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The Biconjugate 𝐴-Orthogonal Residual (BiCOR) method carried out in finite precision arithmetic by means of the biconjugate
𝐴-orthonormalization procedure may possibly tend to suffer from two sources of numerical instability, known as two kinds of
breakdowns, similarly to those of the Biconjugate Gradient (BCG)method.This paper naturally exploits the composite step strategy
employed in the development of the composite step BCG (CSBCG)method into the BiCORmethod to cure one of the breakdowns
called as pivot breakdown. Analogously to the CSBCGmethod, the resulting interesting variant, with only a minor modification to
the usual implementation of the BiCOR method, is able to avoid near pivot breakdowns and compute all the well-defined BiCOR
iterates stably on the assumption that the underlying biconjugate 𝐴-orthonormalization procedure does not break down. Another
benefit acquired is that it seems to be a viable algorithm providing some further practically desired smoothing of the convergence
history of the norm of the residuals, which is justified by numerical experiments. In addition, the exhibited method inherits the
promising advantages of the empirically observed stability and fast convergence rate of the BiCOR method over the BCG method
so that it outperforms the CSBCG method to some extent.

1. Introduction

The computational cost of many simulations with integral
equations or partial differential equations that model the
process is dominated by the solution of systems of linear
equations of the form 𝐴𝑥 = 𝑏. The field of iterative
methods for solving linear systems has been observed as an
explosion of activity spurred by demand due to extraordinary
technological advances in engineering and sciences in the
past half century [1]. Krylov subspace methods belong to one
of the most widespread and extensively accepted techniques
for iterative solution of today’s large-scale linear systems [2].
With respect to “the greatest influence on the development
and practice of science and engineering in the 20th century”
as written by Dongarra and Sullivan [3], Krylov subspace

methods are considered as one of the “Top Ten Algorithms
of the Century.”

Many advances in the development of Krylov subspace
methods have been inspired and made by the study of even
more effective approaches to linear systems. Variousmethods
differ in the way they extract information from Krylov
spaces. A basis for the underlying Krylov subspace to form
iterative recurrences involved is usually constructed based on
the state-of-the-art Arnoldi orthogonalization procedure or
Lanczos biorthogonalization procedure; see recent excellent
and thorough review articles by Simoncini and Szyld [2]
and by Philippe and Reichel [4] or monographs such as
those of Greenbaum [5] and Saad [6]. A novel Lanczos-type
biconjugate 𝐴-orthonormalization procedure has recently
been established to give birth to a new family of efficient
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short-recurrence methods for large real nonsymmetric and
complex non-Hermitian systems of linear equations, named
as the Lanczos biconjugate 𝐴-orthonormalization methods
[7].

As observed from numerous numerical experiments car-
ried out with the Lanczos biconjugate 𝐴-orthonormalization
methods, it has been numerically demonstrated that this
family of solvers shows competitive convergence properties,
is cheap in memory as it is derived from short-term vector
recurrences, is parameter-free, and does not require a sym-
metric preconditioner like other methods, if 𝐴 is symmetric
indefinite [8–10]. The efficiency of the BiCOR method is
highlighted by the performance profiles on a set of 14 sparse
matrix problems of size up to 1.5M unknowns shown in [10].

On the other hand, this family of solvers is often faced
with apparently irregular convergence behaviors appearing
as “spikes” in the convergence history of the norm of
the residuals, possibly leading to substantial build-up of
rounding errors andworse approximate solutions, or possibly
even overflow [7, 9]. Therefore, it is quite necessary to
tackle their irregular convergence properties to obtain more
stabilized variants so as to improve the accuracy of the desired
numerical physical solutions. It is emphasized that our main
attention in this paper is focused on the straightforward nat-
ural enhancement of the Biconjugate𝐴-Orthogonal Residual
(BiCOR) method, which is the basic underlying variant of
the Lanczos biconjugate𝐴-Orthonormalizationmethods [7].
The improvement of the BiCOR method will simultaneously
result in analogous improvements for the other two evolving
variants known as the Conjugate 𝐴-orthogonal Residual
Squared (CORS) method and the Biconjugate 𝐴-Orthogonal
Residual Stabilized (BiCORSTAB) method.

By comparison of the biconjugate 𝐴-orthonormalization
procedure [7] and the Lanczos biorthogonalization proce-
dure [6], respectively, for the BiCOR method [7] and the
Biconjugate Gradient (BCG) method [11] as well as their
corresponding implementation algorithms, it is obviously
observed that when carried out in finite precision arithmetic,
the BiCOR method does tend to suffer from two possible
sources of numerical instability, known as two kinds of break-
downs, exactly similarly to those of the BCGmethod.We still
call such two kinds of breakdowns as Lanczos breakdown and
pivot breakdown, which will be analyzed and discussed in
the following sections. As far as reported, a large number of
strategies designed to handle such two kinds of breakdowns
have been proposed in the literature [12–16], including
composite step techniques [11, 17–21] for pivot breakdown
and look-ahead techniques [22–30] for Lanczos breakdown
or both types. For comprehensive reviews and discussions
about the two kinds of breakdownsmentioned above, refer to
[2, 6, 16] and the references therein. As shown and analyzed
detailedly by Bank and Chan [18, 19], the 2 × 2 composite
step strategy employed in the development of the composite
step biconjugate gradient method (CSBCG) can eliminate
(near) pivot breakdowns of the BCG method caused by
(near) singularity of principal submatrices of the tridiagonal
matrix generated by the underlying Lanczos biorthogonal-
ization procedure, assuming that Lanczos breakdowns do
not occur. Furthermore, besides simplifying implementations

a great deal in comparison with those existing look-ahead
techniques, the composite step strategy used there is able
to provide some smoothing of the convergence history of
the norm of the residuals without involving any arbitrary
machine-dependent or user-supplied tolerances.

This paper revisits the composite step strategy taken for
the CSBCG method [18, 19] to naturally stabilize the con-
vergence performance of the BiCOR method from the pivot-
breakdown treatment point of view. Therefore, suppose that
the underlying biconjugate𝐴-orthonormalization procedure
does not break down; that is to assume that there is no
occurrence of the so-called Lanczos breakdown encountered
during algorithm implementations throughout.The resulting
interesting algorithm, given a name as the composite step
BiCOR (CSBiCOR) method, could be also considered as a
relatively simple modification of the regular BiCOR method.

The main objectives are twofold. First, the CSBiCOR
method is devised to be able to avoid near pivot breakdowns
and compute all the well-defined BiCOR iterates stably with
only minor modifications inspired by the advantages of
the CSBCG method over the BCG method. Second, the
CSBiCOR method can reduce the number of spikes in the
convergence history of the norm of the residuals to the
greatest extent, providing some further practically desired
smoothing behavior towards stabilizing the behavior of the
BiCOR method when it has erratic convergence behaviors.
Additional purpose is that the CSBiCORmethod inherits the
promising advantages of the empirically observed stability
and fast convergence rate of the BiCORmethod over the BCG
method so that it outperforms the CSBCG method to some
extent.

The remainder of this work is organized as follows. A brief
review of the biconjugate 𝐴-orthonormalization procedure
is made and the factorization of the resulted nonsingular
tridiagonal matrices in the aforementioned procedure is
considered in Section 2 for the preparation of the theoretical
basis and relevant background of the CSBiCORmethod. And
then the breakdowns of the BiCOR method are presented
in Section 3 while the CSBiCOR method is derived in
Section 4. Section 5 analyzes the properties of the CSBiCOR
method as well as providing a best approximation result
for the convergence of the CSBiCOR method. In order to
conveniently and simply present the CSBiCORmethod, some
implementation issues on both algorithm simplification and
stepping strategy are discussed detailedly in Section 6. The
improved performance of the CSBiCOR method will be
illustrated in Section 7 in the perspective that the CSBiCOR
method could hopefully smooth the convergence history
through the reduction of the number of spikes when the
BiCOR method has irregular convergence behavior. Finally,
concluding remarks are made in the last section.

Throughout the paper, we denote the overbar “–” the
conjugate complex of a scalar, vector or matrix and the
superscript “𝑇” the transpose of a vector, or matrix. For a
non-Hermitian matrix 𝐴 = (𝑎

𝑖𝑗
)
𝑁×𝑁

∈ C𝑁×𝑁, the Hermitian
conjugate of 𝐴 is denoted as

𝐴
𝐻
≡ 𝐴
𝑇

= (𝑎
𝑗𝑖
)
𝑁×𝑁
. (1)
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The standard Hermitian inner product of two complex
vectors 𝑢, 𝑣 ∈ C𝑁 is defined as

⟨𝑢, 𝑣⟩ = 𝑢
𝐻
𝑣 =

𝑁

∑

𝑖=1

𝑢
𝑖
𝑣
𝑖
. (2)

The nested Krylov subspace of dimension 𝑡 generated by 𝐴
from 𝑣 is of the form

K
𝑡 (𝐴, 𝑣) = span {𝑣, 𝐴𝑣, 𝐴

2
𝑣, . . . , 𝐴

𝑡−1
𝑣} . (3)

In addition, 𝑒
𝑖
denotes the 𝑖th column of the appropriate

identity matrix.
When it will be helpful, we will use the word “ideally”

(or “mathematically”) to refer to a result that could hold
in exact arithmetic ignoring effects of rounding errors, and
“numerically” (or “computationally”) to a result of a finite
precision computation.

2. Theoretical Basis for the CSBiCOR Method

For the sake of discussing the theoretical basis and relevant
background of the CSBiCOR method, the biconjugate 𝐴-
orthonormalization procedure [7] is first briefly recalled as
in Algorithm 1, which can ideally build up a pair of bicon-
jugate 𝐴-orthonormal bases for the dual Krylov subspaces
K
𝑚
(𝐴, 𝑣
1
) and K

𝑚
(𝐴
𝐻
, 𝑤
1
), where 𝑣

1
and 𝑤

1
are chosen

initially to satisfy certain conditions.
Observe that the above algorithm is possible to have

Lanczos-type breakdown whenever 𝛿
𝑗+1

vanishes while 𝑤
𝑗+1

and 𝐴𝑣
𝑗+1

are not equal to 0 ∈ C𝑁 appearing in line 8. In
the interest of counteraction against such breakdowns, refer
oneself to remedies such as the so-called look-ahead strate-
gies [22–30] which can enhance stability while increasing
cost modestly. But that is outside the scope of this paper
and we will not pursue that here. For more details, please
refer to [2, 6] and the references therein. Throughout the rest
of the present paper, suppose there is no such Lanczos-type
breakdown encountered during algorithm implementations
because most of our considerations concern the exploration
of the composite step strategy [18, 19] to handle the pivot
breakdown occurring in the BiCORmethod for solving non-
Hermitian linear systems.

Next, some properties of the vectors produced by
Algorithm 1 are reviewed [7] in the following proposition for
the preparation of the theoretical basis of the composite step
method.

Proposition 1. If Algorithm 1 proceeds 𝑚 steps, then the right
and left Lanczos-type vectors 𝑣

𝑗
, 𝑗 = 1, 2, . . . , 𝑚 and 𝑤

𝑖
, 𝑖 =

1, 2, . . . , 𝑚 form a biconjugate 𝐴-orthonormal system in exact
arithmetic, that is,

⟨𝜔
𝑖
, 𝐴𝑣
𝑗
⟩ = 𝛿
𝑖,𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑚. (4)

Furthermore, denote by 𝑉
𝑚
= [𝑣
1
, 𝑣
2
, . . . , 𝑣

𝑚
] and 𝑊

𝑚
=

[𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
] the 𝑁 × 𝑚 matrices and by 𝑇

𝑚
the extended

tridiagonal matrix of the form

𝑇
𝑚
= [

𝑇
𝑚

𝛿
𝑚+1
𝑒
𝑇

𝑚

] , (5)

(1) Choose 𝑣
1
, 𝜔
1
, such that ⟨𝜔

1
, 𝐴𝑣
1
⟩ = 1

(2) Set 𝛽
1
= 𝛿
1
≡ 0, 𝜔

0
= 𝑣
0
≡ 0 ∈ C𝑁

(3) for 𝑗 = 1, 2, . . . do
(4) 𝛼

𝑗
= ⟨𝜔
𝑗
, 𝐴(𝐴𝑣

𝑗
)⟩

(5) 𝑣
𝑗+1
= 𝐴𝑣
𝑗
− 𝛼
𝑗
𝑣
𝑗
− 𝛽
𝑗
𝑣
𝑗−1

(6) �̂�
𝑗+1
= 𝐴
𝐻
𝜔
𝑗
− 𝛼
𝑗
𝜔
𝑗
− 𝛿
𝑗
𝜔
𝑗−1

(7) 𝛿
𝑗+1
=

⟨�̂�
𝑗+1
, 𝐴𝑣
𝑗+1
⟩


1/2

(8) 𝛽
𝑗+1
= ⟨�̂�
𝑗+1
, 𝐴𝑣
𝑗+1
⟩ /𝛿
𝑗+1

(9) 𝑣
𝑗+1
= 𝑣
𝑗+1
/𝛿
𝑗+1

(10) 𝜔
𝑗+1
= �̂�
𝑗+1
/𝛽
𝑗+1

(11) end for

Algorithm 1: Biconjugate 𝐴-orthonormalization procedure.

where

𝑇
𝑚
=

[
[
[
[
[
[

[

𝛼
1
𝛽
2

𝛿
2
𝛼
2
𝛽
3

. . . . . . . . .
𝛿
𝑚−1

𝛼
𝑚−1

𝛽
𝑚

𝛿
𝑚
𝛼
𝑚

]
]
]
]
]
]

]

, (6)

whose entries are the coefficients generated during the algo-
rithm implementation, and in which 𝛼

1
, . . . , 𝛼

𝑚
, 𝛽
2
, . . . , 𝛽

𝑚

are complex while 𝛿
2
, . . . , 𝛿

𝑚
are positive. Then with the

biconjugate 𝐴-orthonormalization procedure, the following
four relations hold:

𝐴𝑉
𝑚
= 𝑉
𝑚
𝑇
𝑚
+ 𝛿
𝑚+1
𝑣
𝑚+1
𝑒
𝑇

𝑚
, (7)

𝐴
𝐻
𝑊
𝑚
= 𝑊
𝑚
𝑇
𝐻

𝑚
+ 𝛽
𝑚+1
𝜔
𝑚+1
𝑒
𝑇

𝑚
, (8)

𝑊
𝐻

𝑚
𝐴𝑉
𝑚
= 𝐼
𝑚
, (9)

𝑊
𝐻

𝑚
𝐴
2
𝑉
𝑚
= 𝑇
𝑚
. (10)

It is well known that the Lanczos biorthogonalization
procedure canmathematically build up a pair of biorthogonal
bases for the dual Krylov subspaces K

𝑚
(𝐴, 𝑣
1
) and

K
𝑚
(𝐴
𝐻
, 𝑤
1
), where 𝑣

1
and 𝑤

1
are initially selected

such that ⟨𝜔
1
, 𝑣
1
⟩ = 1 [6]. While the biconjugate 𝐴-

orthonormalization procedure presented as in Algorithm 1
can ideally build up a pair of biconjugate 𝐴-orthonormal
bases for the dual Krylov subspaces K

𝑚
(𝐴, 𝑣
1
) and

K
𝑚
(𝐴
𝐻
, 𝑤
1
), where 𝑣

1
and 𝑤

1
are chosen initially to satisfy

⟨𝜔
1
, 𝐴𝑣
1
⟩ = 1. Keeping in mind the above differences in

terms of different Krylov subspace bases constructed by
the two different underlying procedures, we will in parallel
borrow some of the results of the CSBCG method [18] for
establishing the following counterparts for the CSBiCOR
method; see [18] for relevant proofs.

It should be emphasized that the present CSBiCOR
method will be derived in exactly the same way the CSBCG
method is obtained [19]. Hence, the analysis and theoretical
background for the CSBiCOR method in this section are the
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counterparts of the CSBCG method in a different context,
that is, the biconjugate 𝐴-orthonormalization procedure as
presented in Algorithm 1. They are included as follows for
the purpose of theoretical completeness and can be proved
in the same way for the corresponding results of the CSBCG
method analyzed in [18].

The following proposition states the tridiagonal matrix
𝑇
𝑚
formed in Proposition 1 cannot have two successive sin-

gular leading principal submatrices if the coefficient matrix
𝐴 is nonsingular.

Proposition 2. Let 𝑇
𝑘
(1 ≤ 𝑘 ≤ 𝑚) be the upper left principal

submatrices of the nonsingular tridiagonalmatrix𝑇
𝑚
appeared

as in Proposition 1. Then 𝑇
𝑘−1

and 𝑇
𝑘
cannot be both singular.

It is noted that there may exist possible breakdown in the
factorization without pivoting of the tridiagonal matrix 𝑇

𝑚

formed in Proposition 1. The following results illustrate how
to correct such problemwith the occasional use of 2 × 2 block
pivots.

Proposition 3. Let 𝑇
𝑚
be the nonsingular tridiagonal matrix

formed in Proposition 1. Then 𝑇
𝑚
can be factored as

𝑇
𝑚
= 𝐿
𝑚
𝐷
𝑚
𝑈
𝑚
, (11)

where 𝐿
𝑚
is unit lower block bidiagonal,𝑈

𝑚
is unit upper block

bidiagonal, and 𝐷
𝑚
is block diagonal, with 1 × 1 and 2 × 2

diagonal blocks.

With the above two propositions, one can prove the
following result insuring that if the upper left principal
submatrices 𝑇

𝑘
(1 ≤ 𝑘 ≤ 𝑚) of 𝑇

𝑚
is singular, it can still be

factored.

Corollary 4. Suppose one upper left principal submatrix
𝑇
𝑘
(1 ≤ 𝑘 ≤ 𝑚) of the nonsingular tridiagonal matrix

𝑇
𝑚

formed in Proposition 1 is singular, but 𝑇
𝑘−1

must be
nonsingular as stated in Proposition 2. Then

𝑇
𝑘
= 𝐿
𝑘
𝐷
𝑘
𝑈
𝑘
, (12)

where 𝐿
𝑘
is unit lower block bidiagonal, 𝑈

𝑘
is unit upper block

bidiagonal, and 𝐷
𝑘
is block diagonal, with 1 × 1 and 2 × 2

diagonal blocks, and in particular, the last block of 𝐷
𝑘
is the

1 × 1 zero matrix.

From Corollary 4, the singularity of 𝑇
𝑘
(1 ≤ 𝑘 ≤ 𝑚) can

be recognized by only examining the last diagonal element
(and next potential pivot) 𝑑

𝑘
. If 𝑑
𝑘
= 0, then the 2 × 2 block

[
𝑑
𝑘
𝛽
𝑘+1

𝛿
𝑘+1
𝛼
𝑘+1

] (13)

will be nonsingular and can be used as a 2 × 2 pivot, where
𝛽
𝑘+1
, 𝛿
𝑘+1

, and 𝛼
𝑘+1

are the corresponding elements of 𝑇
𝑚
as

shown in Proposition 1.
It can be concluded that appropriate combinations of

1 × 1 and 2 × 2 steps for the BiCOR method can skip over
the breakdowns caused by the singular principal submatrices
of the tridiagonal matrix 𝑇

𝑚
generated by the underlying

biconjugate 𝐴-orthonormalization procedure presented as
in Algorithm 1 since the BiCOR method pivots implicitly
with those submatrices. The next section will have a detailed
investigation of breakdowns possibly occurring in the BiCOR
method.

3. Breakdowns of the BiCOR Method

Given an initial guess 𝑥
0
to the non-Hermitian linear system

𝐴𝑥 = 𝑏 associated with the initial residual 𝑟
0
= 𝑏 −

𝐴𝑥
0
, define a Krylov subspace L

𝑚
≡ 𝐴
𝐻 span(𝑊

𝑚
) =

𝐴
𝐻K
𝑚
(𝐴
𝐻
, 𝑤
1
), where𝑊

𝑚
is defined in Proposition 1, 𝑣

1
=

𝑟
0
/||𝑟
0
||
2
and 𝑤

1
is chosen arbitrarily such that ⟨𝑤

1
, 𝐴𝑣
1
⟩ ̸= 0.

But 𝑤
1
is often chosen to be equal to 𝐴𝑣

1
/||𝐴𝑣
1
||
2

2
subjecting

to ⟨𝑤
1
, 𝐴𝑣
1
⟩ = 1. It is worth noting that this choice for

𝑤
1
plays a significant role in establishing the empirically

observed superiority of the BiCOR method to the BiCR [31]
method as well as to the BCG method [7]. Thus running
Algorithm 1 𝑚 steps, we can seek an 𝑚th approximate solu-
tion𝑥

𝑚
from the affine subspace 𝑥

0
+K
𝑚
(𝐴, 𝑣
1
) of dimension

𝑚, by imposing the Petrov-Galerkin condition

𝑏 − 𝐴𝑥
𝑚
⊥L
𝑚
, (14)

which can be mathematically written in matrix formulation
as

(𝐴
𝐻
𝑊
𝑚
)
𝐻

(𝑏 − 𝐴𝑥
𝑚
) = 0. (15)

Analogously, an 𝑚th dual approximation 𝑥∗
𝑚

of the
corresponding dual system 𝐴𝐻𝑥∗ = 𝑏

∗ is sought from
the affine subspace 𝑥∗

0
+ K
𝑚
(𝐴
𝐻
, 𝑤
1
) of dimension 𝑚 by

satisfying

𝑏
∗
− 𝐴
𝐻
𝑥
∗

𝑚
⊥ 𝐴K

𝑚
(𝐴, 𝑣
1
) , (16)

which can be mathematically written in matrix formulation
as

(𝐴𝑉
𝑚
)
𝐻
(𝑏
∗
− 𝐴
𝐻
𝑥
𝑚
) = 0, (17)

where 𝑥∗
0
is an initial dual approximate solution and 𝑉

𝑚
is

defined in Proposition 1 with 𝑣
1
= 𝑟
0
/||𝑟
0
||
2
.

Consequently, the BiCOR iterates 𝑥
𝑗
’s can be computed

by the coming Algorithm 2, which is just the unprecondi-
tionedBiCORmethodwith the preconditioner𝑀 there taken
as the identity matrix [7] and has been rewritten with the
algorithmic scheme of the unpreconditioned BCGmethod as
presented in [6, 19].

Suppose Algorithm 2 runs successfully to step 𝑛, that is,
𝜎
𝑖
̸= 0, 𝜌
𝑖
̸= 0, 𝑖 = 0, 1, . . . , 𝑛 − 1. The BiCOR iterates satisfy the

following properties [7].

Proposition 5. Let 𝑅
𝑛+1

= [𝑟
0
, 𝑟
1
, . . . , 𝑟

𝑛
], 𝑅∗
𝑛+1

=

[𝑟
∗

0
, 𝑟
∗

1
, . . . , 𝑟

∗

𝑛
] and 𝑃

𝑛+1
= [𝑝

0
, 𝑝
1
, . . . , 𝑝

𝑛
], 𝑃∗
𝑛+1

=

[𝑝
∗

0
, 𝑝
∗

1
, . . . , 𝑝

∗

𝑛
]. One has the following.

(1) Range(𝑅
𝑛+1
) = Range(𝑃

𝑛+1
) = K

𝑛+1
(𝐴, 𝑟
0
),

Range(𝑅∗
𝑛+1
) = Range(𝑃∗

𝑛+1
) =K

𝑛+1
(𝐴
𝐻
, 𝑟
∗

0
).
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(1) Compute 𝑟
0
= 𝑏 − 𝐴𝑥

0
for some initial guess 𝑥

0
.

(2) Choose 𝑟∗
0
= 𝑃 (𝐴) 𝑟

0
such that ⟨𝑟∗

0
, 𝐴𝑟
0
⟩ ̸= 0, where 𝑃(𝑡) is a polynomial in 𝑡.

(e.g., 𝑟∗
0
= 𝐴𝑟
0
).

(3) Set 𝑝
0
= 𝑟
0
, 𝑝∗
0
= 𝑟
∗

0
, 𝑞
0
= 𝐴𝑝
0
, 𝑞∗
0
= 𝐴
𝐻
𝑝
∗

0
, 𝑟
0
= 𝐴𝑟
0
, 𝜌
0
= ⟨𝑟
∗

0
, 𝑟
0
⟩.

(4) for 𝑛 = 0, 1, . . . do
(5) 𝜎

𝑛
= ⟨𝑞
∗

𝑛
, 𝑞
𝑛
⟩

(6) 𝛼
𝑛
= 𝜌
𝑛
/𝜎
𝑛

(7) 𝑥
𝑛+1
= 𝑥
𝑛
+ 𝛼
𝑛
𝑝
𝑛

(8) 𝑟
𝑛+1
= 𝑟
𝑛
− 𝛼
𝑛
𝑞
𝑛

(9) 𝑥
∗

𝑛+1
= 𝑥
∗

𝑛
+ 𝛼
𝑛
𝑝
∗

𝑛

(10) 𝑟∗
𝑛+1
= 𝑟
∗

𝑛
− 𝛼
𝑛
𝑞
∗

𝑛

(11) 𝑟
𝑛+1
= 𝐴𝑟
𝑛+1

(12) 𝜌
𝑛+1
= ⟨𝑟
∗

𝑛+1
, 𝑟
𝑛+1
⟩

(13) if 𝜌
𝑛+1
= 0,method fails

(14) 𝛽
𝑛+1
= 𝜌
𝑛+1
/𝜌
𝑛

(15) 𝑝
𝑛+1
= 𝑟
𝑛+1
+ 𝛽
𝑛+1
𝑝
𝑛

(16) 𝑝∗
𝑛+1
= 𝑟
∗

𝑛+1
+ 𝛽
𝑛+1
𝑝
∗

𝑛

(17) 𝑞
𝑛+1
= 𝑟
𝑛+1
+ 𝛽
𝑛+1
𝑞
𝑛

(18) 𝑞∗
𝑛+1
= 𝐴
𝐻
𝑝
∗

𝑛

(19) check convergence; continue if necessary
(20) end for

Algorithm 2: Algorithm BiCOR.

(2) 𝑅∗𝐻
𝑛+1
𝐴𝑅
𝑛+1

is diagonal.

(3) 𝑃∗𝐻
𝑛+1
𝐴
2
𝑃
𝑛+1

is diagonal.

Similarly to the breakdowns of the BCGmethod [19], it is
observed from Algorithm 2 that there also exist two possible
kinds of breakdowns for the BiCOR method:

(1) 𝜌
𝑛
≡ ⟨𝑟
∗

𝑛
, 𝑟
𝑛
⟩ ≡ ⟨𝑟

∗

𝑛
, 𝐴𝑟
𝑛
⟩ = 0 but 𝑟∗

𝑛
and 𝐴𝑟

𝑛
are not

equal to 0 ∈ C𝑁 appearing in line 14;

(2) 𝜎
𝑛
≡ ⟨𝑞
∗

𝑛
, 𝑞
𝑛
⟩ ≡ ⟨𝐴

𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩ = 0 appearing in line 6.

Although the computational formulae for the quantities
where the breakdowns reside are different between the
BiCORmethod and the BCGmethod, we do not have a better
name for them. And therefore, we still call the two cases
of breakdowns described above as Lanczos breakdown and
pivot breakdown, respectively.

The Lanczos breakdown can be cured using look-ahead
techniques [22–30] asmentioned in the first section, but such
techniques require a careful and sophisticated way so as to
make them become necessarily quite complicated to apply.
This aspect of applying look-ahead techniques to the BiCOR
method demands further research.

In this paper, we attempt to resort to the composite step
idea employed for the CSBCG method [18, 19] to handle the
pivot breakdown of the BiCOR method with the assumption
that the underlying biconjugate 𝐴-orthonormalization pro-
cedure depicted as in Algorithm 1 does not break down; that
is the situation where 𝜎

𝑛
= 0 while 𝜌

𝑛
̸= 0.

4. The Composite Step BiCOR Method

Suppose Algorithm 2 comes across a situation where 𝜎
𝑛
=

0 after successful algorithm implementation up to step 𝑛
with the assumption that 𝜌

𝑛
̸= 0, which indicates that the

updates of 𝑥
𝑛+1
, 𝑟
𝑛+1
, 𝑥
∗

𝑛+1
, 𝑟
∗

𝑛+1
are not well defined. Taking

the composite step idea, we will avoid division by 𝜎
𝑛
= 0

via skipping this (𝑛 + 1)th update and exploiting a composite
step update to directly obtain the quantities in step (𝑛 + 2)
with scaled versions of 𝑟

𝑛+1
and 𝑟∗

𝑛+1
as well as with the

previous primary search direction vector 𝑝
𝑛
and shadow

search direction vector 𝑝∗
𝑛
.The following process for deriving

the CSBiCOR method is the same as that of the derivation of
the CSBCG method [19] except for the different underlying
procedures involved to correspondingly generate different
Krylov subspace bases.

Analogously, define auxiliary vectors 𝑧
𝑛+1
∈ K
𝑛+2
(𝐴, 𝑟
0
)

and 𝑧∗
𝑛+1
∈K
𝑛+2
(𝐴
𝐻
, 𝑟
∗

0
) as follows:

𝑧
𝑛+1
= 𝜎
𝑛
𝑟
𝑛+1

= 𝜎
𝑛
𝑟
𝑛
− 𝜌
𝑛
𝐴𝑝
𝑛
,

(18)

𝑧
∗

𝑛+1
= 𝜎
𝑛
𝑟
∗

𝑛+1

= 𝜎
𝑛
𝑟
∗

𝑛
− 𝜌
𝑛
𝐴
𝐻
𝑝
∗

𝑛
,

(19)

which are then used to look for the iterates 𝑥
𝑛+2
∈ 𝑥
0
+

K
𝑛+2
(𝐴, 𝑟
0
) and 𝑥∗

𝑛+2
∈ 𝑥
∗

0
+ K
𝑛+2
(𝐴
𝐻
, 𝑟
∗

0
) in step (𝑛 + 2)

as follows:

𝑥
𝑛+2
= 𝑥
𝑛
+ [𝑝
𝑛
, 𝑧
𝑛+1
] 𝑓
𝑛
,

𝑥
∗

𝑛+2
= 𝑥
∗

𝑛
+ [𝑝
∗

𝑛
, 𝑧
∗

𝑛+1
] 𝑓
∗

𝑛
,

(20)
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where 𝑓
𝑛
, 𝑓
∗

𝑛
∈ C2. Correspondingly, the (𝑛 + 2)th primary

residual 𝑟
𝑛+2
∈ K

𝑛+3
(𝐴, 𝑟
0
) and shadow residual 𝑟∗

𝑛+2
∈

K
𝑛+3
(𝐴
𝐻
, 𝑟
∗

0
) are, respectively, computed as

𝑟
𝑛+2
= 𝑟
𝑛
− 𝐴 [𝑝

𝑛
, 𝑧
𝑛+1
] 𝑓
𝑛
, (21)

𝑟
∗

𝑛+2
= 𝑟
∗

𝑛
− 𝐴
𝐻
[𝑝
∗

𝑛
, 𝑧
∗

𝑛+1
] 𝑓
∗

𝑛
. (22)

The biconjugate 𝐴-orthogonality condition between the
BiCOR primary residuals and shadow residuals shown as
Property (2) in Proposition 5 requires

⟨[𝑝
∗

𝑛
, 𝑧
∗

𝑛+1
] , 𝐴𝑟
𝑛+2
⟩ = 0,

⟨[𝑝
𝑛
, 𝑧
𝑛+1
] , 𝐴
𝐻
𝑟
∗

𝑛+2
⟩ = 0,

(23)

combining with (21) and (22) gives rise to the following two
2 × 2 systems of linear equations for, respectively, solving 𝑓

𝑛

and 𝑓∗
𝑛
:

[
⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩ ⟨𝐴

𝐻
𝑝
∗

𝑛
, 𝐴𝑧
𝑛+1
⟩

⟨𝐴
𝐻
𝑧
∗

𝑛+1
, 𝐴𝑝
𝑛
⟩ ⟨𝐴

𝐻
𝑧
∗

𝑛+1
, 𝐴𝑧
𝑛+1
⟩
][
𝑓
(1)

𝑛

𝑓
(2)

𝑛

]

= [
⟨𝑝
∗

𝑛
, 𝐴𝑟
𝑛
⟩

⟨𝑧
∗

𝑛+1
, 𝐴𝑟
𝑛
⟩
] ,

(24)

[
⟨𝐴𝑝
𝑛
, 𝐴
𝐻
𝑝
∗

𝑛
⟩ ⟨𝐴𝑝

𝑛
, 𝐴
𝐻
𝑧
∗

𝑛+1
⟩

⟨𝐴𝑧
𝑛+1
, 𝐴
𝐻
𝑝
∗

𝑛
⟩ ⟨𝐴𝑧

𝑛+1
, 𝐴
𝐻
𝑧
∗

𝑛+1
⟩
][
𝑓
∗(1)

𝑛

𝑓
∗(2)

𝑛

]

= [
⟨𝐴𝑝
𝑛
, 𝑟
∗

𝑛
⟩

⟨𝐴𝑧
𝑛+1
, 𝑟
∗

𝑛
⟩
] .

(25)

Similarly, the (𝑛 + 2)th primary search direction vector
𝑝
𝑛+2

∈ K
𝑛+3
(𝐴, 𝑟
0
) and shadow search direction vector

𝑝
∗

𝑛+2
∈ K
𝑛+3
(𝐴
𝐻
, 𝑟
∗

0
) in a composite step are computed with

the following form:

𝑝
𝑛+2
= 𝑟
𝑛+2
+ [𝑝
𝑛
, 𝑧
𝑛+1
] 𝑔
𝑛
, (26)

𝑝
∗

𝑛+2
= 𝑟
∗

𝑛+2
+ [𝑝
∗

𝑛

, 𝑧
∗

𝑛+1
] 𝑔
∗

𝑛
, (27)

where 𝑔
𝑛
, 𝑔
∗

𝑛
∈ C2.

The biconjugate 𝐴2-orthogonality condition between the
BiCOR primary search direction vectors and shadow search
direction vectors shown as Property (3) in Proposition 5
requires

⟨[𝑝
∗

𝑛
, 𝑧
∗

𝑛+1
] , 𝐴
2
𝑝
𝑛+2
⟩ = 0,

⟨[𝑝
𝑛
, 𝑧
𝑛+1
] , (𝐴
𝐻
)
2

𝑝
∗

𝑛+2
⟩ = 0,

(28)

combining with (26) and (27) results in the following two 2 ×
2 systems of linear equations for respectively solving 𝑔

𝑛
and

𝑔
∗

𝑛
:

[
⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩ ⟨𝐴

𝐻
𝑝
∗

𝑛
, 𝐴𝑧
𝑛+1
⟩

⟨𝐴
𝐻
𝑧
∗

𝑛+1
, 𝐴𝑝
𝑛
⟩ ⟨𝐴

𝐻
𝑧
∗

𝑛+1
, 𝐴𝑧
𝑛+1
⟩
][
𝑔
(1)

𝑛

𝑔
(2)

𝑛

]

= −[
⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑟
𝑛+2
⟩

⟨𝐴
𝐻
𝑧
∗

𝑛+1
, 𝐴𝑟
𝑛+2
⟩
] ,

(29)

[
⟨𝐴𝑝
𝑛
, 𝐴
𝐻
𝑝
∗

𝑛
⟩ ⟨𝐴𝑝

𝑛
, 𝐴
𝐻
𝑧
∗

𝑛+1
⟩

⟨𝐴𝑧
𝑛+1
, 𝐴
𝐻
𝑝
∗

𝑛
⟩ ⟨𝐴𝑧

𝑛+1
, 𝐴
𝐻
𝑧
∗

𝑛+1
⟩
][
𝑔
∗(1)

𝑛

𝑔
∗(2)

𝑛

]

= −[
⟨𝐴𝑝
𝑛
, 𝐴
𝐻
𝑟
∗

𝑛+2
⟩

⟨𝐴𝑧
𝑛+1
, 𝐴
𝐻
𝑟
∗

𝑛+2
⟩
] .

(30)

Therefore, it could be able to advance from step 𝑛 to
step (𝑛 + 2) to provide 𝑥

𝑛+2
, 𝑟
𝑛+2

, 𝑥∗
𝑛+2

, 𝑟∗
𝑛+2

, 𝑝
𝑛+2

, 𝑝∗
𝑛+2

by
solving the above four 2 × 2 linear systems represented as in
(24), (25), (29), and (30). With an appropriate combination
of 1 × 1 and 2 × 2 steps, the CSBiCOR method can be
simply obtained with only a minor modification to the
usual implementation of theBiCORmethod. Before explicitly
presenting the algorithm, some properties of the CSBiCOR
method will be given in the following section.

5. Some Properties of the CSBiCOR Method

In order to show the use of 2 × 2 steps is sufficient
for CSBiCOR method to compute exactly all those well-
defined BiCOR iterates stably provided that the underlying
biconjugate 𝐴-orthonormalization procedure depicted as in
Algorithm 1 does not break down, it is necessary to establish
some lemmas similar to those for the CSBCG method [19].

Lemma 6. Using either a 1× 1 or a 2× 2 step to obtain 𝑝
𝑛
, 𝑝∗
𝑛
,

the following hold:

⟨𝐴
𝐻
𝑟
∗

𝑛
, 𝐴𝑝
𝑛
⟩ = ⟨𝐴

𝐻
𝑝
∗

𝑛
, 𝐴𝑟
𝑛
⟩

= ⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩ = ⟨𝑞

∗

𝑛
, 𝑞
𝑛
⟩ ≡ 𝜎
𝑛
.

(31)

Proof. If 𝑝
𝑛
, 𝑝
∗

𝑛
are obtained via a 1 × 1 step, that is,

𝑝
𝑛
= 𝑟
𝑛
+ 𝛽
𝑛
𝑝
𝑛−1

, 𝑝∗
𝑛

= 𝑟
∗

𝑛
+ 𝛽
𝑛
𝑝
∗

𝑛−1
as shown in lines

15 and 16 of Algorithm 2, then with the biconjugate 𝐴2-
orthogonality condition between the BiCOR primary search
direction vectors and shadow search direction vectors shown
as Property (3) in Proposition 5, it follows that

⟨𝐴
𝐻
𝑟
∗

𝑛
, 𝐴𝑝
𝑛
⟩ = ⟨𝐴

𝐻
(𝑝
∗

𝑛
− 𝛽
𝑛
𝑝
∗

𝑛−1
) , 𝐴𝑝
𝑛
⟩

= ⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩ − 𝛽
𝑛
⟨𝐴
𝐻
𝑝
∗

𝑛−1
, 𝐴𝑝
𝑛
⟩

= ⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩

= ⟨𝑞
∗

𝑛
, 𝑞
𝑛
⟩ ≡ 𝜎
𝑛
,
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⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑟
𝑛
⟩ = ⟨𝐴

𝐻
𝑝
∗

𝑛
, 𝐴 (𝑝
𝑛
− 𝛽
𝑛
𝑝
𝑛−1
)⟩

= ⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩ − 𝛽
𝑛
⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛−1
⟩

= ⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩

= ⟨𝑞
∗

𝑛
, 𝑞
𝑛
⟩ ≡ 𝜎
𝑛
.

(32)

If 𝑝
𝑛
, 𝑝
∗

𝑛
are obtained via a 2 × 2 step, that is, 𝑝

𝑛
=

𝑟
𝑛
+ 𝑔
(1)

𝑛−2
𝑝
𝑛−2
+ 𝑔
(2)

𝑛−2
𝑧
𝑛−1

, 𝑝∗
𝑛
= 𝑟
∗

𝑛
+ 𝑔
∗(1)

𝑛−2
𝑝
∗

𝑛−2
+ 𝑔
∗(2)

𝑛−2
𝑧
∗

𝑛−1
as

presented in (26) and (27), then according to the biconjugate
𝐴
2-orthogonality conditions mentioned above for deriving
𝑝
𝑛
, 𝑝
∗

𝑛
with a 2 × 2 step, it follows that

⟨𝐴
𝐻
𝑟
∗

𝑛
, 𝐴𝑝
𝑛
⟩ = ⟨𝐴

𝐻
(𝑝
∗

𝑛
− 𝑔
∗(1)

𝑛−2
𝑝
∗

𝑛−2
− 𝑔
∗(2)

𝑛−2
𝑧
∗

𝑛−1
) , 𝐴𝑝
𝑛
⟩

= ⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩ − 𝑔
∗(1)

𝑛−2
⟨𝐴
𝐻
𝑝
∗

𝑛−2
, 𝐴𝑝
𝑛
⟩

− 𝑔
∗(2)

𝑛−2
⟨𝐴
𝐻
𝑧
∗

𝑛−1
, 𝐴𝑝
𝑛
⟩

= ⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩

= ⟨𝑞
∗

𝑛
, 𝑞
𝑛
⟩ ≡ 𝜎
𝑛
,

⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑟
𝑛
⟩ = ⟨𝐴

𝐻
𝑝
∗

𝑛
, 𝐴 (𝑝

𝑛
− 𝑔
(1)

𝑛−2
𝑝
𝑛−2
− 𝑔
(2)

𝑛−2
𝑧
𝑛−1
)⟩

= ⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩ − 𝑔
(1)

𝑛−2
⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛−2
⟩

− 𝑔
(2)

𝑛−2
⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑧
𝑛−1
⟩

= ⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩

= ⟨𝑞
∗

𝑛
, 𝑞
𝑛
⟩ ≡ 𝜎
𝑛
.

(33)

With the above lemma, we can show the relationships
among the four 2 × 2 coefficientmatrices of the linear systems
represented as in (24), (25), (29), and (30).

Lemma 7. The four 2 × 2 coefficient matrices of the linear
systems represented as in (24), (25), (29), and (30) have the
following properties and relationships.

(1) The coefficient matrices in (24) and (29) are identical,
so are those matrices in (25) and (30).

(2) All the coefficient matrices involved are symmetric.

(3) The coefficient matrices in (24) and (25) (correspond-
ingly in (29) and (30)) are Hermitian to each other.

Proof. The first relation is obvious by observation of the
corresponding coefficient matrices in (24) and (29) (corre-
spondingly in (25) and (30)).

For proving the second property, it suffices to show
⟨𝐴
𝐻
𝑧
∗

𝑛+1
, 𝐴𝑝
𝑛
⟩ = ⟨𝐴

𝐻
𝑝
∗

𝑛
, 𝐴𝑧
𝑛+1
⟩. From the presentations of

𝑧
𝑛+1

and 𝑧∗
𝑛+1

as respectively defined in (18) and (19), and
following from Lemma 6, we have

⟨𝐴
𝐻
𝑧
∗

𝑛+1
, 𝐴𝑝
𝑛
⟩ = ⟨𝐴

𝐻
(𝜎
𝑛
𝑟
∗

𝑛
− 𝜌
𝑛
𝐴
𝐻
𝑝
∗

𝑛
) , 𝐴𝑝
𝑛
⟩

= 𝜎
𝑛
⟨𝐴
𝐻
𝑟
∗

𝑛
, 𝐴𝑝
𝑛
⟩ − 𝜌
𝑛
⟨(𝐴
𝐻
)
2

𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩

= 𝜎
2

𝑛
− 𝜌
𝑛
⟨(𝐴
𝐻
)
2

𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩ ,

⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑧
𝑛+1
⟩ = ⟨𝐴

𝐻
𝑝
∗

𝑛
, 𝐴 (𝜎
𝑛
𝑟
𝑛
− 𝜌
𝑛
𝐴𝑝
𝑛
)⟩

= 𝜎
𝑛
⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑟
𝑛
⟩ − 𝜌
𝑛
⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴
2
𝑝
𝑛
⟩

= 𝜎
2

𝑛
− 𝜌
𝑛
⟨(𝐴
𝐻
)
2

𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩ .

(34)

The third fact directly comes from the Hermitian prop-
erty of the standard Hermitian inner product of two complex
vectors defined at the end of the first section; see, for instance,
[6].

It is noticed that similarHermitian relationships also hold
for the correspondingmatriced involved in (1), (2), (3) and (4)
in [19] when the CSBCGmethod is applied in complex cases.

Now, an alternative result stating that a 2 × 2 step is always
sufficient to skip over the pivot breakdown of the BiCOR
method when 𝜎

𝑛
= 0, just as stated at the end of Section 2,

can be shown in the next lemma.

Lemma 8. Suppose that the biconjugate 𝐴-
orthonormalization procedure depicted as in Algorithm 1
underlying the BiCOR method does not breakdown; that is the
situation where 𝜌

𝑖
̸= 0, 𝑖 = 0, 1, . . . , 𝑛 and ⟨𝑧∗

𝑛+1
, 𝐴𝑧
𝑛+1
⟩ ̸= 0. If

𝜎
𝑛
≡ ⟨𝑞
∗

𝑛
, 𝑞
𝑛
⟩ ≡ ⟨𝐴

𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩ = 0, then the 2 × 2 coefficient

matrices in (24), (25), (29), and (30) are nonsingular.

Proof. It suffices to show that if 𝜎
𝑛
≡ ⟨𝑞

∗

𝑛
, 𝑞
𝑛
⟩ ≡

⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑝
𝑛
⟩ = 0, then ⟨𝐴𝐻𝑧∗

𝑛+1
, 𝐴𝑝
𝑛
⟩ ̸= 0. From Lemma 7

and (18), we have

⟨𝐴
𝐻
𝑧
∗

𝑛+1
, 𝐴𝑝
𝑛
⟩ = ⟨𝐴

𝐻
𝑝
∗

𝑛
, 𝐴𝑧
𝑛+1
⟩ ,

⟨𝐴
𝐻
𝑧
∗

𝑛+1
, 𝐴𝑝
𝑛
⟩ = ⟨𝐴

𝐻
𝑧
∗

𝑛+1
, −
𝑧
𝑛+1

𝜌
𝑛

⟩

= −
1

𝜌
𝑛

⟨𝑧
∗

𝑛+1
, 𝐴𝑧
𝑛+1
⟩ ̸= 0.

(35)

The next proposition shows some properties of the
CSBiCOR iterates similar to those of the BiCOR method
presented in Proposition 5 with some minor changes.

Proposition 9. For the CSBiCOR algorithm, let 𝑅
𝑛+1

=

[𝑟
0
, 𝑟
1
, . . . , 𝑟

𝑛
],𝑅∗
𝑛+1
= [𝑟
∗

0
, 𝑟
∗

1
, . . . , 𝑟

∗

𝑛
], where 𝑟

𝑖
, 𝑟∗
𝑖
are replaced

by 𝑧
𝑖
, 𝑧∗
𝑖
appropriately if the 𝑖th step is a composite 2 × 2

step; and let 𝑃
𝑛+1
= [𝑝
0
, 𝑝
1
, . . . , 𝑝

𝑛
], 𝑃∗
𝑛+1
= [𝑝
∗

0
, 𝑝
∗

1
, . . . , 𝑝

∗

𝑛
].

Assuming the underlying biconjugate 𝐴-orthonormalization
procedure does not break down, one has the following proper-
ties.
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(1) Range(𝑅
𝑛+1
) = Range(𝑃

𝑛+1
) = K

𝑛+1
(𝐴, 𝑟
0
),

Range(𝑅∗
𝑛+1
) = Range(𝑃∗

𝑛+1
) =K

𝑛+1
(𝐴
𝐻
, 𝑟
∗

0
).

(2) 𝑅∗𝐻
𝑛+1
𝐴𝑅
𝑛+1

is diagonal.

(3) 𝑃∗𝐻
𝑛+1
𝐴
2
𝑃
𝑛+1
= diag(𝐷

𝑘
), where 𝐷

𝑘
is either of order

1 × 1 or 2 × 2 and the sum of the dimensions of 𝐷
𝑘
’s is

(𝑛 + 1).

Proof. The properties can be proved with the same frame for
those of Theorem 4.4 in [19].

Therefore, we can show with the above properties that
the use of 2 × 2 steps is sufficient for the CSBiCOR
method to compute exactly all those well-defined BiCOR
iterates stably provided that the underlying biconjugate 𝐴-
orthonormalization procedure depicted as in Algorithm 1
does not break down.

Proposition 10. The CSBiCOR method is able to compute
exactly all those well-defined BiCOR iterates stably without
pivot breakdown assuming that the underlying biconjugate 𝐴-
orthonormalization procedure does not break down.

Proof. By construction, 𝑥
𝑛+2
= 𝑥
𝑛
+ 𝑓
(1)

𝑛
𝑝
𝑛
+ 𝑓
(2)

𝑛
𝑧
𝑛+1

; by
induction, 𝑥

𝑛
∈ 𝑥
0
+ K
𝑛
(𝐴, 𝑟
0
) and 𝑝

𝑛
∈ K

𝑛+1
(𝐴, 𝑟
0
);

by definition, 𝑧
𝑛+1

∈ K
𝑛+2
(𝐴, 𝑟
0
). Then it follows that

𝑥
𝑛+2
∈ 𝑥
0
+K
𝑛+2
(𝐴, 𝑟
0
). From Proposition 9, we have 𝑟

𝑛+2
⊥

𝐴
𝐻K
𝑛+2
(𝐴
𝐻
, 𝑟
∗

0
).Therefore, 𝑥

𝑛+2
exactly satisfies the Petrov-

Galerkin condition defining the BiCOR iterates.

Before ending this section, we present a best approx-
imation result for the CSBiCOR method, which uses the
same framework as that for the CSBCG method [19]. For
discussion about convergence results for Krylov subspaces
methods, refer to [2, 6, 32, 33] and the references therein. To
the best of our knowledge, this is the first attempt to study the
convergence result for the BiCOR method [7].

First let V
𝑚
= span(𝑣

1
, 𝑣
2
, . . . , 𝑣

𝑚
) and W

𝑚
=

span(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
) denote the Krylov subspaces generated

by the biconjugate 𝐴-orthonormalization procedure after
running Algorithm 1 𝑚 steps. The norms associated with the
spacesV

𝑁
≡ C𝑁 andW

𝑁
≡ C𝑁 are defined as

|‖𝑣‖|
2

𝑟
= 𝑣
𝐻
𝑀
𝑟
𝑣, |‖𝑤‖|

2

𝑙
= 𝑤
𝐻
𝑀
𝑙
𝑤, (36)

where, 𝑣, 𝑤 ∈ C𝑁 while𝑀
𝑟
and𝑀

𝑙
are symmetric positive

definite matrices. Then we have the following proposition
with the initial guess 𝑥

0
of the linear system being 0 ∈ C𝑁.

The casewith a nonzero initial guess can be treated adaptively.

Proposition 11. Suppose that for all 𝑣 ∈ V
𝑁
and for all 𝑤 ∈

W
𝑁
, one has


𝑤
𝐻
𝐴
2
𝑣

≤ Γ|‖𝑣‖|𝑟|‖𝑤‖|𝑙, (37)

where, Γ is a constant independent of 𝑣 and 𝑤. Furthermore,
assuming that for those steps in the composite step Biconjugate

𝐴-Orthogonal Residual (CSBiCOR) method in which we com-
pute an approximation 𝑥

𝑚
, we have

inf
𝑣∈V
𝑚

|‖𝑣‖|
𝑟
=1

sup
𝑤∈W

𝑚

|‖𝑤‖|
𝑙
≤1

𝑤
𝐻
𝐴
2
𝑣 ≥ 𝛾
𝑘
≥ 𝛾 > 0.

(38)

Then,


𝑥 − 𝑥𝑚


𝑟 ≤ (1 +

Γ

𝛾
) inf
𝑣∈V
𝑚

|‖𝑥 − 𝑣‖|𝑟. (39)

Proof. From the Petrov-Galerkin condition (15), we have for
𝑤 ∈W

𝑚
,

(𝐴
𝐻
𝑤)
𝐻

(𝐴𝑥 − 𝐴𝑥
𝑚
) = 𝑤

𝐻
𝐴
2
(𝑥 − 𝑥

𝑚
) = 0, (40)

yielding with arbitrary 𝑣 ∈V
𝑚

𝑤
𝐻
𝐴
2
(𝑥
𝑚
− 𝑣) = 𝑤

𝐻
𝐴
2
(𝑥 − 𝑣) . (41)

It is noted that 𝑥
𝑚
− 𝑣 ∈ V

𝑚
because of the assumption

of the zero initial guess. Then taking the sup of both sides
of the above equation for all |‖𝑤‖|

𝑙
≤ 1 with the inf-sup

condition (38) to bound the left-hand side and the continuity
assumption (37) to bound the right-hand side results in

𝛾
𝑘


𝑥𝑚 − 𝑣


𝑟
≤ Γ|‖𝑥 − 𝑣‖|𝑟|‖𝑤‖|𝑙 ≤ Γ|‖𝑥 − 𝑣‖|𝑟, (42)

which yields


𝑥 − 𝑥𝑚


𝑟
≤ |‖𝑥 − 𝑣‖|𝑟 +


𝑥𝑚 − 𝑣


𝑟
≤ (1 +

Γ

𝛾
) |‖𝑥 − 𝑣‖|𝑟

(43)

with the triangle inequality. The final assertion (39) follows
immediately since 𝑣 ∈V

𝑚
is arbitrary.

6. Implementation Issues

For the purpose of conveniently and simply presenting the
CSBiCOR method, we first prove some relations simplifying
the solutions of the four 2 × 2 linear systems represented as
in (24), (25), (29), and (30).

Lemma 12. For the four 2 × 2 linear systems represented as in
(24), (25), (29), and (30), the following relations hold:

(1) ⟨𝑝∗
𝑛
, 𝐴𝑟
𝑛
⟩ = ⟨𝐴𝑝

𝑛
, 𝑟∗
𝑛
⟩ = ⟨𝑟

∗

𝑛
, 𝐴𝑟
𝑛
⟩ = ⟨𝑟

∗

𝑛
, 𝑟
𝑛
⟩ ≡ 𝜌

𝑛

and ⟨𝑧∗
𝑛+1
, 𝐴𝑟
𝑛
⟩ = ⟨𝐴𝑧

𝑛+1
, 𝑟
∗

𝑛
⟩ = 0, 𝑓

𝑛
= 𝑓
∗

𝑛
.

(2) ⟨𝐴𝐻𝑝∗
𝑛
, 𝐴𝑟
𝑛+2
⟩ = ⟨𝐴𝑝

𝑛
, 𝐴
𝐻
𝑟
∗

𝑛+2
⟩ = 0 and

⟨𝐴
𝐻
𝑧
∗

𝑛+1
, 𝐴𝑟
𝑛+2
⟩ = ⟨𝐴𝑧

𝑛+1
, 𝐴𝐻𝑟
∗

𝑛+2
⟩ = −𝜌

𝑛+2
/𝑓
(2)

𝑛
,

where 𝜌
𝑛+2
≡ ⟨𝑟
∗

𝑛+2
, 𝐴𝑟
𝑛+2
⟩, 𝑔
𝑛
= 𝑔
∗

𝑛
.

(3) ⟨𝐴𝐻𝑝∗
𝑛
, 𝐴𝑧
𝑛+1
⟩ = ⟨𝐴𝑝

𝑛
, 𝐴𝐻𝑧
∗

𝑛+1
⟩ = −𝜃

𝑛+1
/𝜌
𝑛
, where

𝜃
𝑛+1
≡ ⟨𝑧
∗

𝑛+1
, 𝐴𝑧
𝑛+1
⟩.

Proof. (1) If a 1 × 1 step is taken, then 𝑝∗
𝑛

= 𝑟
∗

𝑛
+

𝛽
𝑛
𝑝
∗

𝑛−1
, giving that ⟨𝑝∗

𝑛
, 𝐴𝑟
𝑛
⟩ = ⟨𝑟

∗

𝑛
+ 𝛽
𝑛
𝑝
∗

𝑛−1
, 𝐴𝑟
𝑛
⟩ =

⟨𝑟
∗

𝑛
, 𝐴𝑟
𝑛
⟩+𝛽
𝑛
⟨𝑝
∗

𝑛−1
, 𝐴𝑟
𝑛
⟩ = ⟨𝑟

∗

𝑛
, 𝐴𝑟
𝑛
⟩ because of the last-term
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vanishment due to Proposition 9. Analogously, the iteration
𝑝
𝑛
= 𝑟
𝑛
+ 𝛽
𝑛
𝑝
𝑛−1

similarly gives ⟨𝐴𝑝
𝑛
, 𝑟
∗

𝑛
⟩ = ⟨𝐴𝑟

𝑛
+

𝛽
𝑛
𝐴𝑝
𝑛−1
, 𝑟
∗

𝑛
⟩ = ⟨𝐴𝑟

𝑛
, 𝑟
∗

𝑛
⟩ + 𝛽

𝑛
⟨𝐴𝑝
𝑛−1
, 𝑟
∗

𝑛
⟩ = ⟨𝐴𝑟

𝑛
, 𝑟
∗

𝑛
⟩ =

⟨𝑟∗
𝑛
, 𝐴𝑟
𝑛
⟩ from Proposition 9 and the Hermitian property of

the standard Hermitian inner product. If a 2×2 step is taken,
then by construction as shown in (27) and Proposition 9,
we have ⟨𝑝∗

𝑛
, 𝐴𝑟
𝑛
⟩ = ⟨𝑟∗

𝑛
+ 𝑔
∗(1)

𝑛−2
𝑝
∗

𝑛−2

+ 𝑔
∗(2)

𝑛−2
𝑧
∗

𝑛−1
, 𝐴𝑟
𝑛
⟩ =

⟨𝑟
∗

𝑛
, 𝐴𝑟
𝑛
⟩ + 𝑔

∗(1)

𝑛−2
⟨𝑝
∗

𝑛−2

, 𝐴𝑟
𝑛
⟩ + 𝑔

∗(2)

𝑛−2
⟨𝑧
∗

𝑛−1
, 𝐴𝑟
𝑛
⟩ = ⟨𝑟∗

𝑛
, 𝐴𝑟
𝑛
⟩.

Similarly, with Proposition 9 and the Hermitian property of
the standard Hermitian inner product, it can be shown that
⟨𝐴𝑝
𝑛
, 𝑟
∗

𝑛
⟩= ⟨𝐴(𝑟

𝑛
+ 𝑔
(1)

𝑛−2
𝑝
𝑛−2
+ 𝑔
(2)

𝑛−2
𝑧
𝑛−1
), 𝑟
∗

𝑛
⟩ = ⟨𝐴𝑟

𝑛
, 𝑟
∗

𝑛
⟩ +

𝑔
(1)

𝑛−2
⟨𝐴𝑝
𝑛−2
, 𝑟
∗

𝑛
⟩+𝑔
(2)

𝑛−2
⟨𝐴𝑧
𝑛−1
, 𝑟
∗

𝑛
⟩= ⟨𝐴𝑟

𝑛
, 𝑟
∗

𝑛
⟩= ⟨𝑟∗
𝑛
, 𝐴𝑟
𝑛
⟩.The

equalities ⟨𝑧∗
𝑛+1
, 𝐴𝑟
𝑛
⟩ = ⟨𝐴𝑧

𝑛+1
, 𝑟
∗

𝑛
⟩ = 0 directly follow from

Proposition 9. Finally, because the coefficient matrices of the
symmetric systems in (24) and (25) respectively governing𝑓

𝑛

and 𝑓∗
𝑛
are Hermitian to each other as shown in Lemma 7

while the corresponding right-hand sides are conjugate to
each other as shown here, we can deduce that 𝑓

𝑛
= 𝑓
∗

𝑛
.

(2) From Proposition 9, it can directly verify that
⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑟
𝑛+2
⟩ = ⟨𝐴𝑝

𝑛
, 𝐴
𝐻
𝑟
∗

𝑛+2
⟩ = 0 with the fact

that 𝐴𝑝
𝑛
∈ K

𝑛+2
(𝐴, 𝑟
0
) and 𝐴𝐻𝑝∗

𝑛
∈ K

𝑛+2
(𝐴
𝐻
, 𝑟
∗

0
).

Next, it can be noted that if 𝜎
𝑛
= 0, then 𝑓(2)

𝑛
̸= 0.

Otherwise, the first equation in the linear system (24)
cannot hold for ⟨𝐴𝐻𝑝∗

𝑛
, 𝐴𝑧
𝑛+1
⟩ ̸= 0 as proved in Lemma 8

and ⟨𝑝∗
𝑛
, 𝐴𝑟
𝑛
⟩ = 𝜌

𝑛
̸= 0 as shown in the above (1).

Then by construction of (22) and Proposition 9, we have
⟨𝐴
𝐻
𝑧
∗

𝑛+1
, 𝐴𝑟
𝑛+2
⟩ = ⟨(1/𝑓∗(2)

𝑛
)(𝑟
∗

𝑛
− 𝑟
∗

𝑛+2
− 𝑓
∗(1)

𝑛
𝐴
𝐻
𝑝
∗

𝑛
), 𝐴𝑟
𝑛+2
⟩

= (1/𝑓∗(2)𝑛 )(⟨𝑟∗𝑛 , 𝐴𝑟𝑛+2⟩− ⟨𝑟
∗

𝑛+2
, 𝐴𝑟
𝑛+2
⟩−𝑓
∗(1)

𝑛 ⟨𝐴
𝐻
𝑝
∗

𝑛
, 𝐴𝑟
𝑛+2
⟩)

= (−1/𝑓∗(2)𝑛 )⟨𝑟∗𝑛+2, 𝐴𝑟𝑛+2⟩ = (−1/𝑓
∗(2)

𝑛 )𝜌𝑛+2 = (−1/𝑓
(2)

𝑛
)𝜌
𝑛+2

with the fact that 𝑓
𝑛
= 𝑓
∗

𝑛
proved in the above (1). By

construction of (21) and Proposition 9, we can also show that
⟨𝐴𝑧
𝑛+1
, 𝐴
𝐻
𝑟
∗

𝑛+2
⟩ = −𝜌

𝑛+2
/𝑓
(2)

𝑛 . Similarly to the relationships
between 𝑓

𝑛
and 𝑓∗

𝑛
, we can deduce that 𝑔

𝑛
= 𝑔
∗

𝑛
, because

the coefficient matrices of the symmetric systems in (29) and
(30) respectively governing 𝑔

𝑛
and 𝑔∗

𝑛
are Hermitian to each

other as shown in Lemma 7 while the corresponding right-
hand sides are conjugate to each other as shown here.

(3) By construction of (19) and Proposition 9, it fol-
lows that ⟨𝐴𝐻𝑝∗

𝑛
, 𝐴𝑧
𝑛+1
⟩ = ⟨(1/𝜌

𝑛
)(𝜎
𝑛
𝑟
∗

𝑛
− 𝑧
∗

𝑛+1
), 𝐴𝑧
𝑛+1
⟩ =

(1/𝜌
𝑛
)(𝜎
𝑛
⟨𝑟
∗

𝑛
, 𝐴𝑧
𝑛+1
⟩ − ⟨𝑧

∗

𝑛+1
, 𝐴𝑧
𝑛+1
⟩) = (−1/𝜌

𝑛
)⟨𝑧
∗

𝑛+1
, 𝐴𝑧
𝑛+1
⟩

= −𝜃
𝑛+1
/𝜌
𝑛
, where 𝜃

𝑛+1
≡ ⟨𝑧

∗

𝑛+1
, 𝐴𝑧
𝑛+1
⟩. Because it is

already known that ⟨𝐴𝐻𝑧∗
𝑛+1
, 𝐴𝑝
𝑛
⟩ = ⟨𝐴𝐻𝑝∗

𝑛
, 𝐴𝑧
𝑛+1
⟩ as

proved in Lemma 7, we have ⟨𝐴𝑝
𝑛
, 𝐴
𝐻
𝑧
∗

𝑛+1
⟩ = ⟨𝐴𝐻𝑧∗

𝑛+1
, 𝐴𝑝
𝑛
⟩

= ⟨𝐴𝐻𝑝∗
𝑛
, 𝐴𝑧
𝑛+1
⟩ = −𝜃

𝑛+1
/𝜌
𝑛
. The proof is completed.

As a result of Lemmas 6 and 12, when a 2×2 step is taken,
the solutions for𝑓

𝑛
and 𝑔
𝑛
involved in the four linear systems

represented as in (24), (25), (29), and (30) can be simplified
only by solving the following two linear systems:

[
[
[

[

𝜎
𝑛
−
𝜃
𝑛+1

𝜌
𝑛

−
𝜃
𝑛+1

𝜌
𝑛

𝜁
𝑛+1

]
]
]

]

[

[

𝑓
(1)

𝑛

𝑓
(2)

𝑛

]

]

= [
𝜌
𝑛

0
] ,

[
[
[

[

𝜎
𝑛
−
𝜃
𝑛+1

𝜌
𝑛

−
𝜃
𝑛+1

𝜌
𝑛

𝜁
𝑛+1

]
]
]

]

[

[

𝑔
(1)

𝑛

𝑔
(2)

𝑛

]

]

= [

[

0
𝜌
𝑛+2

𝑓
(2)

𝑛

]

]

,

(44)

where 𝜁
𝑛+1
= ⟨𝐴
𝐻
𝑧
∗

𝑛+1
, 𝐴𝑧
𝑛+1
⟩.

It should be emphasized that these above two systems
have the same representations for the CSBCG method [19]
but differ in detailed computational formulae for the cor-
responding quantities because of the different underlying
procedures mentioned in Section 1. As a result, 𝑓

𝑛
and 𝑔

𝑛
can

be explicitly represented as

𝑓
𝑛
=
(𝜁
𝑛+1
𝜌
𝑛
, 𝜃
𝑛+1
) 𝜌
2

𝑛

𝜂
𝑛

,

𝑔
𝑛
= (
𝜌
𝑛+2

𝜌
𝑛

,
𝜎
𝑛
𝜌
𝑛+2

𝜃
𝑛+1

) ,

(45)

where 𝜂
𝑛
≡ 𝜎
𝑛
𝜁
𝑛+1
𝜌
2

𝑛
− 𝜃
2

𝑛+1
.

Combining all the recurrences discussed above for either
a 1 × 1 step or a 2 × 2 step and taking the strategy of
reducing the number of matrix-vector multiplications by
introducing an auxiliary vector recurrence and changing
variables adopted for the BiCORmethod [7] as well as for the
BiCR method [31], together lead to the CSBiCOR method.
The pseudocode for the preconditioned CSBiCOR with a
left preconditioner 𝐵 can be represented by Algorithm 3,
where 𝑠

𝑛+1
and 𝑧

𝑛+1
are used to respectively denote the

unpreconditioned and the preconditioned residuals. It is
obvious to note that the number of matrix-vector multipli-
cations in this algorithm remains the same per step as in the
BiCOR algorithm [7]. Therefore, the cost of the use of 2 × 2
composite steps is negligible. That is, 2 × 2 composite steps
cost approximately twice as much as 1 × 1 steps just as stated
for the CSBCG method [18]. Thus, from the point of view of
choosing 1× 1 or 2× 2 steps, there is no significant difference
with respect to algorithm cost. However, the presented
algorithm is with the motivation of obtaining smoother
and, hopefully, faster convergence behavior in compari-
son with the BiCOR method besides eliminating pivot
breakdowns.

For the issue of deciding between 1 × 1 and 2 ×
2 updates, the heuristic based on the magnitudes of the
residuals developed for the CSBCG method [18] is bor-
rowed for the CSBiCOR method in order to choose the
step size which maximizes numerical stability as well as
to avoid overflow. The principle is to avoid “spikes” in
the convergence history of the norm of the residuals. A
2 × 2 update will be chosen if the following circumstance
satisfies

𝑟𝑛+1
 > max {𝑟𝑛

 ,
𝑟𝑛+2

} . (46)

For completeness of algorithm implementation, we recall
the test procedure as follows. Define 𝜋

𝑛+2
≡ 𝜂
𝑛
𝑟
𝑛+2
= 𝜂
𝑛
𝑟
𝑛
−

𝜁
𝑛+1
𝜌
3

𝑛
𝐴𝑝
𝑛
− 𝜃
𝑛+1
𝜌
2

𝑛
𝐴𝑧
𝑛+1

. Then with the scaled versions of
the corresponding quantities, the tests ‖𝑟

𝑛+1
‖ ≤ ‖𝑟

𝑛
‖ and
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(1) Compute 𝑟
0
= 𝑏 − 𝐴𝑥

0
for some initial guess 𝑥

0
.

(2) Choose 𝑟∗
0
= 𝑃 (𝐴) 𝑟

0
such that ⟨𝑟∗

0
, 𝐴𝑟
0
⟩ ̸= 0, where 𝑃(𝑡) is a polynomial in 𝑡.

(e.g., 𝑟∗
0
= 𝐴𝑟
0
). Set 𝑝

0
= 𝑟
0
, 𝑝
0
= 𝑟
0
, 𝑞
0
= 𝐴𝑝
0
, 𝑞
0
= 𝐴
𝐻
𝑝
0
.

(3) Compute 𝜌
0
= ⟨𝑟
0
, 𝐴𝑟
0
⟩.

(4) Begin LOOP (𝑛 = 0, 1, 2, . . .)
(5) 𝜎
𝑛
= ⟨𝑞
𝑛
, 𝑞
𝑛
⟩

(6) 𝑠
𝑛+1
= 𝜎
𝑛
𝑟
𝑛
− 𝜌
𝑛
𝑞
𝑛

(7) 𝑠
𝑛+1
= 𝜎
𝑛
𝑟
𝑛
− 𝜌
𝑛
𝑞
𝑛

(8) 𝑦
𝑛+1
= 𝐴𝑠
𝑛+1

(9) 𝑦
𝑛+1
= 𝐴
𝐻
𝑠
𝑛+1

(10) 𝜃
𝑛+1
= ⟨𝑠
𝑛+1
, 𝑦
𝑛+1
⟩

(11) 𝜁
𝑛+1
= ⟨𝑦
𝑛+1
, 𝑦
𝑛+1
⟩

(12) if 1 × 1 step then
(13) 𝛼

𝑛
= 𝜌
𝑛
/𝜎
𝑛

(14) 𝜌
𝑛+1
= 𝜃
𝑛+1
/𝜎
2

𝑛

(15) 𝛽
𝑛+1
= 𝜌
𝑛+1
/𝜌
𝑛

(16) 𝑥
𝑛+1
= 𝑥
𝑛
+ 𝛼
𝑛
𝑝
𝑛

(17) 𝑟
𝑛+1
= 𝑟
𝑛
− 𝛼
𝑛
𝑞
𝑛

(18) 𝑟
𝑛+1
= 𝑟
𝑛
− 𝛼
𝑛
𝑞
𝑛

(19) 𝑝
𝑛+1
= 𝑠
𝑛+1
/𝜎
𝑛
+ 𝛽
𝑛+1
𝑝
𝑛

(20) 𝑞
𝑛+1
= 𝑦
𝑛+1
/𝜎
𝑛
+ 𝛽
𝑛+1
𝑞
𝑛

(21) 𝑞
𝑛+1
= 𝑦
𝑛+1
/𝜎
𝑛
+ 𝛽
𝑛+1
𝑞
𝑛

(22) 𝑛 ← 𝑛 + 1

(23) else
(24) 𝛿

𝑛
= 𝜎
𝑛
𝜁
𝑛+1
𝜌
2

𝑛
− 𝜃
2

𝑛+1

(25) 𝛼
𝑛
= 𝜁
𝑛+1
𝜌
3

𝑛
/𝛿
𝑛

(26) 𝛼
𝑛+1
= 𝜃
𝑛+1
𝜌
2

𝑛
/𝛿
𝑛

(27) 𝑥
𝑛+2
= 𝑥
𝑛
+ 𝛼
𝑛
𝑝
𝑛
+ 𝛼
𝑛+1
𝑠
𝑛+1

(28) 𝑟
𝑛+2
= 𝑟
𝑛
− 𝛼
𝑛
𝑞
𝑛
− 𝛼
𝑛+1
𝑦
𝑛+1

(29) 𝑟
𝑛+2
= 𝑟
𝑛
− 𝛼
𝑛
𝑞
𝑛
− 𝛼
𝑛+1
𝑦
𝑛+1

(30) solve 𝐵𝑧
𝑛+2
= 𝑟
𝑛+2

(31) solve 𝐵𝐻�̃�
𝑛+2
= 𝑟
𝑛+2

(32) �̃�
𝑛+2
= 𝐴𝑧
𝑛+2

(33) ̂̃𝑧
𝑛+2
= 𝐴
𝐻
�̃�
𝑛+2

(34) 𝜌
𝑛+2
= ⟨̂̃𝑧
𝑛+2
, 𝑟
𝑛+2
⟩

(35) 𝛽
𝑛+1
= 𝜌
𝑛+2
/𝜌
𝑛

(36) 𝛽
𝑛+2
= 𝜌
𝑛+2
𝜎
𝑛
/𝜃
𝑛+1

(37) 𝑝
𝑛+2
= 𝑧
𝑛+2
+ 𝛽
𝑛+1
𝑝
𝑛
+ 𝛽
𝑛+2
𝑠
𝑛+1

(38) 𝑞
𝑛+2
= �̂�
𝑛+2
+ 𝛽
𝑛+1
𝑞
𝑛
+ 𝛽
𝑛+2
𝑦
𝑛+1

(39) 𝑞
𝑛+2
= ̂̃𝑧
𝑛+2
+ 𝛽
𝑛+1
𝑞
𝑛
+ 𝛽
𝑛+2
𝑦
𝑛+1

(40) 𝑛 ← 𝑛 + 2

(41) end if
(42) Check convergence; continue if necessary
(43) End LOOP

Algorithm 3: Left preconditioned CSBiCOR method.

‖𝑟
𝑛+2
‖ ≤ ‖𝑟

𝑛+1
‖ can be, respectively, replaced by ‖𝑧

𝑛+1
‖ ≤

|𝜎
𝑛
|‖𝑟
𝑛
‖ and |𝜎

𝑛
|‖𝜋
𝑛+2
‖ ≤ |𝜂

𝑛
|‖𝑧
𝑛+1
‖. Consequently, the

test can be implemented with the code fragment shown in
Algorithm 4.

Analogously to the effect obtained by the CSBCGmethod
[19] in circumstances where (46) is satisfied, the use of
2 × 2 updates for the CSBiCOR method is also able to cut
off spikes in the convergence history of the norm of the
residuals possibly caused by taking two 1 × 1 steps in such
circumstances. The resulting CSBiCOR algorithm inherits
the promising properties of the CSBCG method [18, 19].

That is, the composite strategy employed can eliminate
near pivot breakdowns while can provide some smoothing
of the convergence history of the norm of the residuals
without involving any arbitrary machine-dependent or user-
supplied tolerances. However, it should be emphasized that
the CSBiCOR method could only eliminate those spikes due
to small pivots in the upper left principal submatrices𝑇

𝑘
(1 ≤

𝑘 ≤ 𝑚) of 𝑇
𝑚
formed in Proposition 1 but not all spikes.

So that the residual norm of the CSBiCOR method does
not decrease monotonically. By the way, learning from the
mathematically equivalent but numerically different variants
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If ||𝑧
𝑛+1
|| ≤ |𝜎

𝑛
|||𝑟
𝑛
||, Then

1 × 1 Step
Else
||𝜋
𝑛+2
|| = ||𝜂

𝑛
𝑟
𝑛
− 𝜁
𝑛+1
𝜌
3

𝑛
𝑞
𝑛
− 𝜃
𝑛+1
𝜌
2

𝑛
𝑦
𝑛+1
||

If |𝜎
𝑛
|||𝜋
𝑛+2
|| ≤ |𝜂

𝑛
|||𝑧
𝑛+1
||, Then

2 × 2 Step
Else
1 × 1 Step

End If
End If

Algorithm 4

Table 1: Structures of the three sets of test problems.

Ex. Group and name id # rows # cols Nonzeros Sym
1 Dehghani/light in tissue 1873 29,282 29,282 406,084 0%
2 Kim/kim1 862 38,415 38,415 933,195 0%
3 HB/young1c 278 841 841 4,089 85%

of the CSBCGmethod [18], we could also develop such kinds
of variants of the CSBiCORmethod, which will be taken into
further account.

7. Examples and Numerical Experiments

This section mainly focuses on the analysis of different
numerical effects of the composite step strategy employed
into the BiCOR method with, far from being exhaustive, a
few typical circumstances of test problems as arising from
electromagnetics, discretizations of 2D/3D physical domains,
and acoustics, which are described in Table 1. All of them
are borrowed in the MATLAB format from the University
of Florida Sparse Matrix Collection provided by Davis [34],
in which the meanings of the column headers of Table 1
can be found. The effect analysis part may provide some
suggestions that when to make use of the composite step
strategy should make significant progress towards an exact
solution according to the convergence history of the residual
norms. It is with the hope that the stabilizing effect of
the CSBiCOR method could make the residual norm plot
become smoother and, hopefully, faster decreasing since far
outlying iterates and residuals are avoided in the smoothed
sequences.

In a realistic setting, one would use a precondi-
tioner. With appropriate preconditioning techniques, such
as those existing well-established preconditioning method-
ologies [35–37] based on approximate inverses, all the fol-
lowing involved methods for numerical comparison are
very attractive for solving relevant classes of non-Hermitian
linear systems. But this is not the point we pursue here.
All the experiments are performed without preconditioning
techniques in default if without other clarification. That is,
the preconditioner 𝐵 in Algorithm 3 will be taken as the
identity matrix except otherwise clarified. Refer to the survey
by Benzi [38] and the book by Saad [6] on preconditioning

techniques for improving the performance and reliability of
Krylov subspace methods.

For all these test problems below, the BiCORmethod will
be implemented using the same code as for the CSBiCOR
methodwith the pivot test beingmodified to always choose 1-
step update steps for the purpose of conveniently showing the
stabilizing effect of the composite step strategy on the BiCOR
method. So does for the BCG method as implementated in
[18, 19].

The experiments have been carried out with machine
precision 10−16 in double precision floating point arithmetic
in MATLAB 7.0.4 with a PC-Pentium (R) D CPU 3.00GHz,
1 GB of RAM.Wemake comparisons in four aspects: number
of iterations (referred to as Iters), CPU consuming time
in seconds (referred to as CPU), log

10
of the updated and

final true relative residual 2-norms defined, respectively, as
log
10
‖𝑟
𝑛
‖
2
/‖𝑟
0
‖
2
and log

10
‖𝑏 − 𝐴𝑥

𝑛
‖
2
/‖𝑟
0
‖
2
(referred to as

Relres and TRR). Iters takes the form of “∗/∗” recording
the total number of iteration steps and the number of 2 ×
2 iteration steps involved in the corresponding composite
step methods. Numerical results in terms of Iters, CPU and
TRR are reported by means of tables while convergence
histories involved are shown in figures with Iters (on the
horizontal axis) versus Relres (on the vertical axis). The
stopping criterion used here is that the 2-norm of the residual
be reduced by a factor (referred to as TOL) of the 2-norm
of the initial residual, that is, ‖𝑟

𝑛
‖
2
/‖𝑟
0
‖
2
< TOL, or when

Iters exceeded the maximal iteration number (referred to
as MAXIT). Here, we take 𝑀𝐴𝑋𝐼𝑇 = 500. All these
tests are started with an initial guess equal to 0 ∈ C𝑛.
Whenever the considered problem contains no right-hand
side to the original linear system 𝐴𝑥 = 𝑏, let 𝑏 = 𝐴𝑒,
where 𝑒 is the 𝑛 × 1 vector whose elements are all equal
to unity, such that 𝑥 = (1, 1, . . . , 1)𝑇 is the exact solution.
A symbol “∗” is used to indicate that the method did not
meet the required TOL beforeMAXIT or did not converge at
all.
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Table 2: Comparison results of Example 1 with TOL = 10−6.

Method BCG BiCOR CSBCG CSBiCOR
Iters 330 318 327/3 318/0
CPU 40.7807 39.0256 40.1300 39.2116
TRR −6.0318 −6.0150 −6.0318 −6.0150
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Figure 1: Convergence histories of Example 1 with TOL = 10−6.

7.1. Example 1: Dehghani/Light in Tissue. The first example is
one in which the BCG method and the BiCOR method have
almost quite smooth convergence behaviors and as few as
near breakdowns.TheCSBiCORmethodhas exactly the same
convergence behavior as the BiCOR method by investigating
Table 2 and Figure 1(b). Under such circumstances when the
convergence history of the norm of the residuals is smooth
enough so that the composite step strategy does not gain a
lot for the CSBiCOR method, the BiCOR method is much
preferred and there is no need to employ the composite
step strategy because the MATLAB implementation may
be probably a little penalizing for the CSBiCOR code with
respect to CPU. By the way, from Figure 1(c), the CSBCG
method works as predicted in [18, 19], smoothing a little the
convergence history of the BCG method. In particular, the
CSBCG method computes a subset of the BCG iterates by
clipping three “spikes” in the BCG history by means of the
composite 2×2 steps from the particular investigations given
in the bottom first two plots of Figures 1(d), 1(e) and Table 2.

Another interesting observation is that the good prop-
erties of the BiCOR method in terms of fast convergence
speed and smooth convergence behavior in comparison with

the BCGmethod are instinctually inherited by the CSBiCOR
method so that the CSBiCOR method outperforms the
CSBCGmethod in aspects of Iters andCPU as well as smooth
effect, as shown in Table 2 and Figure 1(f).

7.2. Example 2: Kim/Kim1. This is a good test example to
vividly demonstrate the efficacy of the composite step strategy
as depicted in Figure 2. The BCG method, as observed in
Figure 2(a), takes on many local “spikes” in the convergence
curve. In such a case, the CSBCG method does a wonderful
attempt to smooth the convergence history of the norm of
the residuals as shown in Figure 2(c), although not leading
to a monotonic decreasing convergence behavior. So does
the CSBiCOR method to the BiCOR method by observa-
tion of Figure 2(d). Moreover, the CSBiCOR method seems
to take less CPU than the BiCOR method while keeping
approximately the same TRR when the BiCOR method is
implemented using the same code as for the CSBiCOR
method and the pivot test is modified to always choose 1-step
update steps. Finally, the CSBiCORmethod is again shown to
be competitive to the CSBCG method as seen in Table 3 and
Figure 2(b).
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Figure 2: Convergence histories of Example 2 with TOL = 10−6.

Table 3: Comparison results of Example 2 with TOL = 10−6.

Method BCG BiCOR CSBCG CSBiCOR
Iters 248 182 158/90 129/56
CPU 53.8496 39.2517 43.3087 33.8528
TRR −6.3680 −6.0909 −6.3680 −6.0483

7.3. Example 3: HB/Young1c. In the third example, the BCG
and BiCOR methods have small irregularities and do not
converge superlinearly, as reflected in Figure 3(a). The two
methods above seem to have almost the same “asymptotical”
speed of convergence while the BiCOR method seems a little
smoother than the BCG method. From Figures 3(c) and
3(d), the composite step strategy seems to play a surprisingly
good stabilizing effect to the BCG and BiCOR method.
Furthermore, the CSBCG and CSBiCOR methods take less
CPU, respectively, than the BCG and BiCOR methods as
reported in Table 4. It is stressed that although the CSBiCOR
method consumes a little more Iters and CPU than the
CSBCGmethod, it presents a little more smooth convergence
behavior than the latter method as displayed in Figure 3(b).
This is still thanks to the promising advantages of the

empirically observed stability and fast convergence rate of the
BiCOR method over the BCG method.

8. Concluding Remarks

We have presented a new interesting variant of the BiCOR
method for solving non-Hermitian systems of linear equa-
tions. Our approach is naturally based on and inspired by the
composite step strategy taken for the CSBCGmethod [18, 19].
It is noted that exact pivot breakdowns are rare in practice;
however, near breakdowns could cause severe numerical
instability. The resulting CSBiCOR method is both theo-
retically and numerically demonstrated to avoid near pivot
breakdowns and compute all the well-defined BiCOR iterates
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Figure 3: Convergence histories of Example 3 with TOL = 10−6.

Table 4: Comparison results of Example 3 with TOL = 10−6.

Method BCG BiCOR CSBCG CSBiCOR
Iters 210 208 158/52 171/41
CPU 0.6848 0.5974 0.5372 0.5573
TRR −6.1155 −6.0984 −6.0389 −6.0017

stably with only minor modifications with the assumption
that the underlying biconjugate 𝐴-orthonormalization pro-
cedure does not break down. Besides reducing the number of
spikes in the convergence history of the norm of the residuals
to the greatest extent, the CSBiCOR method could provide
some further practically desired smoothing behavior towards
stabilizing the behavior of the BiCOR method when it has
erratic convergence behaviors. Additionally, the CSBiCOR
method seems to be superior to the CSBCGmethod to some
extent because of the inherited promising advantages of the
empirically observed stability and fast convergence rate of the
BiCOR method over the BCG method.

Since the BiCOR method is the most basic variant of
the family of Lanczos biconjugate 𝐴-orthonormalization
methods, its improvement will analogously lead to similar

improvements for the CORS and BiCORSTAB methods,
which is under investigation.

It is important to note the nonnegligible added complex-
ity when deciding the composite step strategy.That is we have
to make some extra computation before deciding to take a
2 × 2 step. Therefore, when the 2 × 2 step will not be taken
after the decision test, it will lead to extra computation as well
as CPU consuming time. It seems critical for us to optimize
the code to implement the CSBiCOR method.
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