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We introduce a partition of the web pages particularly suited to the PageRank problems in which the web link graph has a nested
block structure. Based on the partition of the web pages, dangling nodes, common nodes, and general nodes, the hyperlink matrix
can be reordered to be a more simple block structure. Then based on the parallel computation method, we propose an algorithm
for the PageRank problems. In this algorithm, the dimension of the linear system becomes smaller, and the vector for general
nodes in each block can be calculated separately in every iteration. Numerical experiments show that this approach speeds up the
computation of PageRank.

1. Introduction

The rapid growth of the World Wide Web has created a need
for search tools. One of the best-known algorithms in web
search isGoogle’s PageRank algorithm [1]. Google’s PageRank
algorithm is based on a random surfer model [1] which can
be viewed as a stationary distribution of a Markov chain.
Simultaneously with the random surfer model, a different but
closely related approach, theHITS algorithm, was invented in
[2]. Another model SALSA [3] incorporated ideas from both
HITS and PageRank to create another ranking of webpages.

In this paper, we focus on Google’s PageRank algorithm.
Let us introduce some notations about Google’s PageRank
algorithm. We can model the web as a directed graph with
the web pages as the nodes and the hyperlinks as the directed
edges. In the graph, if there is a link from page 𝑃

𝑖
to page 𝑃

𝑗
,

then, for page 𝑃
𝑖
, it has an outlink to page 𝑃

𝑗
, and, for page 𝑃

𝑗
,

it has an inlink from page𝑃
𝑖
.Then we can define the elements

of a hyperlink matrix 𝐻 as follows.
If the web page 𝑃

𝑖
has outlinks 𝑄

𝑖
≥ 1, then, for each link

from page 𝑃
𝑖
to another page 𝑃

𝑗
, the element ℎ

𝑖,𝑗
of the matrix

𝐻 is 1/𝑄
𝑖
. If there is no link from page 𝑃

𝑖
to page 𝑃

𝑗
, then the

element ℎ
𝑖,𝑗
of𝐻 is 0. The scalar 𝑄

𝑖
is the number of outlinks

from the page𝑃
𝑖
.Thus, each nonzero rowof𝐻 sums to 1. If the

page 𝑃
𝑖
has no outlinks at all (such as a pdf, image, or audio

file), it is called a dangling node, and all elements in the 𝑖th
row of 𝐻 are set to 0.

Theproblem is that if at least one node has zero outdegree,
that is, no outlinks, then the Markov chain is absorbing, so
a modification to 𝐻 is needed. In order to resolve this, the
founders of Google, Brin and Page suggest replacing each
zero row (corresponding to a dangling node) of the sparse
hyperlink matrix with a dense nonnegative vector V𝑇 (V𝑇𝑒 =

1; 𝑒 is the column vector of all ones and V𝑇 also could be a
personalized vector, see [4, 5]) and create the new stochastic
matrix denoted by 𝑆, 𝑆 = 𝐻 + 𝑑V𝑇. In the vector 𝑑, the
element 𝑑

𝑖
= 1 if the 𝑖th row of 𝐻 corresponds to a

dangling node, and 0 otherwise. Another problem is that
there is nothing in our definition so far that guarantees the
convergence of the PageRank algorithm or the uniqueness
of the PageRank vector with the matrix 𝑆. In general, if the
matrix 𝑆 is irreducible, this problem can be settled. Thus,
Brin and Page added another dense perturbation matrix 𝑒V𝑇

that creates direct connections between each page to force
the matrix to be irreducible. Then, the stochastic, irreducible
matrix is called the Google matrix 𝐺 and given by

𝐺 = 𝛼𝑆 + (1 − 𝛼) 𝑒V𝑇 = 𝛼𝐻 + 𝛼𝑑V𝑇 + (1 − 𝛼) 𝑒V𝑇, (1)

where 0 < 𝛼 < 1 (a typical value for 𝛼 is between 0.85 and
0.95. It is shown in [6] that 𝛼 controls the convergence rate
of the PageRank algorithm). Mathematically, the PageRank
vector 𝜋 is the stationary distribution of the so-called Google
matrix 𝐺.
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Now,wehave gotmanymethods for solving the PageRank
vector 𝜋, such as the famous Power Method [1, 7, 8]. Due to
the sheer size of the web (over 3 billion pages), this compu-
tation can take several days. In [9], Arasu et al. used values
from the current iteration as they become available, rather
than using only values from the previous iteration. They also
suggested that exploiting the “bow-tie” structure of the web
[10] would be useful in computing PageRank. In [11], Kamvar
et al. presented a variety of extrapolation methods. In [12],
Avrachenkov et al. showed thatMonte Carlomethods already
provide good estimation of the PageRank for relatively
important pages after one iteration. Gleich et al. in [13]
presented an inner-outer iterative algorithm for accelerating
PageRank computations. To put it another way, for the
existence of the dangling nodes, Lee et al. [14] partitioned
the web into dangling and nondangling nodes and applied an
aggregation method to this partition.

Recently, the structure of the web link graph has been
noticed. Kamvar et al. in [4] brilliantly exploited the block
structure of the web for computing PageRank. They also
exploited the fact that pageswith lower page rank tend to con-
verge faster and propose adaptive methods in [15]. Based on
the characteristics of the web link graph, research on par-
allelization of PageRank can be found in [16–21]. In [21],
Manaskasemsak and Rungsawang discussed a parallelization
of the power method. In [17], Gleich et al. introduced a
method to compare the various linear system formulations in
terms of parallel runtime performance. Cevahir et al. in [16]
proposed the site-based partitioning and repartitioning tech-
niques for parallel PageRank computation. Some special
models for parallel PageRank were proposed in [18–20].

In our paper, we combine ideas from the existence of the
dangling nodes and the block structure of the web and exploit
a new structure for the hyperlink matrix 𝐻. Then some
parallel computation methods are applied to speed up the
computation of PageRank by using a partition of the nodes.
Firstly, we present that our target is to compute the PageRank
of the nondangling nodes in the linear system for the
Google problem [22] (Section 2). Secondly, according to the
partition of the web pages, we get a special structure of
the hyperlink matrix, and then we propose an algorithm
(Section 3). Finally, we make an analysis of our algorithms,
and some numerical results are given (Sections 4 and 5).

2. The Problem

Generally, the Google problem is to solve the eigenvector 𝜋

of the matrix 𝐺 in the following equation:

𝜋
𝑇

= 𝜋
𝑇
𝐺, 𝜋 ≥ 0,


𝜋
𝑇1

= 1. (2)

Here, we introduce some theorems to show that the Google
problem can turn out to be a linear system problem and only
need to compute the unnormalized PageRank subvector of
the nondangling nodes. In the following, thematrix 𝐼 denotes
the identity matrix.

Theorem1 (see [22, linear system forGoogle problem]). Sup-
pose that the matrix𝐻 is a hyperlink matrix. Solving the linear
system,

𝑥
𝑇
(𝐼 − 𝛼𝐻) = V𝑇, (3)

and letting 𝜋
𝑇

= 𝑥
𝑇
/‖𝑥‖
1
produce the PageRank vector.

Since the coefficient matrix (𝐼 − 𝛼𝐻) in (3) is an 𝑀-
matrix (Theorem 8.(4.2) in [23]) as well as nonsingular
and irreducible, thus, the solution of the linear system in
Theorem 1 is existent and unique.

The rows in the matrix 𝐻 corresponding to the dangling
nodes would be zero. It is natural as well as efficient to exclude
the dangling nodes from the PageRank computation. This
can be done by partitioning the web nodes into nondangling
nodes and dangling nodes. This is similar to the method of
“lumping” all the dangling nodes into a single node [24].
Supposing that the rows and columns of 𝐻 are permuted
corresponding to the partition, then the rows corresponding
to the dangling nodes are at the bottom of the matrix:

𝐻 =

𝑁𝐷 𝐷

𝑁𝐷

𝐷
[
�̂�
11

�̂�
12

0 0
] ,

(4)

where 𝑁𝐷 is the set of the nondangling nodes and 𝐷 is the
set of the dangling nodes.

Then, the coefficient matrix (𝐼 − 𝛼𝐻) in (3) becomes

(𝐼 − 𝛼𝐻) = [
𝐼 − 𝛼�̂�

11
−𝛼�̂�
12

0 𝐼
] , (5)

and the inverse of this matrix is

(𝐼 − 𝛼𝐻)
−1

= [
(𝐼 − 𝛼�̂�

11
)
−1

𝛼(𝐼 − 𝛼�̂�
11
)
−1

�̂�
12

0 𝐼
] . (6)

Therefore, the unnormalized PageRank vector 𝑥
𝑇

= V𝑇(𝐼 −

𝛼𝐻)
−1 in (4) can be written as

𝑥
𝑇

= (V̂𝑇
1
(𝐼 − 𝛼�̂�

11
)
−1

, 𝛼V̂𝑇
1
(𝐼 − 𝛼�̂�

11
)
−1

�̂�
12

+ V̂𝑇
2
)

= (𝑥
𝑇

1
, 𝑥
𝑇

2
) .

(7)

Then, Langville and Meyer [22] proposed two reordered
PageRank algorithms for computing the PageRank vector.
One is Algorithm 1, called reordered PageRank algorithm,
and the other is called reordered PageRank algorithm. How-
ever, unfortunately, the reordered PageRank algorithm is not
necessarily an improvement over Algorithm 1 in some cases.

In this reordered PageRank Algorithm 1, the only system
that must be solved is 𝑥

𝑇

1
(𝐼 − 𝛼�̂�

11
) = V̂𝑇

1
. The reordered

PageRank Algorithm 2 is based on a process of locating
zero rows which can be repeated recursively on smaller and
smaller submatrices of �̂�

11
, continuing until a submatrix

is created that has no zero rows. For interested readers,
the detail of the reordered PageRank algorithms can be
found in [22]. However, this structure of the web they
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(1) Partition the web nodes into dangling and nondangling nodes, so that the hyperlink
matrix 𝐻 has the structure of (4).

(2) Solve 𝑥
𝑇

1
from 𝑥

𝑇

1
(𝐼 − 𝛼�̂�

11
) = V̂𝑇
1
.

(3) Compute 𝑥
𝑇

2
= 𝛼𝑥
𝑇

1
�̂�
12

+ V̂𝑇
1
.

(4) 𝜋𝑇 = (𝑥
𝑇

1
, 𝑥
𝑇

2
)/


𝑥
𝑇

1
, 𝑥
𝑇

2

1
.

Algorithm 1: Reordered PageRank Algorithm [22].

(1) Partition the web nodes which form 𝑚 blocks: 𝑆 = (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑚
) into 𝑚 + 2

blocks: 𝑆 = (𝑆
2

1
, 𝑆
2

2
, . . . , 𝑆

2

𝑚
, 𝐶𝑁,𝐷), so the hyperlink matrix 𝐻 has the structure of (12).

(2) Partition the given vector V𝑇 = (V̂𝑇
1
, V̂𝑇
2
) and PageRank vector 𝑥𝑇 = (𝑥

𝑇

1
, 𝑥
𝑇

2
)

according to the size of the 𝑚 + 2 blocks:
V̂𝑇
1
= (𝑤
𝑇

1
, 𝑤
𝑇

2
),𝑤𝑇
1

= (V𝑇
1
, V𝑇
2
, . . . , V𝑇

𝑚
), 𝑤
𝑇

2
= (V𝑇
𝑚+1

), V̂𝑇
2
= (V𝑇
𝑚+2

);
𝑥
𝑇

1
= (𝑦
𝑇

1
, 𝑦
𝑇

2
),𝑦𝑇
1

= (𝑥
𝑇

1
, 𝑥
𝑇

2
, . . . , 𝑥

𝑇

𝑚
),𝑦𝑇
2

= (𝑥
𝑇

𝑚+1
), 𝑥𝑇
2
= (𝑥
𝑇

𝑚+2
).

(3) Compute the limiting vector of 𝑦𝑇
1
by iterations as follow:

(a) Compute (𝑟
𝑇

1
, 𝑟
𝑇

2
, . . . , 𝑟

𝑇

𝑚
) = 𝑦

(𝑘−1)𝑇

1
𝐵(𝐼 − 𝛼𝐹)

−1
𝐸 + 𝑤

𝑇

2
(𝐼 − 𝛼𝐹)

−1
𝐸 + 𝑤

𝑇

1
;

(b) Solve for 𝑦(𝑘)𝑇
1

= (𝑥
(𝑘)𝑇

1
, 𝑥
(𝑘)𝑇

2
, . . . , 𝑥

(𝑘)𝑇

𝑚
) in

𝑥
(𝑘)𝑇

𝑖
(𝐼 − 𝛼𝐻

𝑖𝑖
) = 𝑟
𝑇

𝑖
, 𝑖 = 1, 2, . . . , 𝑚.

(4) Compute
𝑦
𝑇

2
= (𝑤
𝑇

2
+ 𝑦
𝑇

1
𝛼𝐵) (𝐼 − 𝛼𝐹)

−1,
𝑥
𝑇

2
= 𝛼𝑥
𝑇

1
�̂�
12

+ V̂𝑇
2
= 𝛼 (𝑦

𝑇

1
, 𝑦
𝑇

2
) �̂�
12

+ V̂𝑇
2
.

(5) Normalize 𝜋
𝑇
= (𝑦
𝑇

1
, 𝑦
𝑇

2
, 𝑥
𝑇

2
)/


(𝑦
𝑇

1
, 𝑦
𝑇

2
, 𝑥
𝑇

2
)
1
.

Algorithm 2: An algorithm based on a separation of the common nodes.

exploit in reordered PageRankAlgorithm 2 is not practical, as
reordering thewebmatrix according to this structure requires
depth-first search, which is prohibitively costly on the web.
To put it another way, even though some hyperlink matrices
𝐻 can be suited to the reordered PageRank algorithm, the
structure may not exist for some hyperlink matrices. Thus
the reordered PageRank Algorithm 2 will have no advantage
over Algorithm 1 in this worst case. Similarly, we can find the
same conclusion in their experiments.Thus, we come back to
(4) and reorder the structure of the matrix �̂�

11
to speed up

the computation of PageRank vector. The objective function
becomes

𝑥
𝑇

1
(𝐼 − 𝛼�̂�

11
) = V̂𝑇
1
, (8)

where the coefficient matrix (𝐼 − 𝛼�̂�
11
) is the nontrivial

leading principal submatrix of (𝐼 − 𝛼𝐻) and it is nonsingular
(Theorem 6.(4.16) of [23]).

3. PageRank Algorithms Based on a
Separation of the Common Nodes

3.1. The Block Structure of the Web. It is noted in [4] that
when sorted by Uniform Resource Location (URL), the web
link graph has a nested block structure: the vast majority of
hyperlinks link pages on a host to other pages on the same
host. This property was demonstrated by examination on
realistic datasets. So in the following sections, we consider the
webs that have block structure. To simplify notation, without
loss of generality, we will assume that a web link graph has a

block structure of 𝑚 blocks: 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑚
. So the hyperlink

matrix 𝐻 is

𝐻 =

𝑆
1

𝑆
2

⋅ ⋅ ⋅ 𝑆
𝑚

𝑆
1

𝑆
2

...
𝑆
𝑚

[
[
[
[

[

𝐻
11

𝐻
12

⋅ ⋅ ⋅ 𝐻
1,𝑚

𝐻
21

𝐻
22

⋅ ⋅ ⋅ 𝐻
2,𝑚

...
...

...
...

𝐻
𝑚,1

𝐻
𝑚,2

⋅ ⋅ ⋅ 𝐻
𝑚,𝑚

]
]
]
]

]

. (9)

Then, we separate the dangling nodes from each of the blocks.
Thus, we get the new blocks 𝑆

1

𝑘
, 𝑘 ∈ (1, . . . , 𝑚), which are

the original blocks 𝑆
𝑘
with dangling nodes removed. The set

of nodes 𝑆 = (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑚
) is 𝑆 = (𝑁𝐷,𝐷), where 𝑁𝐷 =

(𝑆
1

1
, 𝑆
1

2
, . . . , 𝑆

1

𝑚
) and 𝐷 is the set of the dangling nodes. The

rows and columns of 𝐻 can be permuted, making the rows
corresponding to the dangling nodes at the bottom of the
matrix just like (4) in Section 2:

𝐻 =

𝑁𝐷 𝐷

𝑁𝐷

𝐷
[
�̂�
11

�̂�
12

0 0
]

=

𝑆
1

1
𝑆
1

2
⋅ ⋅ ⋅ 𝑆

1

𝑚
𝐷

𝑆
1

1

𝑆
1

2

...

𝑆
1

𝑚

𝐷

[
[
[
[
[
[
[
[
[

[

𝐻
11

𝐻
12

⋅ ⋅ ⋅ 𝐻
1,𝑚

𝐻
1,𝑚+1

𝐻
21

𝐻
22

⋅ ⋅ ⋅ 𝐻
2,𝑚

𝐻
2,𝑚+1

...
...

...
...

...
𝐻
𝑚,1

𝐻
𝑚,2

⋅ ⋅ ⋅ 𝐻
𝑚,𝑚

𝐻
𝑚,𝑚+1

0 0 0 0 0

]
]
]
]
]
]
]
]
]

]

.

(10)
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S3 S4

(a) The structure before the separation

CN

S1 S2 S3 S4

(b) The structure after the separation

Figure 1: A separation of the common nodes for a web link graph which has four blocks.

In the above equation, the submatrix �̂�
11
is

�̂�
11

=

[
[
[
[

[

𝐻
11

𝐻
12

⋅ ⋅ ⋅ 𝐻
1,𝑚

𝐻
21

𝐻
22

⋅ ⋅ ⋅ 𝐻
2,𝑚

...
...

...
...

𝐻
𝑚,1

𝐻
𝑚,2

⋅ ⋅ ⋅ 𝐻
𝑚,𝑚

]
]
]
]

]

. (11)

3.2. A Separation of the Common Nodes. To investigate the
detail of the web structure, we can see the experiments in [4].
They used LARGEWEB link graph [25] and considered the
version of LARGEWEBwith dangling nodes removed, which
contains roughly 70M nodes, with over 600M edges, and
requires 3.6GB of storage. They partitioned the links in the
graph into “intrahost” links, which means links from a page
to another page in the same host, and “interhost” links, which
means links from a page to a page in a different host.Through
counting the number of the two different links separately,
Table 2 in [4] shows that 93.6% of the links in the datasets are
intrahost links and 6.4% are interhost links, whichmeans that
largermajority of links are intrahost links and only aminority
of links are interhost links. They also found the same result
by partitioning the links according to different domains.This
result leads to a deeper study of the structure of the hyperlink
matrix𝐻.That is, if the pages are grouped by domain, host, or
others, the graph for the pageswill appear as a block structure.
Then in each subblock, aminority of nodes have links to other
blocks, and in this paper we call them common nodes. The
definition of common node is given as follows.

Definition 2 (common node). Assume that a web link graph
with dangling nodes removed has 𝑛 blocks 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑛
. If a

node in a block 𝑆
𝑖
(1 ≤ 𝑖 ≤ 𝑛) has at least one outlink to

another different block 𝑆
𝑗
(𝑗 ̸= 𝑖, 1 ≤ 𝑗 ≤ 𝑛) or inlink from

another different block 𝑆
𝑗
(𝑗 ̸= 𝑖, 1 ≤ 𝑗 ≤ 𝑛), we call it common

node.

If a node in a web link graph is not a dangling node or a
common node, then we call it general node. The nodes in a
web link graph are divided into three classes: dangling node,
common node, and general node. Specially, the common
nodes and general nodes belong to the nondangling nodes.

There is no dangling node in the blocks 𝑆
1

1
, 𝑆
1

2
, . . . , 𝑆

1

𝑚
,

so we consider separating all the common nodes from the
blocks 𝑆

1

1
, 𝑆
1

2
, . . . , 𝑆

1

𝑚
and form a new block denoted by 𝐶𝑁.

Hence, the set of nodes 𝑆 = (𝑆
1

1
, 𝑆
1

2
, . . . , 𝑆

1

𝑚
, 𝐷) is 𝑆 =

(𝑆
2

1
, 𝑆
2

2
, . . . , 𝑆

2

𝑚
, 𝐶𝑁,𝐷). The new block 𝑆

2

𝑘
(1 ≤ 𝑘 ≤ 𝑚) is the

block 𝑆
1

𝑘
with common nodes removed. Thus, any hyperlink

submatrix 𝐻
𝑖,𝑗

(𝑖 ̸= 𝑗) corresponding to two different blocks
𝑆
2

𝑖
and 𝑆
2

𝑗
becomes zeromatrix because there are no interlinks

between different blocks in 𝑆
2

1
, 𝑆
2

2
, . . . , 𝑆

2

𝑚
.

In Figure 1, a simple example is shown to illustrate
the change after a separation of the common nodes. In
Figure 1(a), there are four blocks 𝑆

1
, 𝑆
2
, 𝑆
3
, and 𝑆

4
in a web

link graph, and each of them has links to others. However,
in Figure 1(b), after separating the common nodes from the
four blocks and lumping the common nodes into a block
denoted by 𝐶𝑁, there are no links among the four new
blocks. The links exist only between the 𝐶𝑁 and the four
new blocks. Once the above is done, the hyperlink matrix
𝐻 corresponding to the partition of the web nodes, 𝑆 =

(𝑆
2

1
, 𝑆
2

2
, . . . , 𝑆

2

𝑚
, 𝐶𝑁,𝐷), has the following structure:

𝐻 =

𝑆
2

1
𝑆
2

2
⋅ ⋅ ⋅ 𝑆

2

𝑚
𝐶𝑁 𝐷

𝑆
2

1

𝑆
2

2

...
𝑆
2

𝑚

𝐶𝑁

𝐷

[
[
[
[
[
[
[
[
[
[
[

[

𝐻
11

0 ⋅ ⋅ ⋅ 0 𝐻
1,𝑚+1

𝐻
1,𝑚+2

0 𝐻
22

⋅ ⋅ ⋅ 0 𝐻
2,𝑚+1

𝐻
2,𝑚+2

...
... d

...
...

...
0 0 ⋅ ⋅ ⋅ 𝐻

𝑚,𝑚
𝐻
𝑚,𝑚+1

𝐻
𝑚,𝑚+2

𝐻
𝑚+1,1

𝐻
𝑚+1,2

⋅ ⋅ ⋅ 𝐻
𝑚+1,𝑚

𝐻
𝑚+1,𝑚+1

𝐻
𝑚+1,𝑚+2

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

.

(12)

Then the submatrix �̂�
11
, corresponding to the hyperlinks

among the nondangling nodes, turns out to be

�̂�
11

=

[
[
[
[
[
[

[

𝐻
11

0 ⋅ ⋅ ⋅ 0 𝐻
1,𝑚+1

0 𝐻
22

⋅ ⋅ ⋅ 0 𝐻
2,𝑚+1

...
... d

...
...

0 0 ⋅ ⋅ ⋅ 𝐻
𝑚,𝑚

𝐻
𝑚,𝑚+1

𝐻
𝑚+1,1

𝐻
𝑚+1,2

⋅ ⋅ ⋅ 𝐻
𝑚+1,𝑚

𝐻
𝑚+1,𝑚+1

]
]
]
]
]
]

]

. (13)

It is apparent that after the separation of the common nodes,
the structure of the above matrix �̂�

11
seems much simpler

than the former one in (11).
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3.3. A PageRank Algorithm. Notice that the matrix in (13)
has nonzero submatrices only in the diagonal, the last row,
and the last column. This special structure can reduce the
computation in every iteration. Let

𝐴 =

[
[
[
[

[

𝐻
11

0 ⋅ ⋅ ⋅ 0

0 𝐻
22

⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝐻

𝑚,𝑚

]
]
]
]

]

, 𝐵 =

[
[
[
[

[

𝐻
1,𝑚+1

𝐻
2,𝑚+1

...
𝐻
𝑚,𝑚+1

]
]
]
]

]

,

𝐸 = [𝐻𝑚+1,1 𝐻
𝑚+1,2

⋅ ⋅ ⋅ 𝐻
𝑚+1,𝑚] ,

𝐹 = [𝐻
𝑚+1,𝑚+1

] .

(14)

Then

�̂�
11

= [
𝐴 𝐵

𝐸 𝐹
] . (15)

The coefficient matrix (𝐼 − 𝛼�̂�
11
) has the following structure:

(𝐼 − 𝛼�̂�
11
) = [

𝐼 − 𝛼𝐴 −𝛼𝐵

−𝛼𝐸 𝐼 − 𝛼𝐹
] . (16)

Therefore, after Gaussian elimination, 𝑥𝑇
1
(𝐼 − 𝛼�̂�

11
) = V̂𝑇
1
can

be written as

𝑦
𝑇

1
(𝐼 − 𝛼𝐴) = 𝛼𝑦

𝑇

1
𝐵(𝐼 − 𝛼𝐹)

−1
𝐸 + 𝑤

𝑇

2
(𝐼 − 𝛼𝐹)

−1
𝐸 + 𝑤

𝑇

1
,

(17)

𝑦
𝑇

2
= (𝑤
𝑇

2
+ 𝑦
𝑇

1
𝛼𝐵) (𝐼 − 𝛼𝐹)

−1
, (18)

where 𝑥
𝑇

1
= (𝑦
𝑇

1
, 𝑦
𝑇

2
) and V̂𝑇

1
= (𝑤
𝑇

1
, 𝑤
𝑇

2
) are divided into

general and common sections. The only system that must be
solved is (17).

Notice that the matrix 𝐴 is a block diagonal matrix.
Therefore, the subvectors 𝑥

𝑇

𝑖
of 𝑦𝑇
1

= (𝑥
𝑇

1
, 𝑥
𝑇

2
, . . . , 𝑥

𝑇

3
) which

are partitioned according to the number and size of the
blocks can be calculated independently in each iteration.
For example, in 𝑘th iteration, calculate and divide (𝑤

𝑇

2
+

𝑦
(𝑘−1)𝑇

1
𝛼𝐵)(𝐼 − 𝛼𝐹)

−1
𝐸 + 𝑤

𝑇

1
into (𝑟

𝑇

1
, 𝑟
𝑇

2
, . . . , 𝑟

𝑇

𝑚
) according

to the number and size of the blocksl then, for vectors 𝑥𝑇
𝑖
, we

have the following function:

(𝑥
(𝑘)𝑇

1
, 𝑥
(𝑘)𝑇

2
, ⋅ ⋅ ⋅ , 𝑥

(𝑘)𝑇

3
)

×

[
[
[
[
[
[

[

𝐼 − 𝛼𝐻
11

0 ⋅ ⋅ ⋅ 0

0 𝐼 − 𝛼𝐻
22

⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝐼 − 𝛼𝐻

𝑚,𝑚

]
]
]
]
]
]

]

= (𝑟
𝑇

1
, 𝑟
𝑇

2
, . . . , 𝑟

𝑇

𝑚
) ,

(19)

or

𝑥
(𝑘)𝑇

𝑖
(𝐼 − 𝛼𝐻

𝑖𝑖
) = 𝑟
𝑇

𝑖
, 𝑖 = 1, 2, . . . , 𝑚. (20)

As a result, the PageRank system in (8) can be reduced
into the smaller linear system formulation in (17) inwhich the
subvectors can be calculated independently in each iteration
by (20). In summary, we now have an algorithm based on the
separation of the common nodes. Meanwhile, this algorithm
is an extension of the dangling node method in Section 2.
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Figure 2: One of the three web link graphs, where the proportion
between general nodes and common nodes is 7 : 3 in each subblock.

4. Analysis of Algorithm 2

As we know, some web link graphs appear to have a nested
block structure. Then according to the definition of common
node, it is not difficult to find the common nodes among the
different blocks. This can be done by a process of locating
nonzero entries on submatrices of𝐻

𝑖,𝑗
in (10) (𝑖 ̸= 𝑗, 1 ≤ 𝑖 ≤ 𝑚,

1 ≤ 𝑗 ≤ 𝑚). For example, if the (𝑘
1
, 𝑘
2
)th entry of 𝐻

𝑖,𝑗
is

nonzero, then the 𝑘
1
th nodes and the 𝑘

2
th nodes are common

nodes. This process can be repeated on different submatrices
of 𝐻
𝑖,𝑗

at the same time by using separate computers. At
the end, gather the common nodes together from different
computers and get rid of the repetitive nodes, and then we
get the last set of the common nodes. Since the dimension of
𝐻
𝑖,𝑗
is much smaller and we can use parallel searching, so the

step 1 in Algorithm 2 will not take much time for separating
the common nodes.

Note that there is no links among the new blocks
𝑆
2

1
, 𝑆
2

2
, . . . , 𝑆

2

𝑚
after the separation of the common nodes just

as the zero submatrices in thematrix𝐻 in (12). In effect, step 3
in Algorithm 2 reduces time consuming for large matrices by
turning a largematrix �̂�

11
intomany smaller submatrices𝐻

𝑖𝑖
.

It shows that vectors 𝑥
(𝑘)𝑇

𝑖
, 𝑖 = 1, . . . , 𝑚, can be computed

separately by 𝑥
(𝑘)𝑇

𝑖
(𝐼 − 𝛼𝐻

𝑖𝑖
) = 𝑟

𝑖
and the results are used

together to yield a new vector for the next iteration. The
parallel computation in this step can save much time.

Since 𝑥
𝑇

𝑖
are not required to be accurate in each iteration,

we can compute 𝑥
(𝑘)𝑇

𝑖
by 𝑥
(𝑘)𝑇

𝑖
= 𝑥
(𝑘−1)𝑇

𝑖
(𝛼𝐻
𝑖𝑖
) + 𝑟
𝑖
. More-

over, it can be solved by any appropriate direct or iterative
method. Meanwhile, in [22], they have found that accelera-
tionmethods [9, 11, 15, 26], such as extrapolation and precon-
ditioners, can be applied to the small 𝐻

𝑖,𝑖
system to achieve

even greater speedups.
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(a) The web link graph of the submatrix �̂�11 before the reordering
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(b) The web link graph of the submatrix �̂�11 after the reordering

Figure 3: A reordering of the submatrix �̂�
11
.

5. Numerical Experiments

5.1. Experiment Foundation. In this section, we give an
example to present our algorithms.

Example. We consider three experiments based on three
web link graphs: graph 1, graph 2, and graph 3. We assume
that each of the graphs contains 200 nodes and four blocks;
moreover, the size of the blocks is the same in each graph.
Based on our definition about web pages, there are three
classes of pages in a web: dangling nodes, common nodes,
and general nodes. In order to make comparisons among the
experiments, we suppose that the numbers of the dangling
nodes are equivalent in these three graphs. Then we set
different proportions of the general nodes and the common
nodes in these three graphs. Without loss of generality, we
assume that there are three kinds of proportions: they are 3 : 7
in graph 1, 5 : 5 in graph 2, and 7 : 3 in graph 3, which indicate
that the number of the common nodes relatively decreases
and the number of the general nodes relatively increases.
We also assume that, in each graph, the proportion between
the general nodes and the common nodes in each subblock
is similar to the proportion in the whole web link graph.
Meanwhile, in these three web link graphs, the choosing
of the common nodes and the links in and between the
subblocks is random.

For the dot plot graph of these three web link graphs, if
there exists a link from node 𝑖 to node 𝑗, then point (𝑖, 𝑗) is
colored; otherwise, point (𝑖, 𝑗) is white. We assure that these
three web link graphs satisfy three characters in [4].

(1) There is a definite block structure to the web.
(2) The individual blocks are much smaller than entire

web.
(3) There are clear nested blocks.

For example, Figure 2, it is the graph 3 which contains
200 pages and has a nested block structure of four blocks.The
proportion is 7 : 3 in the whole graph.

Then, in each experiment, we separate the nodes into
dangling nodes, commonnodes, and the rest (general nodes).
The result of this process is a decomposition of the𝐻matrix.
Figure 3 shows the change of the structure of �̂�

11
in (4)

after this process, which is based on the dataset of Figure 2.
Figure 3(a) is the web link graph of �̂�

11
before reordering,

and Figure 3(b) is the new web link graph of �̂�
11

after
reordering. This process amounts to a simple reordering of
the indices of the Markov chain. It shows that the character
of the new structure is better than the original one.

5.2. Experimental Results and Analysis. Based on the three
experiment datasets, we compare Algorithm 2 to the other
two algorithms: original PageRank and reordered PageRank.
We assume the scaling factor 𝛼 = 0.85 and the convergence
tolerance 𝜏 = 10

−10. The experimental results are shown in
Figure 4 and Table 1. Figures 4(a), 4(b), and 4(c) are the com-
parison among the three algorithms about the acceleration
of convergence in the three separate experiments. It shows
that Algorithm 2 possesses both good capability to search
PageRank vector and rigid convergence speed in comparison
with reordered PageRank. That is because the dimension
of the linear system for Algorithm 2 is smaller than the
dimension of the linear system for reordered PageRank.
The result in Table 1 implies that Algorithm 2 needs more
iterations than Powermethod.However, since the application
of parallel computation in Algorithm 2, Algorithm 2 can
largely accelerate the computation time of PageRank. For the
next work, we will try to experiment on real data.
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(a) Experiment 1 on dataset 1
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(c) Experiment 3 on dataset 3

Figure 4: Comparison among the three algorithms which are run on three datasets.

Table 1: Comparison of original PageRank, reordered PageRank and Algorithm 2.

Dataset 1 Dataset 2 Dataset 3

Reordered PageRank Iterations 81 80 72
Time (sec.) 0.0377 0.0366 0.0400

Original PageRank Iterations 20 25 31
Time (sec.) 0.0292 0.0270 0.0305

Algorithm 2 Iterations 21 31 42
Time (sec.) 0.0165 0.0145 0.0187

6. Conclusion

It has investigated that the hyperlink graphs of some web
pages have nested block structure which can be found
in [4]. Then we exploit a reordered block structure and
present an algorithm to compute PageRank in a fast manner.
Algorithm 2 has basically two stages. In Stage 1, the focus is
on the partition of nodes in a web. In Stage 2, the vector of
general nodes in each block for next iteration is computed

independently. Then we calculate the unnormalized PageR-
ank vectors for common nodes and dangling nodes directly.
At last, normalize the vector and give the PageRank. The
numerical experiments show that Algorithm 2 is guaranteed
to outperform the other two algorithms, as long as an
appropriate block structure of web exists. However, in real
data, the common nodes may increase as the number of the
blocks increases, and the dimension of the submatrix𝐷 could
be larger. Then it will take much time to calculate the value
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of (𝐼 − 𝛼𝐷)
−1. In this case, similar to Algorithm 2, we will

consider calculating the vector for common nodes first and
then calculating the vector for general nodes in each block
independently. We aslo need to experiment on real data and
make comparison with other more existing methods in the
future work.
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