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Vehicle crash test is considered to be the most direct and common approach to assess the vehicle crashworthiness. However, it
suffers from the drawbacks of high experiment cost and huge time consumption. Therefore, the establishment of a mathematical
model of vehicle crash which can simplify the analysis process is significantly attractive. In this paper, we present the application
of LPV-ARMAX model to simulate the car-to-pole collision with different initial impact velocities. The parameters of the LPV-
ARMAX are assumed to have dependence on the initial impact velocities. Instead of establishing a set of LTI models for vehicle
crashes with various impact velocities, the LPV-ARMAX model is comparatively simple and applicable to predict the responses of
new collision situations different from the ones used for identification. Finally, the comparison between the predicted response and
the real test data is conducted, which shows the high fidelity of the LPV-ARMAX model.

1. Introduction

In the past few decades, as one of the major concerns in
the automotive industry, the vehicle crashworthiness has
been attracting exceptional attention all over the world.
Before appearing on roads, each car must undergo a series
of crash tests to be verified whether they satisfy the safety
requirements and conform to safety standards set by the road
safety organizations or rate programs such as Euro NCAP or
National Highway Traffic Safety Administrations (NHTSA).
In terms of the crash tests, they are exceptionally costly and
complicated due to the need of appropriate facilities, qualified
staff, and data-acquisition system. Moreover, the proper
arrangement of measuring devices (e.g., accelerometers and
cameras used to record the crash event) or precise positioning
of the research centers has also added the complexity of such
crash tests. Thus it would be highly attractive if the overall
car performance can be predicted and assessed without
the need to execute numerous full-scale crash experiments,
which renders the proposition of amathematicalmodels with
accurate input-output behavior as the real tests to be of great
interest.

Recently we can distinguish two main approaches of
vehicle crash modeling: finite element method (FEM) sim-
ulations and lumped parameter modeling (LPM). FEM is

considered as the most thorough computational tool with
detailed insight into the vehicle crash modeling and thus
has been widely employed; refer to [1–4] and the references
therein. It offers high accuracy of results andmakes it possible
to describe large number of details such as connections and
interactions between particular bodies, their deformation
rate, or material properties. The major disadvantages of this
method include the high computational demand of powerful
hardware and the purchase of software used to perform the
numerical simulation. The second approach frequently used
in vehicle crash is an analytical method of formulating a
model called lumped parameter modeling (LPM). It consists
of formulating equations of motion of spring-damper-mass
systems and solving them so as to precisely determine the
model’s response. However, the drawback of this method
is that it can perform well only when used for a given
set of collisions. With respect to this shortcoming, several
methodologies such as artificial neural networks and wavelet
transforms are utilized tomake it possible to simulate various
crash scenarios; see [5].

On the other hand, for the modeling of complex systems,
themodel identification based on the data training or estima-
tion can be an alternative to the traditionalmodeling by using
physical laws [6, 7]. Up to now, the data-based modeling for
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Figure 1: Scheme of crash test.

Figure 2: Obstruction.

the vehicle crashworthiness has been extensively investigated.
It has been well proven that the applications of autoregres-
sive models like nonlinear autoregressive (NAR), nonlinear
autoregressive with exogenous input (NARX), or nonlinear
autoregressive moving average with exogenous input (NAR-
MAX) are capable of predicting the time-series datawith high
fidelity. Up to now, a wide range of areas in the applications
of autoregressive models have been well explored. In [8],
the ARMA model of edge-localized modes (ELM) time
series has been established, which can decompose the time
series into deterministic and noise components. A hybrid of
NARX and ARMAmodels was employed to predict the long-
term machine state based on vibration data in [9]. NARX
models have been successfully applied to black box modeling
of the gas turbine operating in isolated and nonisolated
modes in [10]. The prediction performance assessment of
recurrent NARX model was investigated in [11], in which
the effects of the changing network’s architecture on the
quality of predictions are verified. Apart from the technical
applications, the regressive models have also been widely
employed as an advantageous methodology in other areas of
research, such as stock market [12], cardiovascular diseases
prevention [13], and prediction of freshwater phytoplankton
dynamics [14].

A significant contribution to data-based approach in
modeling automobile crash was made in [15], where the
autoregressive moving average (ARMA) model was used to
estimate lumped parameters (i.e., stiffness, damping, and
masses) of analytical models (differential equations). Those
physical parameters are changeable in time, which thus
makes it possible to simulate the vehicle frontal and side
impacts with high level of accuracy. What is more, the
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Figure 3: Cameras layout.

neural networks have been successfully used to estimate
the parameters of vehicle crash models. Specifically, the
values of the spring stiffness and damping coefficients for the
LPM were obtained through the radial basis artificial neural
network (RBFNN) in [16]. Artificial neural networks (ANNs)
were also implemented in [17] to predict the crash severity
and occupants injury. Other up-to-date technologies cur-
rently utilized in vehicle crashworthiness modeling include
wavelets, fuzzy logic, and intelligent approach; refer to [18–
20].

Recently, the research scope of crashworthiness has been
focused on defining a dynamic vehicle crash with changing
parameters according to the changeable input such as initial
impact velocity [21, 22]. In particular, in [21], a nonlinear
occupant model is established and a scheduling variable is
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Figure 4: Car’s deformation.

Figure 5: Steps of the experiment recorded by the high-speed camera.
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Figure 6: Vehicle kinematics with V = 35 km/h.

defined to formulate the linear parameter-varying (LPV)
model. Inspired by thiswork, in this paper, we aim to establish
the LPV-ARMAX models for the vehicle crash, and the
scheduling parameter is selected as the initial impact velocity.
This LPVmodel consists of a set of ARMAXmodels in which
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Figure 7: Vehicle kinematics with V = 35.57 km/h.

the parameters are not constant but are functions of the
impact velocity that can be regarded as an input determining
the “operating condition” of the model [23]. So instead of
generating a large database of ARMAX models for every
possible impact velocity, we can calculate a single model that
is function of impact velocity, which is far more attractive.
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Figure 8: Vehicle kinematics with V = 24.63 km/h.
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Figure 9: Vehicle kinematics with V = 31.35 km/h.

The structure of this paper is organized as follows. The
detailed introduction about the full-scale vehicle-to-pole
collision is presented in Section 2. In Section 3, the notation
and main ideas of this approach are developed. Section 4
illustrates the application of LPV-ARMAX-based time series
analysis to the modeling of vehicle crash, and simulation
results are analyzed and compared. Finally, the conclusion is
given in Section 5.

2. Crash Test Description

In this section we present car-to-pole collisions with different
initial impact velocities so as to test if the model proposed is
capable of representing different crash scenarios.

The car tests were subjected to impact with a vertical
and rigid cylinder. During the tests, the acceleration was
measured in three directions, that is, longitudinal, lateral, and
vertical. The yaw rate from the car’s center of gravity was also
recorded.The acceleration field was 100 meters long with two
anchored parallel pipelines. The pipelines have a clearance
of 5mm to the front wheel tires. The force to accelerate the
test car was generated using a truck and a tackle. The release
mechanism was placed 2m before the end of the pipelines,
and the distance from there to the test item was 6.5m. The
car was steered using the pipelines that were bolted to the
concrete runaway. The experimental scheme is shown in
Figure 1.

2.1. Description of the Car and Pole. As illustrated in Figure 2,
the pole was constructed with two components: a baseplate
and a pipe.Thebaseplate had dimensions 740 × 410 × 25mm.
The pipe had a length of 1290mm and overall diameter equal
to 275mm.The pipe was filled with concrete andmounted on
a concrete foundation with five bolts. These bolts connected
the concrete foundation with the baseplate of the obstruction
which was fixed to the shovel of a bulldozer. The initial
velocities of the cars are 35 km/s, 35.57 km/h, 24.63 km/h, and
31.35 km/h.

2.2. Instrumentation. During the test, the acceleration at the
center of gravity in three dimensions (𝑥-longitudinal, 𝑦-
lateral, and 𝑧-vertical) was recorded. The car speed before
the collision was measured. The yaw rate was also measured
with a gyrometer. Using normal speed and high-speed video
cameras, the behavior of the safety barrier and the test car
during the collision was recorded; see Figure 3.

A 3-D accelerometer was mounted on a steel bracket
close to the car’s center of gravity, and it was fastened by
screws to the car’s chassis. Data from the sensor was fed to
an eight-channel data logger and subsequently sampled with
a frequency of 10 kHz. The memory was able to store 6.5 s of
data per channel. The velocity of the car was checked by an
inductive monitor. It was directed towards a perforated disc
mounted on a wheel on the right side of the test car. Figure 4
shows the car before, during, and after the collision.The steps
of the experiment recorded by the high-speed camera are
illustrated in Figure 5.

2.3. Analysis of Crash Pulse. All the tests are central impact;
thus, as already mentioned only the pulse recorded in the
longitudinal direction (𝑥-axis) is analyzed. By integrating
car’s acceleration

V (𝑡) = ∫
𝑡

𝑡0

𝑎 (𝜏) d𝜏,

𝑥 (𝑡) = ∫

𝑡

𝑡0

V (𝜏) d𝜏,
(1)

we can obtain plots of velocity V(𝑡) and crush (or dis-
placement) 𝑥(𝑡) for different initial impact velocities V; see
Figures 6, 7, 8, and 9. Take the vehicles kinematics with V =
35 km/h (Figure 6) as an example. At the time when the
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Figure 10: ARMAX simulation results for vehicle with V = 24.63 km/h.
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Figure 11: ARMAX simulation results for vehicle with V = 35.57 km/h.

relative approach velocity is zero, the maximum dynamic
crush occurs. The relative velocity in the rebound phase
then increases negatively up to the final separation (or
rebound) velocity, at which time a vehicle rebounds from an
obstacle. The contact duration of the two masses includes
both contact time in deformation and restitution phases.
When the relative acceleration becomes zero and relative
separation velocity reaches its maximum recoverable value,
we have the separation of the two masses.

3. Mathematical Modeling

There are two types of mathematical modelings of real
world systems that are commonly used [24]. The first is

mathematical approach, in which the dynamics of a system
is derived from the fundamental law of physics, for example,
Newton’s Laws or conservation principle. The secondary
approach is the system identification. It is a process to select
the model’s parameters so that the model’s behavior can fit
the experimental data. In this paper, we adopt the second
approach.

3.1. ARMAX Model Description. Analysis of the autoregres-
sive model with moving average exogenous input (ARMAX)
was done according to [24]. The ARMAX model can be
defined as

𝑦 (𝑡) + 𝑎
1
𝑦 (𝑡 − 1) + ⋅ ⋅ ⋅ + 𝑎

𝑛𝑎
𝑦 (𝑡 − 𝑛

𝑎
)
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Figure 12: ARMAX simulation results for vehicle with V = 31.35 km/h.

= 𝑏
1
𝑢 (𝑡 − 𝑛

𝑘
) + ⋅ ⋅ ⋅ + 𝑏

𝑛𝑏
𝑢 (𝑡 − 𝑛

𝑘
− 𝑛
𝑏
+ 1)

+ 𝑐
1
𝑒 (𝑡 − 1) + ⋅ ⋅ ⋅ + 𝑐

𝑛𝑐
𝑒 (𝑡 − 𝑛

𝑐
) + 𝑒 (𝑡) ,

(2)

where 𝑡 is the time, 𝑦(𝑡) is system’s output, and 𝑎
1
, . . . , 𝑎

𝑛𝑎
,

𝑏
1
, . . . , 𝑏

𝑛𝑏
, 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛𝑐
aremodel’s parameters. 𝑛

𝑎
, 𝑛
𝑏
, and 𝑛

𝑐

are, respectively, the number of model’s poles, model’s zeros
+ 1, and parameters in 𝑐 vector. 𝑛

𝑘
is the order of input delay.

𝑦(𝑡−1), . . . , 𝑦(𝑡−𝑛
𝑎
) are system’s outputs in previousmoments

and 𝑢(𝑡 − 1), . . . , 𝑢(𝑡 − 𝑛
𝑏
) are system’s inputs in previous

moments. 𝑒(𝑡 − 1), . . . , 𝑒(𝑡 − 𝑛
𝑐
) are white noise.

The ARMAX model can be simplified as

𝐴(𝑞

−1
) 𝑦 (𝑡) = 𝐵 (𝑞

−1
) 𝑢 (𝑡 − 𝑛

𝑘
) + 𝐶 (𝑞

−1
) 𝑒 (𝑡) , (3)

where

𝐴(𝑞

−1
) = 1 + 𝑎

1
𝑞

−1
+ 𝑎
2
𝑞

−2
+ ⋅ ⋅ ⋅ + 𝑎

𝑛𝑎
𝑞

−𝑛𝑎
,

𝐵 (𝑞

−1
) = 𝑏
1
+ 𝑏
2
𝑞

−1
+ ⋅ ⋅ ⋅ + 𝑏

𝑛𝑏
𝑞

−𝑛𝑏
,

𝐶 (𝑞

−1
) = 𝑐
1
+ 𝑐
2
𝑞

−1
+ ⋅ ⋅ ⋅ + 𝑐

𝑛𝑐
𝑞

−𝑛𝑐
.

(4)

3.2. LPV-ARMAX Model Establishment. As stated in
Section 1, the ARMAX models of vehicle crash in most
literature are assumed to be linear time invariant (LTI).
So for collisions under different initial conditions (e.g.,
initial impact velocities and vehicle masses), we have to
extract different ARMAX models accordingly, which suffer
from serious limitation especially when the number of
LTI-ARMAX models is huge. Thus it is quite attractive if we
can establish one LPV-ARMAXmodel whose parameters are
functions of initial condition variables and are applicable to
collision under a wide range of initial situations. Consider the
parameters in the LPV-ARMAX models of the vehicle crash
which are dependent on the initial impact velocity V. What

we are interested in is to find the dependence relationship and
predict parameters and then the output of the LPV-ARMAX
models for any initial impact velocity.

In the following, we will adopt a LPV-ARMAX model
which can be described as

𝐴(𝑞

−1
; V) 𝑦 (𝑡; V) = 𝐵 (𝑞−1; V) 𝑢 (𝑡 − 𝑛

𝑘
) + 𝐶 (𝑞

−1
; V) 𝑒 (𝑘) ,

(5)

where

𝐴(𝑞

−1
; V) = 1 + 𝑎

1
(V) 𝑞−1 + 𝑎

2
(V) 𝑞−2 + ⋅ ⋅ ⋅ + 𝑎

𝑛𝑎
(V) 𝑞−𝑛𝑎 ,

𝐵 (𝑞

−1
; V) = 𝑏

1
(V) + 𝑏

2
(V) 𝑞−1 + ⋅ ⋅ ⋅ + 𝑏

𝑛𝑏
(V) 𝑞−𝑛𝑏 ,

𝐶 (𝑞

−1
; V) = 𝑐

1
(V) + 𝑐

2
(V) 𝑞−1 + ⋅ ⋅ ⋅ + 𝑐

𝑛𝑐
(V) 𝑞−𝑛𝑐 .

(6)

Note that the parameters 𝑎
𝑖
(V), 𝑖 = 1, 2, . . . , 𝑛

𝑎
, 𝑏
𝑗
(V), 𝑗 =

1, 2, . . . , 𝑛
𝑏
and 𝑐
𝑗
(V), 𝑗 = 1, 2, . . . , 𝑛

𝑐
are continuous functions

of the impact velocity V. The specific dependence form can
be selected as polynomials, radical basis functions, splines, or
other linear combinations of given functions. We define this
model as LPV-ARMAX (𝑛

𝑎
, 𝑛
𝑏
, 𝑛
𝑐
) for simplicity.

The following instructions specify the steps of such
identification.

(1) Suppose that we have a set of groups of vehicle crash
data, all of them are in the type of pole collision but
under different impact velocities {V

1
, V
2
, . . . , V

𝑛
}. For

any V
𝑗
, 𝑗 = 1, 2, . . . , 𝑛, a set of time-series data is

collected. From this data set, an LTI-ARMAX model
with the same structure of the LPV-ARMAX model
is identified. Thus, 𝑛 distinct LTI-ARMAX models
are obtained, each for V

𝑗
, 𝑗 = 1, 2, . . . , 𝑛. And we

can get the 𝑗th ARMAX model parameters 𝑎
𝑖
(V
𝑗
),

𝑖 = 1, 2, . . . , 𝑛
𝑎
, 𝑏
𝑖
(V
𝑗
), 𝑖 = 1, 2, . . . , 𝑛

𝑏
and 𝑐
𝑖
(V
𝑗
),

𝑖 = 1, 2, . . . , 𝑛
𝑐
.
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Figure 13: LPV-ARMAX perdition for vehicle with V = 35 km/h.

(2) The 𝑛 different values of the same parameter (𝑎
𝑖
(V
𝑗
),

𝑏
𝑖
(V
𝑗
), 𝑐
𝑖
(V
𝑗
)) in the 𝑛 distinct LTI-ARMAX models

obtained in step (1) can then be used to identify
the dependence functions (𝑎

𝑖
(V), 𝑏
𝑖
(V), 𝑐
𝑖
(V
𝑗
)). These

dependence functions may be, for instance, poly-
nomials or splines, which can result in the LPV
parameters by interpolating the parameters of the 𝑛
LTI-ARMAX models.

From the resulting LPVmodel, the output𝑦(𝑡; V) then can
be obtained for any initial impact velocity V, even different
from those utilized in the identification process.

When the functions 𝑎
𝑖
(V), 𝑖 = 1, 2, . . . , 𝑛

𝑎
, 𝑏
𝑖
(V), 𝑖 =

1, 2, . . . , 𝑛
𝑏
and 𝑐
𝑖
(V), 𝑖 = 1, 2, . . . , 𝑛

𝑐
, are described using

generalized polynomials such as B splines, that is,

𝑎
𝑖
(V) =

𝑛𝑠

∑

𝑗=1

𝛼
𝑖,𝑗
𝜑
𝑗
(V) ,

𝑏
𝑖
(V) =

𝑛𝑠

∑

𝑗=1

𝛽
𝑖,𝑗
𝜑
𝑗
(V) ,

𝑐
𝑖
(V) =

𝑛𝑠

∑

𝑗=1

𝛾
𝑖,𝑗
𝜑
𝑗
(V) ,

(7)

where 𝜑
𝑗
(V), 𝑗 = 1, 2, . . . , 𝑛

𝑠
are linear independent continu-

ous functions, the parameter-dependent ARX can be written
as

𝑦 (𝑡; V) =
𝑛𝑎

∑

𝑖=1

𝑛𝑠

∑

𝑗=1

𝛼
𝑖,𝑗
𝜑
𝑗
(V) 𝑦 (𝑡 − 𝑖; V)

+

𝑛𝑏

∑

𝑖=0

𝑛𝑠

∑

𝑗=1

𝛽
𝑖,𝑗
𝜑
𝑗
(V) 𝑢 (𝑡 − 𝑖)

+

𝑛𝑐

∑

𝑖=0

𝑛𝑠

∑

𝑗=1

𝛾
𝑖,𝑗
𝜑
𝑗
(V) 𝑒 (𝑡 − 𝑖) ,

(8)

where 𝛼
𝑖,𝑗
, 𝑖 = 1, 2, . . . , 𝑛

𝑎
, 𝑗 = 1, 2, . . . , 𝑛

𝑠
, 𝛽
𝑖,𝑗
, 𝑖 = 1, 2, . . . , 𝑛

𝑏
,

𝑗 = 1, 2, . . . , 𝑛
𝑠
, and 𝛾

𝑖,𝑗
, 𝑖 = 1, 2, . . . , 𝑛

𝑐
, 𝑗 = 1, 2, . . . , 𝑛

𝑠
are the

parameters to be estimated.
It should be noted that the LPV-ARMAX model is linear

with respect to 𝛼
𝑖,𝑗
, 𝛽
𝑖,𝑗
, and 𝛾

𝑖,𝑗
. Assuming the error 𝑒(𝑡) to be

Gaussian, it is possible to estimate the parameters using the
techniques in [25].

Remark 1. It should be noted that the recorded acceleration
signal in real car crash test is actually time-series data.Thus in
the established LPV-ARMAXmodel (5), 𝐵(𝑞−1; V) = 0 for the
vehicle crash since there exists no input (as will be shown in
the simulation part), and the output𝑦(𝑡; V) of (5) corresponds
to the acceleration signal in the vehicle crash test.

Remark 2. In the previous literature, the most commonly
used method is to establish an ARMAX model based on
a group of vehicle crash data obtained under one specific
impact velocity, which may not be applicable to other sit-
uations with different impact velocities. Thus it is desirable
to know the models in the whole relevant volume of initial
velocity instead of one (or several) specific values. Moreover,
since the impact velocity can be arbitrarily valued in practice,
the corresponding localmodel can be obtained easily with aid
of the LPV-ARMAX model once we know the specific initial
velocity, which is the advantage of our approach.

In the next section, we will present the simulation of
vehicle crash to test the efficiency proposed in this paper.
In the simulation, the error noise is Gaussian, and the
lumped LTI-ARMAXmodels are identified via the MATLAB
Identification Toolbox.

4. Simulation Results

In this section, the parameters of the LPV-ARMAX are
estimated. We have four data sets corresponding to four
initial impact velocities at our disposal, of which three data
sets will be used to obtain the LPV-ARMAX model while
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Figure 14: Simulation error by LPV-ARMAX model for vehicle with V = 35 km/h.

the rest data set will be used for the purpose of verification.
If one data set under a specific initial impact velocity V =
V∗ is considered, the recorded acceleration signal can be
approximated with a time-invariant ARMAX model. The
derived LTI model can account well for the initial impact
velocity at V∗. However, the obtained results do not give any
information about initial impact velocity in any other section
different from V∗. Therefore, for the sake of prediction, the
use of this LTI model is inadequate.

With this in mind, in order to represent with a simplified
model of the vehicle crash that can be applicable to the colli-
sions with different initial impact velocity, the LPV-ARMAX
model should be well constructed. It is assumed that the time
series data of acceleration during the collision can be well
represented by a LPV-ARMAX (2, 0, 2) (note that for time
series data, 𝑛

𝑏
= 0) model whose parameters 𝑎

1
(V), 𝑎
2
(V),

𝑐
1
(V), and 𝑐

2
(V) are functions of the initial impact velocity

V. The functions relating the parameters to impact velocity V
are assumed to be cubic splines obtained by the interpolation
of the parameters of three LTI-ARMAX (2, 0, 2) models at
three impact velocities. In this simulation, the four data sets
selected to get the LPV-ARMAXmodel are those with impact
velocities V = {24.63 km/h, 31.35 km/h, 35.57 km/h}. The
obtained three LTI-ARMAX models and their simulation
results are illustrated in Table 1 and Figures 10, 11, and 12,
respectively.

From Table 1, we can get the resulting LPV-ARMAX
(2, 0, 2) model. Then for the vehicle crash with V = 35 km/h,
its LTI-ARMAX model can be obtained by interpolation as
shown below:

𝐴 (𝑞) = 1 − 1.9840𝑞

−1
+ 0.9879𝑞

−2
,

𝐶 (𝑞) = 1 + 1.1170𝑞

−1
+ 0.6581𝑞

−2
.

(9)

With (9), the prediction of acceleration under the other
impact velocity V = 35 km/h that is not used for identification
is conducted. Figure 13 shows the simulation of the identified
LPVmodel at impact velocity V = 35 km/h, together with the
integrated velocity and displacement. The acceleration data
series obtained in real test are also illustrated in Figure 13.

Table 1: Parameters of ARMAXmodels for different impact veloci-
ties.

Impact velocity 𝑣 Parameters of corresponding ARMAX models

𝑣 = 24.63 km/h 𝐴(𝑞) = 1 − 1.990𝑞

−1
+ 0.9956𝑞

−2

𝐶(𝑞) = 1 + 1.992𝑞

−1
+ 0.992𝑞

−2

𝑣 = 31.35 km/h 𝐴(𝑞) = 1 − 1.987𝑞

−1
+ 0.9871𝑞

−2

𝐶(𝑞) = 1 + 1.993𝑞

−1
+ 0.9938𝑞

−2

𝑣 = 35.57 km/h 𝐴(𝑞) = 1 − 1.983𝑞

−1
+ 0.9883𝑞

−2

𝐶(𝑞) = 1 + 0.9916𝑞

−1
+ 0.5794𝑞

−2

Figure 14 shows the error response between the estimation
and origin of the signal. It can be observed that the approx-
imation is quite good, and the errors coming from LPV-
ARMAX (2,0,2) are so small that they can be neglected.

The simulation results show that the established LPV-
ARMAX (2,0,2)model can not only reproduce the crash pulse
signals which were utilized for the identification, but also
predict the kinematic responses of crash pulses with new
impact velocity which were not presented in the creation
stage. Thus, it can be proved that the LPV-ARMAX model
allows us to obtain the accurate estimations of vehicle’s accel-
eration signal under different initial conditions and therefore
the integration of acceleration which closely resembles the
original ones.

5. Conclusion

In this paper, a new method to approximate the modeling of
the vehicle’s acceleration pulses under different impact veloci-
ties is investigated by using LPV approach.The LPV-ARMAX
model allowing to approximate the behavior of vehicle crash
with various initial conditions is investigated. Specifically, the
parameters of the LPV-ARMAX model are assumed to be
functions of the initial impact velocity which may produce
significant influence on the acceleration pulse during the
crash. By interpolating the LTI-ARMAX models obtained
from the training data sets, the overall LPV-ARMAX model
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can be achieved which can predict accurately the kinematic
responses of vehicle crashes with various impact velocities.
Simulation results illustrate that the LPV-ARMAXmodel can
exactly reproduce both the new vehicle crash scenarios and
those used for training. Future works may include taking the
masses of vehicles into account as well since the masses can
affect the acceleration pulses during the collision to some
extent. But this attempt may increase the complexity since
it will result in the coupling of the parameters in the LPV-
ARMAX identification process, and thus it remains further
investigation.
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