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We prove an abstract result on random invariant sets of finite fractal dimension.Then this result is applied to a stochastic semilinear
degenerate parabolic equation and an upper bound is obtained for the random attractors of fractal dimension.

1. Introduction

The notion of random attractors is a generalization of the
classical concept of global attractors for deterministic dynam-
ical systems (see, e.g., [1–3]). Random attractors are compact
invariant random sets attracting all the orbits.The asymptotic
behavior of a random dynamical system (RDS) is captured
by random attractors, which were first introduced in [4].
The existence of random attractors associated with stochastic
partial differential equations has been extensively studied by
many authors [4–9].

As in the deterministic case, finite dimensionality is an
important property of random attractors which can be estab-
lished for several random dynamical systems. In [10], Crauel
and Flandoli developed a method to obtain finite Hausdorff
dimension of a random invariant set. However, their assump-
tions are very restrictive. They proposed certain bounds on
the derivative of the RDS as well as on the rate of approxima-
tion of the RDS by its derivative to hold uniformly in 𝜔 ∈ Ω

(Ω denotes certain probability space). This drawback was
overcome by using a “random squeezing property” in [11].
In [12], Debussche used the method involving the Lyapunov
exponents (see [3]) to obtain an upper bound on the Haus-
dorff dimension for a random invariant set, and this method
was developed in a recent paper [13] for bounding the fractal
dimension of random invariant sets. Motivated by [14], we
give a new criterion for the upper bound on fractal dimension
of random invariant sets. This result does not require 𝐶

1-
smoothness of the RDS. Therefore, it can be applied to
more stochastic models. However, as mentioned in [14], the
estimate based on our theorems usually turns out to be
conservative.

In the next section, we formulate and prove our main
abstract results. In Section 3, we apply our abstract results to
the random attractor for the RDS generated by a stochastic
semilinear degenerate parabolic equation and obtain an
upper bound of fractal dimension of the random attractor.
Throughout this paper, we denote by ‖ ⋅ ‖

𝑋
the norm of

Banach space 𝑋. The inner product and norm of 𝐿2(Ω) are
written as (⋅, ⋅) and ‖ ⋅ ‖, respectively. The letter 𝑐 denotes any
positive constant which may be different from line to line
even in the same line.

2. Preliminaries and Main Results

In this section, we give the main abstract results for the finite
fractal dimension of a random invariant set. For that matter,
we need some basic concepts.

Definition 1. Let𝑀 be a compact set in a metric space𝑋. The
fractal (box-counting) dimension dim

𝑓
𝑀 of𝑀 is defined by

dim
𝑓
𝑀 = lim sup

𝜀→0

ln 𝑛 (𝑀, 𝜀)

ln (1/𝜀)
, (1)

where 𝑛(𝑀, 𝜀) is the minimal number of closed balls of the
radius 𝜀 which cover the set𝑀.

For other alternative formulations of the definition of
the box-counting dimension, see Definition 3.1 in Falconer’s
book [15].

Definition 2. Let𝑋 be a complete metric space endowed with
the metric 𝑑 and let𝑀 be a bounded closed set in𝑋. Assume
that 󰜚 is a pseudometric defined on𝑀. Let 𝐵 ⊂ 𝑀 and 𝜀 > 0.
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(i) A subset U in 𝐵 is said to be (𝜀, 󰜚)-distinguishable if
󰜚(𝑥, 𝑥

󸀠
) > 𝜀 for any 𝑥, 𝑥

󸀠
∈ U, 𝑥 ̸= 𝑥

󸀠. We denote
by 𝑚

󰜚
(𝐵, 𝜀) the maximal cardinality of an (𝜀, 󰜚)-

distinguishable subset of 𝐵.

(ii) The pseudometric 󰜚 is said to be compact on𝑀 if and
only if𝑚

󰜚
(𝑀, 𝜀) is finite for every 𝜀 > 0.

(iii) For any 𝑟 > 0 we define a local (𝑟, 𝜀, 󰜚)-capacity of the
set𝑀 by the formula

C
󰜚
(𝑀; 𝑟, 𝜀) = sup {ln 𝑚

󰜚
(𝐵, 𝜀) : 𝐵 ⊂ 𝑀, diam 𝐵 ≤ 2𝑟} .

(2)

We next recall some notions related to RDS. The reader
is referred to [4–8, 16] for more details. Let (Ω,F,P) be a
probability space and let𝑋 be a Banach space.

Definition 3. (1) (Ω,F,P, (𝜃
𝑡
)
𝑡∈R) is called a metric dynam-

ical system (MDS) if 𝜃 : R × Ω → Ω is (B(R) × F,F)-
measurable, 𝜃

0
is the identity on Ω, 𝜃

𝑠+𝑡
= 𝜃

𝑠
∘ 𝜃

𝑡
for all 𝑠,

𝑡 ∈ R, and 𝜃
𝑡
P = P for all 𝑡 ∈ R.

(2) An RDS on 𝑋 over an MDS (Ω,F,P, (𝜃
𝑡
)
𝑡∈R) is a

mapping 𝜙 : R+
× Ω × 𝑋 → 𝑋, (𝑡, 𝜔, 𝑥) 󳨃→ 𝜙(𝑡, 𝜔, 𝑥) which

is (B(R+
) × F× B(𝑋),B(𝑋))-measurable and satisfies, for

P-a.s. 𝜔 ∈ Ω,

(a) 𝜙(0, 𝜔, ⋅) = id on𝑋,

(b) 𝜙(𝑡+ 𝑠, 𝜔, ⋅) = 𝜙(𝑡, 𝜃
𝑠
𝜔, ⋅) ∘𝜙(𝑠, 𝜔, ⋅) (cocycle property)

on𝑋 for all 𝑠, 𝑡 ∈ R+.

An RDS is said to be continuous on𝑋 if 𝜙(𝑡, 𝜔) : 𝑋 → 𝑋

is continuous for all 𝑡 ∈ R+ and P-a.s. 𝜔 ∈ Ω.

Let 𝜃 be a measure-preserving ergodic transformation on
(Ω,F,P) and let 𝑆(𝜔) be a family of maps from 𝑋 to 𝑋.
We assume that A(𝜔), 𝜔 ∈ Ω, is a compact measurable set
satisfying, for P-a.s. 𝜔 ∈ Ω,

𝑆 (𝜔)A (𝜔) = A (𝜃𝜔) . (3)

Our aim is to study the fractal dimension of the setsA(𝜔),
𝜔 ∈ Ω. We define a discrete RDS {𝑆

𝑛
, 𝑛 ∈ Z+

} by 𝑆
𝑛
(𝜔) :=

𝑆(𝜃
𝑛−1

𝜔)𝑆(𝜃
𝑛−2

𝜔) ⋅ ⋅ ⋅ 𝑆(𝜃𝜔)𝑆(𝜔). In the proof of the following
theorem we keep track of the “𝜀-approximate ] volume”:

𝑉] (𝑋, 𝜀) := 𝜀
]
𝑛 (𝑋, 𝜀) . (4)

Our main results read as follows.

Theorem4. Let𝑋 be a Banach space, and 𝑆(𝜔) satisfies, forP-
a.s. 𝜔 ∈ Ω, the following:

(i) 𝑆(𝜔) is Lipschitz on A(𝜔); that is, there exists 𝐿 > 0

independent of 𝜔 such that

󵄩
󵄩
󵄩
󵄩
𝑆 (𝜔) V

1
− 𝑆 (𝜔) V

2

󵄩
󵄩
󵄩
󵄩𝑋

≤ 𝐿
󵄩
󵄩
󵄩
󵄩
V
1
− V

2

󵄩
󵄩
󵄩
󵄩𝑋

, V
1
, V

2
∈ A (𝜔) ,

(5)

(ii) there exist compact seminorms 𝑛
1
(𝑥), 𝑛

2
(𝑥) (indepen-

dent of 𝜔) on𝑋 such that
󵄩
󵄩
󵄩
󵄩
𝑆 (𝜔) V

1
− 𝑆 (𝜔) V

2

󵄩
󵄩
󵄩
󵄩𝑋

≤ 𝜂
󵄩
󵄩
󵄩
󵄩
V
1
− V

2

󵄩
󵄩
󵄩
󵄩𝑋

+ 𝐾 [𝑛
1
(V

1
− V

2
) + 𝑛

2

× (𝑆 (𝜔) V
1
− 𝑆 (𝜔) V

2
)] ,

(6)

for any V
1
, V

2
∈ A(𝜔), where 0 ≤ 𝜂 < 1/2𝑒 and 𝐾 > 0 are

constants independent of 𝜔 (a seminorm 𝑛(𝑥) on 𝑋 is said to
be compact if and only if for any bounded set 𝐵 ⊂ 𝑋 there exists
a sequence {𝑥

𝑛
} ⊂ 𝐵 such that 𝑛(𝑥

𝑚
−𝑥

𝑛
) → 0 as𝑚, 𝑛 → ∞).

ThenA(𝜔) has finite fractal dimension in𝑋; that is, for P-a.s.
𝜔 ∈ Ω,

𝑑
𝑓
A (𝜔) ≤ ln 𝑚

0
(

8𝑒𝐾(1 + 𝐿
2
)

1/2

1 − 2𝑒𝜂

) , (7)

where𝑚
0
(𝑅) is the maximal number of pairs (𝑥

𝑖
, 𝑦

𝑖
) in𝑋 ×𝑋

possessing the properties
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝑋
+
󵄩
󵄩
󵄩
󵄩
𝑦
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝑋
≤ 𝑅

2
,

𝑛
1
(𝑥

𝑖
− 𝑥

𝑗
) + 𝑛

2
(𝑦

𝑖
− 𝑦

𝑗
) > 1, 𝑖 ̸= 𝑗.

(8)

Proof. We set 󰜚
𝜔
(𝑥, 𝑦) = 𝐾(𝑛

1
(𝑥 − 𝑦) + 𝑛

2
(𝑆(𝜔)𝑥 − 𝑆(𝜔)𝑦));

then, for every 𝜔 ∈ Ω, 󰜚
𝜔
is compact on A(𝜔) in the sense

of Definition 2. From [14], we see that the local (𝑟, 𝜀, 󰜚
𝜔
)-

capacity of the setA(𝜔) admits the estimate

C
󰜚
𝜔

(A (𝜔) ; 𝑟, 𝜀) ≤ ln 𝑚
0
(

2𝐾(1 + 𝐿
2
)

1/2

𝑟

𝜀

) ,

P-a.s. 𝜔,

(9)

where𝑚
0
(𝑅) is the maximal number of pairs (𝑥

𝑖
, 𝑦

𝑖
) in𝑋×𝑋

possessing the properties
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝑋
+
󵄩
󵄩
󵄩
󵄩
𝑦
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝑋
≤ 𝑅

2
,

𝑛
1
(𝑥

𝑖
− 𝑥

𝑗
) + 𝑛

2
(𝑦

𝑖
− 𝑦

𝑗
) > 1, 𝑖 ̸= 𝑗.

(10)

For any fixed 𝜀
0
> 0, we assume that {𝐵

𝑖
: 𝑖 = 1, . . . ,

𝑛(A(𝜔), 𝜀
0
)} is the minimal covering ofA(𝜔) by closed balls

of the radius 𝜀
0
. Set𝐹

𝑖
= 𝐵

𝑖
∩A(𝜔), 𝑖 = 1, . . . , 𝑛(A(𝜔), 𝜀

0
). Let

𝛿 = (1/4𝑒)−(𝜂/2) and let {𝑥𝑖
𝑗
; 𝑗 = 1, . . . , 𝑛

𝑖
} ⊂ 𝐹

𝑖
be amaximal

(𝛿𝜀
0
, 󰜚

𝜔
)-distinguishable subset of 𝐹

𝑖
. Since 󰜚

𝜔
is compact,

this finite set exists, and then we have

𝑛
𝑖
= 𝑚

󰜚
𝜔

(𝐹
𝑖
, 𝛿𝜀

0
) ≤ exp {𝐶

󰜚
𝜔

(A (𝜔) ; 𝜀
0
, 𝛿𝜀

0
)}

≤ 𝑚
0
(

2𝐾(1 + 𝐿
2
)

1/2

𝛿

) =: 𝑒
]
,

A (𝜔) ⊂

𝑛(A(𝜔),𝜀
0
)

⋃

𝑖=1

𝑛
𝑖

⋃

𝑗=1

𝐵
𝑖,𝑗
,

𝐵
𝑖,𝑗

= {V ∈ 𝐹
𝑖
: 󰜚

𝜔
(V, 𝑥𝑖

𝑗
) ≤ 𝛿𝜀

0
} .

(11)
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Therefore,

𝑆 (𝜔)A (𝜔) ⊂

𝑛(A(𝜔),𝜀
0
)

⋃

𝑖=1

𝑛
𝑖

⋃

𝑗=1

𝑆 (𝜔) 𝐵
𝑖,𝑗
. (12)

For any 𝑦
1
, 𝑦

2
∈ 𝐵

𝑖,𝑗
(⊂ A(𝜔)), we get from (6) that

𝑑 (𝑆 (𝜔) 𝑦
1
, 𝑆 (𝜔) 𝑦

2
) ≤ 𝜂𝑑 (𝑦

1
, 𝑦

2
) + 󰜚

𝜔
(𝑦

1
, 𝑥

𝑖

𝑗
) + 󰜚

𝜔
(𝑦

2
, 𝑥

𝑖

𝑗
)

≤ 2 (𝜂 + 𝛿) 𝜀
0
.

(13)

Thus diam 𝑆(𝜔)𝐵
𝑖,𝑗

≤ 2(𝜂 + 𝛿)𝜀
0
for any 𝑖, 𝑗. Therefore,

𝑛 (𝑆 (𝜔)A (𝜔) , 2 (𝜂 + 𝛿) 𝜀
0
) ≤ 𝑛

𝑖
𝑛 (A (𝜔) , 𝜀

0
)

≤ 𝑒
]
𝑛 (A (𝜔) , 𝜀

0
) .

(14)

For general 𝑛 ∈ N, replacing 󰜚
𝜔
, 𝑆(𝜔), and A(𝜔) by 󰜚

𝜃
𝑛
𝜔
,

𝑆(𝜃
𝑛
𝜔), and 𝑆

𝑛
(𝜔)A(𝜔), respectively, in the above procedure

and noting that 𝑆𝑛(𝜔)A(𝜔) = A(𝜃
𝑛
𝜔), we can get that

𝑆 (𝜃
𝑛
𝜔) 𝑆

𝑛
(𝜔)A (𝜔) ⊂

𝑛(A(𝜃
𝑛
𝜔),𝜀
0
)

⋃

𝑖=1

𝑛
󸀠

𝑖

⋃

𝑗=1

𝑆 (𝜃
𝑛
𝜔) 𝐵

󸀠

𝑖,𝑗
, (15)

where 𝑛󸀠
𝑖
≤ 𝑒

], and

𝑛 (𝑆 (𝜃
𝑛
𝜔) 𝑆

𝑛
(𝜔)A (𝜔) , 2 (𝜂 + 𝛿) 𝜀

0
) ≤ 𝑛

󸀠

𝑖
𝑛 (A (𝜃

𝑛
𝜔) , 𝜀

0
)

≤ 𝑒
]
𝑛 (A (𝜃

𝑛
𝜔) , 𝜀

0
) .

(16)

Thus,

𝑛 (𝑆
𝑛+1

(𝜔)A (𝜔) , 2 (𝜂 + 𝛿) 𝜀
0
) ≤ 𝑒

]
𝑛 (𝑆

𝑛
(𝜔)A (𝜔) , 𝜀

0
) .

(17)

Setting 𝑞 = 2(𝜂 + 𝛿), then by a standard induction procedure
we deduce that

𝑛 (𝑆
𝑛
(𝜔)A (𝜔) , 𝑞

𝑛
𝜀
0
) ≤ 𝑒

𝑛]
𝑛 (A (𝜔) , 𝜀

0
) . (18)

Multiplying (18) by 𝑞𝑛]𝜀]
0
we get

𝑉] (𝑆
𝑛
(𝜔)A (𝜔) , 𝑞

𝑛
𝜀
0
) ≤ 𝑞

𝑛]
𝑒
𝑛]
𝜀
]
0
𝑛 (A (𝜔) , 𝜀

0
)

= 𝜅
𝑛]
𝑉] (A (𝜔) , 𝜀

0
) ,

(19)

where 𝜅 = 𝑞𝑒 = 2(𝜂+𝛿)𝑒 < 1.Thenwe can get from the above
inequality that

𝑉] (A (𝜃
𝑛
𝜔) , 𝑞

𝑛
𝜀
0
) ≤ 𝜅

𝑛]
𝑉] (A (𝜔) , 𝜀

0
) . (20)

Therefore,

𝑉] (A (𝜔) , 𝑞
𝑛
𝜀
0
) ≤ 𝜅

𝑛]
𝑉] (A (𝜃

−𝑛
𝜔) , 𝜀

0
) . (21)

On one hand, for the above 𝑞, setting 𝛽 = ln 𝑞−1, then we have

− (𝛽 + 𝛿) ≤ ln 𝑞 ≤ − (𝛽 − 𝛿) , for any 𝛿 > 0. (22)

That is,

− (𝛽 + 𝛿) 𝑘 ≤ ln 𝑞
𝑘
≤ − (𝛽 − 𝛿) 𝑘,

for any 𝑘 ∈ N, any 𝛿 > 0.

(23)

This implies that

𝜀
0
𝑒
−(𝛽+𝛿)𝑘

≤ 𝑞
𝑘
𝜀
0
≤ 𝑒

−(𝛽−𝛿)𝑘
𝜀
0
,

for any 𝑘 ∈ N, any 𝛿 > 0.

(24)

On the other hand, for any𝑀 > 0, we consider the following
set:

Ω
𝑀

= {𝜔 ∈ Ω : 𝑉] (A (𝜔) , 𝜀
0
) ≤ 𝑀} . (25)

Then, Ω
𝑀
1

⊂ Ω
𝑀
2

for any𝑀
1
≤ 𝑀

2
and Ω = ⋃

𝑀>0
Ω

𝑀
. We

can choose𝑀
0
large enough such thatP(Ω

𝑀
) > 0 for all𝑀 ≥

𝑀
0
. It follows from the Poincaré recurrence theorem (see

[13]) that, for every element 𝜔 ∈ Ω
𝑀
(𝑀 ≥ 𝑀

0
), there exists

a sequence 𝑘
𝑗
= 𝑘

𝑗
(𝜔) → ∞ such that 𝜃

−𝑘
𝑗

𝜔 ∈ Ω
𝑀

(𝑀 ≥

𝑀
0
). Therefore, from (21), for all 𝜔 ∈ Ω

𝑀
(𝑀 ≥ 𝑀

0
),

𝑉] (A (𝜔) , 𝑞
𝑘
𝑗

𝜀
0
) ≤ 𝜅

𝑘
𝑗
]
𝑉] (A (𝜃

−𝑘
𝑗

𝜔) , 𝜀
0
) ≤ 𝑀𝜅

𝑘
𝑗
]
. (26)

From (24) we see that 𝑞
𝑘
𝑗
𝜀
0
satisfies the assumptions of

Lemma 2.2 in [13]. Then, (26) and the related result in [13]
yield that

dim
𝑓
A (𝜔) ≤ ], 𝜔 ∈ Ω

𝑀
(𝑀 ≥ 𝑀

0
) . (27)

Since 𝑃(Ω
𝑀
) → 1 as 𝑀 → ∞, this yields that the above

inequality holds for P-a.s. 𝜔 ∈ Ω. The proof is complete.

As in the deterministic case [14], the following result can
be easily deduced byTheorem 4.

Theorem 5. Let 𝑋 and 𝑌 be Banach spaces such that 𝑌 is
compactly embedded in𝑋. LetA(𝜔) be a compact measurable
set invariant under 𝑆(𝜔). Assume that, for P-a.s. 𝜔 ∈ Ω,

󵄩
󵄩
󵄩
󵄩
𝑆(𝜔)V

1
− 𝑆(𝜔)V

2

󵄩
󵄩
󵄩
󵄩𝑌

≤ 𝐿
󵄩
󵄩
󵄩
󵄩
V
1
− V

2

󵄩
󵄩
󵄩
󵄩𝑋

, V
1
, V

2
∈ A (𝜔) ,

(28)

where 𝐿 is a constant independent of 𝜔. Then A(𝜔) has finite
fractal dimension in 𝑋 and admits the estimate

dim
𝑓
A (𝜔) ≤ ln 𝑚

𝑌,𝑋
(8𝑒𝐿) , P-𝑎.𝑠. 𝜔, (29)

where 𝑚
𝑌,𝑋

(𝑅) is the maximal number of points 𝑥
𝑖
in the ball

of the radius 𝑅 in 𝑌 possessing the properties ‖𝑥
𝑖
− 𝑥

𝑗
‖
𝑋

> 1,
𝑖 ̸= 𝑗.

Remark 6. Recalling that we have defined 𝑛(𝑀, 𝜀) in
Definition 1, we call H

𝜀
(𝑀) := log

2
𝑛(𝑀, 𝜀) the Kolmogorov

𝜀-entropy of 𝑀. Then the number 𝑚
𝑌,𝑋

(𝑅) can be bounded
by the Kolmogorov entropy. To show this we assume that 𝑖 is
the compact embedding of𝑌 into𝑋 inTheorem 5 and denote
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by 𝐵
𝑌
(𝑅) the ball of the radius 𝑅 in 𝑌. By the definition of

𝑚
𝑌,𝑋

(𝑅), one can easily show that

𝑚
𝑌,𝑋

(𝑅) ≤ 𝑛 (𝑖𝐵
𝑌
(𝑅) ,

1

2

) . (30)

That is,

𝑚
𝑌,𝑋

(𝑅) ≤ 2
H
1/2

(𝑖𝐵
𝑌
(𝑅))

= 2
H
1/2

(𝑅𝑖𝐵
𝑌
)
= 2

H
1/2R(𝑖𝐵𝑌)

, (31)

where 𝐵
𝑌

= 𝐵
𝑌
(1). Moreover, the Kolmogorov entropy is

closely related to the entropy numbers 𝑒
𝑘
(𝑖), 𝑘 ∈ N (see

definition in [17]). Thus, one can estimate 𝑚
𝑌,𝑋

(𝑅) by using
the entropy numbers, and here we omit the details. We refer
the readers to [17] formore details about the entropy numbers
𝑒
𝑘
(𝑖).

In the concrete application of Theorems 4 and 5, one can
define

𝑆 (𝜔) = 𝜙 (𝑇
∗
, 𝜔) for some 𝑇

∗
> 0, (32)

where𝑇∗ is independent of𝜔 and 𝜙(𝑡, 𝜔) is an RDS on𝑋 over
an MDS (Ω,F,P, (𝜃

𝑡
)
𝑡∈R). Then from the cocycle property

we have
𝑆
𝑛
(𝜔) := 𝜙 (𝑛𝑇

∗
, 𝜔)

= 𝜙 (𝑇
∗
, 𝜃

(𝑛−1)𝑇
∗𝜔) ∘ 𝜙 (𝑇

∗
, 𝜃

(𝑛−2)𝑇
∗𝜔) ∘ ⋅ ⋅ ⋅ ∘ 𝜙 (𝑇

∗
, 𝜔)

= 𝑆 (𝜃
(𝑛−1)𝑇

∗𝜔) ∘ 𝑆 (𝜃
(𝑛−2)𝑇

∗𝜔) ∘ ⋅ ⋅ ⋅ ∘ 𝑆 (𝜔)

= 𝑆 (Θ
𝑛−1

𝜔) ∘ 𝑆 (Θ
𝑛−2

𝜔) ∘ ⋅ ⋅ ⋅ ∘ 𝑆 (𝜔) .

(33)

This implies that {𝑆𝑛(𝜔)}
𝑛∈N is a discrete RDS over the MDS

(Ω,F,P, (Θ
𝑛
)
𝑛∈Z) on𝑋, where

Θ
𝑛
(𝜔) = 𝜃

𝑛𝑇
∗ (𝜔) . (34)

3. Applications

Our abstract results can be applied to many stochastic mod-
els. In this section, we consider the following stochastic semi-
linear degenerate parabolic equation with variable, nonnega-
tive coefficients defined on an arbitrary domain (bounded or
unbounded) 𝐷 ⊂ R𝑁 with 𝑁 ≥ 2 (we refer the reader to [9]
for more details):

𝑑𝑢 + [− div (𝜎 (𝑥) ∇𝑢) + 𝜆𝑢 + 𝑓 (𝑢)] 𝑑𝑡 =

𝑚

∑

𝑗=1

ℎ
𝑗
𝑑𝑤

𝑗

in 𝐷 ×R
+
;

𝑢 (𝑥, 𝑡) = 0 on 𝜕𝐷 ×R
+
;

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , in 𝐷,

(35)

where 𝜆 > 0 and the nonlinear term 𝑓 ∈ 𝐶
1
(R,R) satisfies

the following assumptions:

𝑓 (0) = 0, 𝑓
󸀠
(𝑠) ≥ −𝑙, ∀𝑠 ∈ R, (36)

with positive constant 𝑙.

(1) The case when𝐷 is bounded is as follows:
𝛼
1
|𝑠|

𝑝
− 𝛽

1
≤ 𝑓 (𝑠) 𝑠 ≤ 𝛼

2
|𝑠|

𝑝
− 𝛽

2
, ∀𝑠 ∈ R, (37)

with positive constants 𝛼
1
, 𝛼

2
, 𝛽

1
, and 𝛽

2
.

(2) The case when𝐷 is unbounded is as follows:
𝑓 (𝑥, 𝑠) 𝑠 ≥ 𝛼

1|
𝑠|
𝑝
− 𝑘

1
(𝑥) ,

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥, 𝑠)

󵄨
󵄨
󵄨
󵄨
≤ 𝛼

2|
𝑠|
𝑝−1

+ 𝑘
2
(𝑥) ,

(38)

with positive constants 𝛼
1
and 𝛼

2
, and 𝑘

1
∈ 𝐿

1
(𝐷) ∩ 𝐿

∞
(𝐷),

and 𝑘
2
∈ 𝐿

2
(𝐷) ∩ 𝐿

𝑞
(𝐷), where (1/𝑝) + (1/𝑞) = 1.

The degeneracy of problem (35) is considered in the sense
that the measurable, nonnegative diffusion coefficient 𝜎(𝑥) is
allowed to have at most a finite number of essential zeros. We
assume that the function 𝜎 : 𝐷 → R+

∪ {0} satisfies the
following assumptions:

(H
𝛼
) 𝜎 ∈ 𝐿

1

loc(𝐷) and, for some 𝛼 ∈ (0, 2),
lim inf

𝑥→𝑧
|𝑥 − 𝑧|

−𝛼
𝜎(𝑥) > 0 for every 𝑧 ∈ 𝐷, when

the domain𝐷 is bounded;
(H∞

𝛼,𝛽
) 𝜎 satisfies condition H

𝛼
and

lim inf
|𝑥|→∞

|𝑥|
−𝛽
𝜎(𝑥) > 0 for some 𝛽 > 2, when the

domain𝐷 is unbounded.
We use the natural energy spaceD1,2

0
(𝐷, 𝜎) defined as the

closure of 𝐶∞

0
with respect to the norm:

‖𝑢‖D1,2
0
(𝐷,𝜎)

:= (∫

𝐷

𝜎 (𝑥) |∇𝑢|
2
𝑑𝑥)

1/2

. (39)

The space D1,2

0
(𝐷, 𝜎) is a Hilbert space with respect to the

scalar product:

(𝑢, V)
𝜎
:= ∫

𝐷

𝜎 (𝑥) ∇𝑢∇V𝑑𝑥. (40)

Moreover,D1,2

0
(𝐷, 𝜎) 󳨅→ 𝐿

2
(𝐷) compactly for both bounded

(when assumption H
𝛼
holds true) and unbounded (when

assumptionH∞

𝛼,𝛽
holds true) domain𝐷.

We consider the following parameterized evolution equa-
tion:

𝜕V

𝜕𝑡

+ 𝐴V + 𝜆V + 𝑓 (V + 𝑧 (𝜃
𝑡
𝜔)) = −𝐴𝑧 (𝜃

𝑡
𝜔) , (41)

where V(𝑡) = 𝑢(𝑡) − 𝑧(𝜃
𝑡
𝜔) and 𝑢(𝑡) is a solution of (35). Also

𝐴V := − div(𝜎(𝑥)∇V) and 𝑧 is an Ornstein-Uhlenbeck pro-
cess.

We denote by 𝜙(𝑡, 𝜔, 𝑢
0
) = 𝑢(𝑡, 𝜔, 𝑢

0
) the RDS generated

by (35) andA(𝜔) the random attractor in 𝐿
2
(𝐷) for the RDS

𝜙. We now verify the compact Lipschitz condition (28) as
follows.

Lemma 7. Under the assumptions (36), (37), and H
𝛼
for

bounded domain ((36), (38), and H∞

𝛼,𝛽
hold for unbounded

domain, resp.), one has that, for any 𝑡 ≥ 1 and P-a.s. 𝜔 ∈ Ω,
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡, 𝜔, 𝑢

0,1
) − 𝜙 (𝑡, 𝜔, 𝑢

0,2
)
󵄩
󵄩
󵄩
󵄩D1,2
0
(𝐷,𝜎)

≤ 𝑐𝑒
𝑐𝑡 󵄩
󵄩
󵄩
󵄩
𝑢
0,1

− 𝑢
0,2

󵄩
󵄩
󵄩
󵄩
,

∀𝑢
0,1
, 𝑢

0,2
∈ 𝐿

2
(𝐷) ,

(42)
where 𝑐 is independent of 𝜔.
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Proof. Setting V
0,1

= 𝑢
0,1

− 𝑧(𝜔) and V
0,2

= 𝑢
0,2

− 𝑧(𝜔), we
assume that V

1
(𝑡) and V

2
(𝑡) are two solutions of (41) with the

initial functions V
0,1

and V
0,2
, respectively. We consider the

difference 𝑤(𝑡) = V
1
(𝑡) − V

2
(𝑡), and then 𝑤(𝑡) satisfies

𝑤
𝑡
(𝑡) + 𝐴𝑤 (𝑡) + 𝜆𝑤 (𝑡) + 𝑙 (𝑡, 𝜔)𝑤 (𝑡) = 0, (43)

where 𝑙(𝑡, 𝜔) = ∫

1

0
𝑓
󸀠
[𝑠(V

1
(𝑡, 𝜔) + 𝑧(𝜃

𝑡
𝜔)) + (1 − 𝑠)(V

2
(𝑡, 𝜔) +

𝑧(𝜃
𝑡
𝜔))]𝑑𝑠.
We first take the inner product of (43) with𝑤(𝑡) in 𝐿

2
(𝐷)

to get
1

2

𝑑

𝑑𝑡

‖𝑤‖
2
+ ‖𝑤‖

2

D1,2
0
(𝐷,𝜎)

+ 𝜆‖𝑤‖
2
+ (𝑙 (𝑡, 𝜔)𝑤, 𝑤) = 0. (44)

Also 𝑓
󸀠
(𝑢) ≥ −𝑙 implies that 𝑙(𝑡, 𝜔) ≥ −𝑙, and we can get from

the above equation that
𝑑

𝑑𝑡

‖𝑤‖
2
+ 2‖𝑤‖

2

D1,2
0
(𝐷,𝜎)

+ 2𝜆‖𝑤‖
2
≤ 𝑐‖𝑤‖

2
. (45)

It is easy to deduce from (45) that

‖𝑤 (𝑡)‖
2
≤ 𝑒

𝑐𝑡
‖𝑤 (0)‖

2
, 𝑡 ≥ 0. (46)

For any 𝑡 ≥ 0, we integrate (45) into (𝑡, 𝑡 + 1) to get

∫

𝑡+1

𝑡

‖𝑤 (𝑠)‖
2

D1,2
0
(𝐷,𝜎)

𝑑𝑠 ≤ 𝑐‖𝑤 (𝑡)‖
2
+ 𝑐∫

𝑡+1

𝑡

‖𝑤 (𝑠)‖
2
𝑑𝑠. (47)

Putting (46) into the above inequality we obtain that

∫

𝑡+1

𝑡

‖𝑤 (𝑠)‖
2

D1,2
0
(𝐷,𝜎)

𝑑𝑠 ≤ 𝑐𝑒
𝑐𝑡
‖𝑤 (0)‖

2
. (48)

Next, we multiply (43) by 𝐴𝑤, and we have
1

2

𝑑

𝑑𝑡

‖𝑤‖
2

D1,2
0
(𝐷,𝜎)

+ ‖𝐴𝑤‖
2
+ 𝜆‖𝑤‖

2

D1,2
0
(𝐷,𝜎)

+ (𝑙 (𝑡, 𝜔)𝑤, 𝐴𝑤) = 0.

(49)

This implies that
𝑑

𝑑𝑡

‖𝑤 (𝑡)‖
2

D1,2
0
(𝐷,𝜎)

≤ 𝑐‖𝑤 (𝑡)‖
2

D1,2
0
(𝐷,𝜎)

. (50)

Applying the uniform Gronwall lemma (noting that the uni-
form Gronwall inequality also holds true when the right-
hand side of (48) is dependent on 𝑡!), it yields that

‖𝑤 (𝑡)‖
2

D1,2
0
(𝐷,𝜎)

≤ 𝑐𝑒
𝑐𝑡
‖𝑤 (0)‖

2
. (51)

Finally, using the relationship 𝑢(𝑡, 𝜔, 𝑢
0
) = V(𝑡, 𝜔, V

0
) +

𝑧(𝜃
𝑡
𝜔), one can easily deduce the result. This completes the

proof.

Choosing 𝑡 = 1 in Lemma 7 and setting 𝑆(𝜔) = 𝜙(1, 𝜔),
we see that 𝑆(𝜔) satisfies the assumptions in Theorem 5 with
𝑋 = 𝐿

2
(𝐷) and 𝑌 = D1,2

0
(𝐷, 𝜎). Therefore, we have the

following.

Theorem 8. Let the assumptions of Lemma 7 hold. Then the
random attractorA(𝜔) for the RDS 𝜙 has finite fractal dimen-
sion in 𝐿

2
(𝐷); that is, for P-a.s. 𝜔 ∈ Ω,

dim
𝑓
A (𝜔) ≤ 𝑐, (52)

where 𝑐 is a constant independent of 𝜔.
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