𝛾(𝑡),

∑
𝑛

𝑖=1
𝜆
𝑖
𝑠
𝑖
(𝑡)𝐺
𝑖
(𝑥)𝜓 = 𝜓

T
𝐺
T
(𝑥)𝛾(𝑡) and the updating

laws in (16), one has

L𝑉 (𝑡) ≤ −

𝑛

∑

𝑖=1

𝑘
𝑖
𝜆
𝑖
𝑠
2

𝑖
= −

𝑛

∑

𝑖=1

𝜂
𝑖
𝑠
2

𝑖
= −𝜂𝑠

T
(𝑡) 𝑠 (𝑡) , (20)

where 𝜂
𝑖
= 𝑘
𝑖
𝜆
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 and 𝜂 = min{𝜂

1
, 𝜂
2
, . . . , 𝜂

𝑛
} >

0.
Taking mathematical expectation on both sides of (20),

in view of (18) and the definition of 𝑉(𝑡), we obtain

1

2

𝐸‖𝑠 (𝑡)‖
2
≤ 𝐸𝑉 (𝑡) ≤ 𝐸𝑉 (0) − 𝜂∫

𝑡

0

𝐸‖𝑠 (𝜏)‖
2d𝜏. (21)

Based on the LaSalle invariance principle of stochastic dif-
ferential equation, which was developed in [28, 29], we have
𝑠(𝑡) → 0 when 𝑡 → ∞, which in turn illustrates that
lim
𝑡→∞

𝐸‖𝑠(𝑡)‖
2
= 0. This complete the proof.

Remark 10. If 𝜎(𝑥) = 𝜎(𝑦) = 0, this theorem is an extension
of Theorem 1 in [13]. If 𝜎(𝑥) = 𝜎(𝑦) = 0 and Δ𝑓(𝑥) = Δ𝑔(𝑥),
this is a similar result of Theorem 2 in [14].

Remark 11. Since the control law (15) contains the sign
function as a hard switcher, the undesirable chattering phe-
nomenon occurs. According to Lemma 2 and Remark 2 in
[13], we can replace the sign(𝑠

𝑖
) function by tanh(𝜖𝑠

𝑖
), 𝜖 > 0.

Remark 12. From the proof of Theorem 9, we know that
L𝑉(𝑡) ≤ 0 as long as 𝑠(𝑡) ̸= 0. Therefore, the trajectories 𝑠(𝑡)

will converge to 𝑠(𝑡) = 0 in mean squares. On the other hand,
from the adaptive law (18) we can see ̇

̂
𝜃, ̇

�̂�, ̇
�̂�
𝑖
, ̇
̂
𝛽
𝑖
, and ̂

𝑘
𝑖𝑗
turn

to zero when 𝑠(𝑡) = 0, which implies that ̂𝜃, �̂�, �̂�
𝑖
, ̂𝛽
𝑖
, and ̂

𝑘
𝑖𝑗

approach some constants as 𝑠(𝑡) → 0. However, this does not
elaborate that ̂𝜃 → 𝜃, �̂� → 𝜓. This point is consistent with
the results of [30].

In fact, the unknown parameters 𝜃, 𝜓 in (7) cannot
identify with ̂

𝜃, �̂�. We offer the following theorem.

Theorem 13. In Theorem 9, if Δ𝑓(𝑥) ̸= Δ𝑔(𝑦) and the syn-
chronization between (1) and (3) is realized, the unknown
parameters 𝜃, 𝜓 in (7) cannot identify with ̂

𝜃, �̂� in (17),
respectively.

Proof. We prove it by its contrapositive proposition. On the
synchronization manifold 𝑥(𝑡) = 𝑦(𝑡), it follows 𝑠

𝑖
(𝑡) = 0 and

d𝑠
𝑖
= 0. From (7) and (15), we have

0 =
[

[

𝜆
𝑖
(𝐹
𝑖 (

𝑥) (𝜃 −
̂
𝜃) − 𝐺

𝑖
(𝑦) (𝜓 − �̂�) + Δ𝑓

𝑖 (
𝑥)

−Δ𝑔
𝑖
(𝑦) − (�̂�

𝑖
+

̂
𝛽
𝑖
) sign 𝑠

𝑖 (
𝑡) − 𝑘
𝑖
𝑠
𝑖 (

𝑡))

−

𝑛

∑

𝑗=1

𝜆
2

𝑗

𝜆
2

𝑖

̂
𝑘
𝑗𝑖
𝑠
𝑖 (

𝑡)
]

]

d𝑡 + 𝜆
𝑖
(𝜎
𝑖 (

𝑥 (𝑡)) − 𝜎
𝑖
(𝑦 (𝑡))) d𝑤 (𝑡) .

(22)

Suppose ̂
𝜃 = 𝜃 and �̂� = 𝜓; we haveΔ𝑓

𝑖
(𝑥) = Δ𝑔

𝑖
(𝑦) = Δ𝑔

𝑖
(𝑥);

this means Δ𝑓(𝑥) = Δ𝑔(𝑥), which is a contradiction. This
completes the proof.

If Δ𝑓(𝑥) = Δ𝑔(𝑦) = 0, we can get the following theorem.
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Theorem 14. Suppose that the assumption condition (A2)
holds. Then under the controller (15) with updating laws (16),
the response system and the drive system are asymptotical
synchronized in mean squares. Moreover, if 𝐹

𝑖𝑗
(𝑥), 𝐺

𝑖𝑗
(𝑦) are

linearly independent of the synchronization manifold, then
lim
𝑡→∞

(
̂
𝜃 − 𝜃) = lim

𝑡→∞
(�̂� − 𝜓) = 0.

Proof. It is easy to get the following error system:

d𝑒
𝑖
= (𝑓
𝑖 (

𝑥) − 𝑔
𝑖
(𝑦) + 𝐹

𝑖 (
𝑥) 𝜃 − 𝐺 (𝑦)𝜓 − 𝑢

𝑖 (
𝑡)) d𝑡

+ (𝜎
𝑖 (

𝑥) − 𝜎
𝑖
(𝑦)) d𝑤 (𝑡) .

(23)

Define the following Lyapunov function candidate

𝑉
1 (

𝑡) =

1

2

𝑛

∑

𝑖=1

𝑠
𝑖(
𝑡)
2
+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(
̂
𝑘
𝑖𝑗
− 𝑘
𝑖𝑗
)

2

+

1

2







̂
𝜃 − 𝜃







2

+

1

2





�̂� − 𝜓






2
.

(24)

Since d𝑠
𝑖
(𝑡) = 𝜆

𝑖
d𝑒
𝑖
(𝑡), by Itô’s differential rule, the stochastic

derivative of𝑉(𝑡) along trajectories of error system (7) can be
obtained as follows:

d𝑉
1 (

𝑡) = L𝑉
1 (

𝑡) d𝑡 +

𝑛

∑

1

𝜆
𝑖
𝑠
𝑖
(𝜎
𝑖 (

𝑥) − 𝜎
𝑖
(𝑦)) d𝑤 (𝑡) , (25)

where the weak infinitesimal operatorL is given by

L𝑉
1 (

𝑡)

=

𝑛

∑

𝑖=1

[ 𝜆
𝑖
𝑠
𝑖 (

𝑡) ( (𝑓𝑖 (
𝑥) − 𝑔

𝑖
(𝑦)

+𝐹
𝑖 (

𝑥) 𝜃 − 𝐺
𝑖
(𝑦) 𝜓 − 𝑢

𝑖 (
𝑡)))]

+

𝑛

∑

𝑗=1

𝜆
2

𝑖
(𝜎
𝑖 (

𝑥 (𝑡)) − 𝜎
𝑖
(𝑦 (𝑡)))

T

× (𝜎
𝑖 (

𝑥 (𝑡)) − 𝜎
𝑖
(𝑦 (𝑡)))

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(
̂
𝑘
𝑖𝑗
− 𝑘
𝑖𝑗
)

̇
̂
𝑘
𝑖𝑗
+ (

̂
𝜃 − 𝜃)

T ̇
̂
𝜃 + (�̂� − 𝜓)

T ̇
�̂�

≤

𝑛

∑

𝑖=1

[

[

𝜆
𝑖
𝑠
𝑖 (

𝑡) 𝐹𝑖 (
𝑥) (𝜃 −

̂
𝜃)

− 𝜆
𝑖
𝑠
𝑖 (

𝑡) 𝐺𝑖
(𝑦) (𝜓 − �̂�)

+ 𝛼
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)




+ 𝛽
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)





− �̂�
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)




−

̂
𝛽
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)




− 𝑘
𝑖
𝜆
𝑖
𝑠
𝑖(
𝑡)
2

− 𝜆
𝑖
𝑠
𝑖 (

𝑡)

𝑛

∑

𝑗=1

𝜆
2

𝑗

𝜆
3

𝑖

̂
𝑘
𝑗𝑖
𝑠
𝑖 (

𝑡)

+

𝑛

∑

𝑗=1

𝜆
2

𝑖
𝑘
𝑖𝑗
𝑒
𝑗(
𝑡)
2
]

]

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(
̂
𝑘
𝑖𝑗
− 𝑘
𝑖𝑗
)

̇
̂
𝑘
𝑖𝑗

+ (
̂
𝜃 − 𝜃)

T ̇
̂
𝜃 + (�̂� − 𝜓)

T ̇
�̂�.

(26)

From the update laws (16), we can always choose the
appropriate initial values of �̂�

𝑖0
and ̂

𝛽
𝑖0
to make �̂�

𝑖
> 0 and

̂
𝛽
𝑖
> 0. Since �̂�

𝑖
𝑠
𝑖
(𝑡) sign(𝑠

𝑖
(𝑡)) ≥ 0 and ̂

𝛽
𝑖
𝑠
𝑖
(𝑡) sign(𝑠

𝑖
(𝑡)) ≥

0. Using the facts ∑
𝑛

𝑖=1
𝜆
𝑖
𝑠
𝑖
(𝑡)𝐹
𝑖
(𝑥)𝜃 = 𝜃

T
𝐹
T
(𝑥)𝛾(𝑡),

∑
𝑛

𝑖=1
𝜆
𝑖
𝑠
𝑖
(𝑡)𝐺
𝑖
(𝑥)𝜓 = 𝜓

T
𝐺
T
(𝑥)𝛾(𝑡) and the updating laws in

(18), with the same procedure of the proof of Theorem 9, we
also arrive at 𝐸‖𝑠(𝑡)‖

2
→ 0.

On the synchronization manifold 𝑥(𝑡) = 𝑦(𝑡), it follows
𝑠(𝑡) = 0 and d𝑠

𝑖
= 0. From (7) and (15), we have

0 = 𝜆
𝑖
[𝐹
𝑖 (

𝑥) (𝜃 −
̂
𝜃) − 𝐺

𝑖
(𝑦) (𝜓 − �̂�)] . (27)

Since 𝐹
𝑖𝑗
(𝑥), 𝐺

𝑖𝑗
(𝑦) are linearly independent on the synchro-

nization manifold, therefore, the above equality holds if and
only if ̂𝜃 = 𝜃 and �̂� = 𝜓.

Remark 15. Certainly, under the controller without (�̂�
𝑖
+

̂
𝛽
𝑖
) sign 𝑠

𝑖
(𝑡) term, the response system can also synchronize

the drive system in mean squares. However, under the
controller (15) with this term, it is more effective to realize
the synchronization with this term. If 𝑥

𝑖
(𝑡) > 𝑦

𝑖
(𝑡), this term

will help to increase 𝑦
𝑖
(𝑡), and if 𝑥

𝑖
(𝑡) < 𝑦

𝑖
(𝑡), this term will

help to decrease 𝑦
𝑖
(𝑡). Hence, this term (�̂�

𝑖
+

̂
𝛽
𝑖
) sign 𝑠

𝑖
(𝑡) can

enhance the synchronization speed.

3.2. Design of an Adaptive Controller to Realize Almost Surely
Synchronization. In this section, we are going to design an
adaptive controller with update laws such that the state
trajectories will move to the sliding surface almost surely. We
first introduce the following assumptions for the unknown
parameters.

(A3) The unknown parameters vectors 𝜃 and 𝜓 are norm
bounded with known bounds, that is,

‖𝜃‖ ≤ 𝜃,




𝜓




≤ 𝜓, (28)

where 𝜃 and 𝜓 are two known positive constants.
(A4) Assume (A1) and (A2) hold, and 𝛼

𝑖
, 𝛽
𝑖
, and 𝑘

𝑖𝑗
are

known positive constants.
To ensure the occurrence of the sliding motion, an

adaptive sliding mode controller is proposed as

𝑢
𝑖 (

𝑡) = 𝑓
𝑖 (

𝑥) + 𝐹
𝑖 (

𝑥)
̂
𝜃 − 𝑔
𝑖
(𝑦) − 𝐺

𝑖
(𝑦) �̂�

+ (𝛼
𝑖
+ 𝛽
𝑖
) sign (𝑠

𝑖 (
𝑡)) +

1

2

𝑘
𝑖
𝑠
𝑖 (

𝑡)

− 𝜂 (







̂
𝜃







2

+ 𝜃

2

+




�̂�





2
+ 𝜓
2
)

× (

𝑠
𝑖 (

𝑡)

𝜆
𝑖‖
𝑠 (𝑡)‖
2
) +

𝑛

∑

𝑗=1

𝜆
2

𝑗

𝜆
3

𝑖

𝑘
𝑗𝑖
𝑠
𝑖 (

𝑡) ,

(29)
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where ̂
𝜃, �̂� are the estimations for 𝜃, 𝜓, respectively. 𝜂

𝑖
=

𝑘
𝑖
𝜆
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 and 𝜂 = min{𝜂

1
, 𝜂
2
, . . . , 𝜂

𝑛
} > 0, 𝑘

𝑖
> 0

are the switching gain and constants, 𝑖 = 1, 2, . . . , 𝑛.
To tackle the uncertainties and unknown parameters,

appropriate adaptive laws are defined as follows:

̇
̂
𝜃 = 𝐹

T
(𝑥) 𝛾 (𝑡) ,

̂
𝜃 (0) =

̂
𝜃
0

̇
�̂� = −𝐺

T
(𝑦) 𝛾 (𝑡) , �̂� (0) = �̂�

0
,

(30)

where 𝛾(𝑡) = [𝜆
1
𝑠
1
(𝑡), 𝜆
2
𝑠
2
(𝑡), . . . , 𝜆

𝑛
𝑠
𝑛
(𝑡)]

T, and ̂
𝜃
0
, �̂�
0
are

the initial values of the update parameters, respectively.
Based on the control input in (29) with the updating laws

in (30) to guarantee the reaching condition lim
𝑡→∞

𝑠(𝑡) =

0 almost surely holds and to ensure the occurrence of the
sliding motion, a theorem is proposed and proved.

Theorem 16. Suppose that the assumption conditions (A3)
and (A4) hold; consider the error dynamics (7); this system
is controlled by 𝑢(𝑡) in (29) with updating laws in (30), then
the error system trajectories will converge to the sliding surface
𝑠(𝑡) = 0 almost surely.

Proof. Select a positive definite function as a Lyapunov
function candidate in the form of

𝑉 (𝑡) =

1

2

𝑛

∑

𝑖=1

𝑠
𝑖(
𝑡)
2
+

1

2







̂
𝜃 − 𝜃







2

+

1

2





�̂� − 𝜓






2
. (31)

Since d𝑠
𝑖
(𝑡) = 𝜆

𝑖
d𝑒
𝑖
(𝑡), by Itô’s differential rule, the stochastic

derivative of𝑉(𝑡) along trajectories of error system (7) can be
obtained as follows:

d𝑉 (𝑡) = L𝑉 (𝑡) d𝑡 +

𝑛

∑

1

𝜆
𝑖
𝑠
𝑖 (

𝑡) (𝜎𝑖 (
𝑥) − 𝜎

𝑖
(𝑦)) d𝑤 (𝑡) ,

(32)

where the weak infinitesimal operatorL is given by

L𝑉 (𝑡)

=

𝑛

∑

𝑖=1

[𝜆
𝑖
𝑠
𝑖 (

𝑡)((𝑓𝑖 (
𝑥) − 𝑔

𝑖
(𝑦) + 𝐹

𝑖 (
𝑥) 𝜃

−𝐺
𝑖
(𝑦) 𝜓 + Δ𝑓

𝑖 (
𝑥) − Δ𝑔

𝑖
(𝑦) − 𝑢

𝑖 (
𝑡)))]

+

𝑛

∑

𝑗=1

𝜆
2

𝑖
(𝜎
𝑖 (

𝑥 (𝑡)) − 𝜎
𝑖
(𝑦 (𝑡)))

T
(𝜎
𝑖 (

𝑥 (𝑡)) − 𝜎
𝑖
(𝑦 (𝑡)))

+ (
̂
𝜃 − 𝜃)

T ̇
̂
𝜃 + (�̂� − 𝜓)

T ̇
�̂�

≤

𝑛

∑

𝑖=1

[

[

𝜆
𝑖
𝑠
𝑖 (

𝑡) 𝐹𝑖 (
𝑥) (𝜃 −

̂
𝜃) − 𝜆

𝑖
𝑠
𝑖 (

𝑡) 𝐺𝑖
(𝑦) (𝜓 − �̂�)

−

1

2

𝑘
𝑖
𝜆
𝑖
𝑠
𝑖(
𝑡)
2
− 𝜆
𝑖
𝑠
𝑖 (

𝑡)

𝑛

∑

𝑗=1

𝜆
2

𝑗

𝜆
3

𝑖

𝑘
𝑗𝑖
𝑠
𝑖 (

𝑡)

+ 𝜆
𝑖
𝑠
𝑖 (

𝑡) 𝜂 (







̂
𝜃







2

+ 𝜃

2

+




�̂�





2
+ 𝜓
2
)

×(

𝑠
𝑖 (

𝑡)

𝜆
𝑖‖
𝑠 (𝑡)‖
2
) +

𝑛

∑

𝑗=1

𝜆
2

𝑖
𝑘
𝑖𝑗
𝑒
2

𝑗
(𝑡)

]

]

+ (
̂
𝜃 − 𝜃)

T ̇
̂
𝜃 + (�̂� − 𝜓)

T ̇
�̂�.

(33)

Using the facts ∑
𝑛

𝑖=1
𝜆
𝑖
𝑠
𝑖
(𝑡)𝐹
𝑖
(𝑥)𝜃 = 𝜃

T
𝐹
T
(𝑥)𝛾(𝑡),

∑
𝑛

𝑖=1
𝜆
𝑖
𝑠
𝑖
(𝑡)𝐺
𝑖
(𝑥)𝜓 = 𝜓

T
𝐺
T
(𝑥)𝛾(𝑡) and the updating

laws in (30), one has

L𝑉 (𝑡)

≤ −

𝑛

∑

𝑖=1

1

2

𝑘
𝑖
𝜆
𝑖
𝑠
2

𝑖
+ 𝜂 (







̂
𝜃







2

+ 𝜃

2

+




�̂�





2
+ 𝜓
2
)

≤ −𝜂 [

1

2

𝑠
T
(𝑡) 𝑠 (𝑡) − (







̂
𝜃







2

+ 𝜃

2

) − (




�̂�





2
+ 𝜓
2
)] .

(34)

Since ‖
̂
𝜃 − 𝜃‖

2

≤ 2(‖
̂
𝜃‖

2

+ ‖𝜃‖
2
) ≤ 2(‖

̂
𝜃‖

2

+ 𝜃

2

) and similarly
we have ‖�̂� − 𝜓‖

2
≤ 2(‖�̂�‖

2
+ 𝜓
2
), so we can conclude that

−(‖
̂
𝜃‖

2

+𝜃

2

) ≤ −1/2‖
̂
𝜃 − 𝜃‖

2

and −(‖
̂
𝜃‖

2

+𝜃

2

) ≤ −1/2‖
̂
𝜃 − 𝜃‖

2

.
So it is easy to get

L𝑉 (𝑡) ≤ −𝜂 [

1

2

𝑠
T
(𝑡) 𝑠 (𝑡) +

1

2







̂
𝜃 − 𝜃







2

+

1

2







̂
𝜃 − 𝜃







2

] ≤ −𝜂𝑉 (𝑡) .

(35)

Then from Lemma 8, we can obtain: lim
𝑡→∞

𝑠(𝑡) = 0 almost
surely. This completes the proof.

Remark 17. From the proof, it is easy to see that the positive
numbers in (A4) also could be unknown; we just modify
the estimate parameters in the controller. To simplify, we
discussed the problem under condition (A4).

Remark 18. The controller in (30) contains a discontinuous
term 𝜂(‖

̂
𝜃‖

2

+𝜃

2

+‖�̂�‖
2
+𝜓
2
)(𝑠
𝑖
/𝜆
𝑖
‖𝑠‖
2
) and thus chattering is

unavoidable. In order to eliminate this chattering, this control
term can bemodified as 𝜂(‖̂𝜃‖

2

+𝜃

2

+‖�̂�‖
2
+𝜓
2
)(𝑠
𝑖
/(𝜆
𝑖
‖𝑠‖
2
+𝜖)),

where 𝜖 is a sufficiently small positive constant.

Remark 19. With the similar method in Theorem 13 and
Theorem 14, we can also discuss the problem of the identi-
fication between the unknown parameters 𝜃, 𝜓 in (7) and ̂

𝜃,
�̂� in (30).

4. Numerical Simulations

In this section, we will show that the proposed adaptive
controllers are efficient and that the theoretical results are cor-
rect. Numerical simulations are performed using MATLAB
software. The well-known stochastic chaos between Lorenz
system and Chen systems is synchronized using the adaptive
controller (15) in the first example. The synchronization
between Chen system and Lu system is shown in the second
example using the adaptive controller (29). The Lorenz,
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Figure 1: The trajectories of the error system without control input
in Example 1.

Chen, and Lu systems are given by the following differential
equations, respectively,

{
{
{
{
{

{
{
{
{
{

{

�̇�
1
= 10 (𝑥

2
− 𝑥
1
)

�̇�
2
= 28𝑥

1
− 𝑥
2
− 𝑥
1
𝑥
3

�̇�
3
= 𝑥
1
𝑥
2
−

8𝑥
3

3

{
{
{
{

{
{
{
{

{

�̇�
1
= 35 (𝑥

2
− 𝑥
1
)

�̇�
2
= 28𝑥

2
− 7𝑥
1
− 𝑥
1
𝑥
3

�̇�
3
= 𝑥
1
𝑥
2
− 3𝑥
3

{
{
{
{

{
{
{
{

{

�̇�
1
= 36 (𝑥

2
− 𝑥
1
)

�̇�
2
= −20𝑥

2
− 𝑥
1
𝑥
3

�̇�
3
= 𝑥
1
𝑥
2
− 3𝑥
3
.

(36)

In all the cases, the uncertainties Δ𝑓(𝑥), Δ𝑔(𝑦), and
𝜎(𝑥) and the noise intensity function are given as follows,
respectively,

{
{
{
{

{
{
{
{

{

Δ𝑓
1 (

𝑥) = 0.5 sin (𝜋𝑥
1
) ,

Δ𝑓
2 (

𝑥) = 0.5 sin (2𝜋𝑥
2
) ,

Δ𝑓
3 (

𝑥) = 0.5 sin (3𝜋𝑥
3
) ,

5 10 15 20 25 30
𝑡

35

1
0.5

0
−0.5

𝑒 1

(a)

5 10 15 20 25 30
𝑡

35

1000

0

−1000

−2000

𝑒 2

(b)

5 10 15 20 25 30
𝑡

35

200
0

−200

−400

−600

𝑒 3

(c)

Figure 2: Time responses of error system under control input in
Example 1.

{
{
{
{

{
{
{
{

{

Δ𝑔
1
(𝑦) = −5 sin (𝜋𝑦

1
) ,

Δ𝑔
2
(𝑦) = −4 sin (2𝜋𝑦

2
) ,

Δ𝑔
3
(𝑦) = − sin (3𝜋𝑦

3
) ,

{
{
{
{

{
{
{
{

{

𝜎
1 (

𝑥) = 𝑥
2

2
+ 0.3𝑥

3
,

𝜎
2 (

𝑥) = 𝑥
3

1
+ 0.1𝑥

3
,

𝜎
3 (

𝑥) = 0.2𝑥
1
+ 𝑥
1
𝑥
2
.

(37)

In all simulations, we choose the initial value of the
adaptive parameters vectors ̂

𝜃
0

= [5, 5, 5]
T, �̂�
0

= [3, 3, 3]
T,

�̂�
𝑖0

=
̂
𝛽
𝑖0

=
̂
𝑘
𝑖𝑗0

= 2, the constants 𝑘
1
= 10 and 𝜖 = 0.01.

4.1. Example 1: Synchronization between Lorenz Systems and
Chen Systems. Thenonlinear part ofmaster and slave systems
can be rewritten in the form of (2) and (4) as follows:

𝑓 (𝑥) = (

0

−𝑥
1
𝑥
3
− 𝑥
2

𝑥
1
𝑥
2

) , 𝐹 (𝑥) = (

𝑥
2
− 𝑥
1

0 0

0 𝑥
1

0

0 0 −𝑥
3

) ,

𝑔 (𝑦) = (

0

−𝑦
1
𝑦
3

𝑦
1
𝑦
2

) , 𝐺 (𝑦) = (

𝑦
2
− 𝑦
1

0 0

−𝑦
1

𝑦
1
+ 𝑦
2

0

0 0 −𝑦
3

) .

(38)
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Figure 3: Time response of the control input in Example 1.
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𝑡
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Figure 4: Time responses of the sliding mode surface 𝑠(𝑡) in
Example 1.

Consequently, three sliding surfaces are chosen as

{
{
{
{

{
{
{
{

{

𝑠
1
= 10𝑒
1 (

𝑡) ,

𝑠
2
= 8𝑒
2 (

𝑡) ,

𝑠
3
= 2𝑒
3 (

𝑡) .

(39)
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0
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−5

𝜃 3
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𝑡

(c)

Figure 5: The trajectories of the adaptive laws of the parameter ̂
𝜃 in

Example 1.

The stochastic Lorenz and Chen systems are started with
the initial conditions as follows: 𝑥

0
= [1, 1.5, 2]

T and 𝑦
0

=

[2, 2.5, 3]
T. The synchronization of the Lorenz and Chen

systems without control input is shown in Figure 1 and the
error simulation under the control input is shown in Figure 2.
As one can see the synchronization errors converge to zero
in mean squares. The control input is shown in Figure 3 and
the sliding mode surface is shown in Figure 4. The updated
vector parameters of �̂�,

̂
𝛽,

̂
𝜃, and �̂� are shown in Figures

5, 6, 7, and 8 and ̂
𝑘
𝑖𝑗
are depicted in Figures 9, 10, and 11,

respectively. Obviously, all of updated parameters approach
some constants.

4.2. Example 2: Synchronization between Chen Systems and Lu
Systems. The nonlinear part of master and slave systems can
be rewritten in the form of (2) and (4) as follows:

𝑓 (𝑥) = (

0

−𝑥
1
𝑥
3

𝑥
1
𝑥
2

) , 𝐹 (𝑥) = (

𝑥
2
− 𝑥
1

0 0

−𝑥
1

𝑥
1
+ 𝑥
2

0

0 0 −𝑥
3

) ,

𝑔 (𝑦) = (

0

−𝑦
1
𝑦
3

𝑦
1
𝑦
2

) , 𝐺 (𝑦) = (

𝑦
2
− 𝑦
1

0 0

0 −𝑦
2

0

0 0 −𝑦
3

) .

(40)

Consequently, the same sliding surfaces are chosen as in
Example 1. To simplify, we choose the noise intensity function
𝜎(𝑥) = [0.4𝑥

2
+ 0.3𝑥

3
, 0.2𝑥
1

+ 0.1𝑥
3
, 0.3𝑥
1

+ 0.2𝑥
2
]
T, so

it is easy to see 𝛼
𝑖

= 𝛽
𝑖

= 0.5 and 𝑘
11

= 𝑘
22

= 𝑘
33

=

0, 𝑘
12

= 0.4, 𝑘
13

= 0.3, 𝑘
21

= 0.2, 𝑘
23

= 0.1, 𝑘
31

=

0.3, and 𝑘
32

= 0.2. The stochastic Chen and Lu systems are
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Figure 6: Time responses of the adaptive update laws �̂� in Example
1.
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Figure 7: The trajectories of the adaptive laws 𝛼 in Example 1.

started with the initial conditions as follows: 𝑥
0

= [8, 4, 7]
T

and 𝑦
0

= [−10, −4, 2]
T. The synchronization of the Chen

and Lu systems without control input is shown in Figure 12
and the error simulation under the control input is shown in
Figure 13. As one can see the synchronization errors converge
to zero almost surely. The control input is shown in Figure 14
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𝛽
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𝛽
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𝛽
3
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Figure 8: The trajectories of the adaptive laws 𝛽 in Example 1.
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Figure 9: The trajectories of the adaptive laws 𝑘
11
, 𝑘
12
, and 𝑘

13
in

Example 1.

and the sliding mode surface is shown in Figure 15. The
updated vector parameters of ̂𝜃 and �̂� are depicted in Figures
16 and 17, respectively. Obviously, all of updated parameters
approach some constants.
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Figure 10: The trajectories of the adaptive laws 𝑘
21
, 𝑘
22
, and 𝑘

23
in

Example 1.
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Figure 11: The trajectories of the adaptive laws 𝑘
31
, 𝑘
32
, and 𝑘

33
in

Example 1.

Remark 20. As it is observed in Figures 5, 6, 16, and 17, the
limits of unknown parameter vectors ̂

𝜃 and �̂� are not equal
to the vectors 𝜃 and 𝜓 in (36). This point is consistent with
the results of Theorem 13, Theorem 14, and Remark 19.
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Figure 12:The trajectories of the error systemwithout control input
in Example 2.
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Figure 13: Time responses of error system under control input in
Example 2.

5. Conclusion

In this paper, adaptive sliding mode controllers are designed
to realize the asymptotical synchronization in mean squares
and the almost surely synchronization for two different
stochastic chaotic systems with unknown parameters and



Abstract and Applied Analysis 11

0

5000

−5000

𝑢
1

0 5 10 15
𝑡

(a)

0

2000

−2000

𝑢
2

0 5 10 15
𝑡

(b)

0

500

1000

𝑢
3

0 5 10 15
𝑡

(c)

Figure 14: Time responses of the control input in Example 2.
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Figure 15: Time responses of the sliding mode surface 𝑠(𝑡) in
Example 2.

uncertain terms, respectively. The designed controllers’
robustness and efficiency are proved between two different
pairs of stochastic chaos systems (Lorenz-Chen and Chen-
Lu) with unknown parameters and uncertainties.

0 5 10 15

0

20

−20

𝜃 1

𝑡

(a)

0 5 10 15

20

40

0

𝜃 2

𝑡

(b)

𝜃 3

0 5 10 15
𝑡

2

0

−2

−4

(c)

Figure 16: The trajectories of the adaptive laws of the parameter ̂
𝜃

in Example 2.
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Figure 17: The trajectories of the adaptive laws of the parameter �̂�

in Example 2.
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