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Corticomuscular activity modeling based on multiple data sets such as electroencephalography (EEG) and electromyography
(EMG) signals provides a useful tool for understanding human motor control systems. In this paper, we propose modeling
corticomuscular activity by combining partial least squares (PLS) and canonical correlation analysis (CCA).The proposed method
takes advantage of both PLS and CCA to ensure that the extracted components are maximally correlated across two data sets
and meanwhile can well explain the information within each data set. This complementary combination generalizes the statistical
assumptions beyond both PLS and CCA methods. Simulations were performed to illustrate the performance of the proposed
method.We also applied the proposedmethod to concurrent EEG and EMG data collected in a Parkinson’s disease (PD) study.The
results reveal several highly correlated temporal patterns between EEG and EMG signals and indicate meaningful corresponding
spatial activation patterns. In PD subjects, enhanced connections between occipital region and other regions are noted, which is
consistent with previous medical knowledge. The proposed framework is a promising technique for performing multisubject and
bimodal data analysis.

1. Introduction

Corticomuscular activity modeling is important for assessing
functional interactions in the motor control system, that is,
studying simultaneous cortical and muscular activities dur-
ing a sustained isometric muscle contraction. Traditionally,
the most commonmethod to assess the interactions between
motor-related brain areas and the muscles is magnitude-
squared coherence (MSC), which is a normalized measure
of correlation between two waveforms or signals in the
frequency domain. For instance, in monkeys, coherent oscil-
lations in the 20–30Hz band could be detected between
cortical local field potentials and the rectified electromyo-
graphy (EMG) from contralateral hand muscles that were
modulated during different phases of a precision grip task [1].
In humans, similar findings were discovered in the beta-band
corticomuscular coherence between magnetoencephalogra-
phy (MEG) [2] and electroencephalography (EEG) [3] from
the primary motor cortex during isometric contractions.

Although MSC has been popular in studying cortico-
muscular coupling, it suffers from several limitations. First,
addressing the intersubject variability challenge to make a
robust group inference is not straightforward with MSC
because the exact frequency of maximum coupling may be
inconsistent across subjects. Second, MSC emphasizes the
role of individual locus in the brain in driving the motor
system, while motor activity is known to be more distributed
[4]. In fact, recent work has suggested that interactions
between brain regions correspond more closely to ongoing
EMG than activity at discrete sites [5–7]. Moreover, when the
brain activity is measured by EEG, applying MSC directly
to raw EEG and EMG signals normally yields a very low
coherence value, because only a small fraction of ongoing
EEG activity is related to the motor control [8]. This implies
that extensive statistical testing is required to determine
whether the EEG/EMG coherence is statistically significant.

Recently, several data-driven multivariate methods have
been developed for analyzing biological data, and they seem



2 Journal of Applied Mathematics

to be appropriate for modeling corticomuscular activity
because these methods explore dependency relationships
between data sets. These methods include multiple linear
regression, principal component regression, partial least
squares (PLS), and canonical correlation analysis (CCA)
[9]. Among these methods, the latent-variable- (LV-) based
approaches, such as PLS and CCA, play a dominating role,
probably due to the fact that the extracted LVs could help the
biological interpretations of the results.

PLS, first developed for process monitoring in chemical
industry, exploits the covariation between predictor variables
and response variables and finds a new set of latent compo-
nents that maximally relate to them [10]. An advantage of
PLS is that PLS can handle high-dimensional and collinear
data, which is often the case in real-world biological appli-
cations. PLS and its variants have been investigated in many
medical applications, such as assessing the spatial patterns
of brain activity in functional magnetic resonance imaging
(fMRI) data associated with behavioural measures [11] and
the common temporal components between EEG and fMRI
signals [12]. In addition to the ability of handling high-
dimensional and collinear data, PLS is sufficiently flexible that
it can be extended to perform group level analysis and to
accommodate multiway data [5].

CCA is commonly used to seek a pair of linear trans-
formations between two sets of variables, such that the data
are maximally correlated in the transformed space. Generally
CCA is not as popular as PLS in practical applications [13].
This is probably because real-world data are usually high
dimensional and collinear, and thus applying CCA directly
to the raw data can be ill-conditioned. However, with some
appropriate preprocessing strategies, CCA has been shown to
be quite useful in many medical applications. For instance,
in [14], Clercq et al. successfully removed muscle artifacts
from a real ictal EEG recording without altering the recorded
underlying ictal activity. In [15], Gumus et al. found that there
were significant correlations at expected places, indicating a
palindromic behavior surrounding the viral integration site.
CCA can be extended to accommodate multiple data sets
simultaneously [16].

Although PLS and CCA have been investigated in many
medical applications, to the best of our knowledge no report
has profoundly explored their underlying differences, com-
pared their characteristic performances, and combined their
advantages to overcome their drawbacks. For corticomuscu-
lar activity modeling, as we will elaborate more in Section 2,
both PLS and CCA have their advantages and disadvantages,
but perhaps more importantly, these two methods can be
considered complementary. In this paper, we propose com-
bining PLS and CCA to improve the performance of the
joint LV extraction, and the proposed method is denoted
as PLS + CCA. More specifically, the proposed PLS + CCA
has a two-step modeling strategy: we first adopt PLS to
obtain LVs across two data sets and then perform CCA on
the extracted LVs. In the first step, PLS is performed for
preliminary LV preparation. The aim of this step is to extract
LVs which can most explain its own data set and meanwhile
are well correlated with the LVs in the other data set. Besides,
this step can also prevent the ill-conditioned problem when

applying CCA directly to the raw data. In the second step,
CCA is applied to the extracted LVs by PLS to construct the
LVs by maximizing the correlation coefficients. With these
two steps, it is ensured that the extracted components are
maximally correlated across two data sets andmeanwhile can
well explain the information within individual data sets.

Wewill evaluate the performance of the proposedmethod
on both synthetic data and real-world data. We first illustrate
its performance using simulations, and we then apply the
method to concurrent EEG and EMG data collected from
patients with Parkinson’s disease (PD) and age-matched
normal subjects when they perform a dynamic, visually
guided tracking task. We note highly correlated temporal
patterns between EEG and EMG signals and meaningful
spatial activation patterns. While the proposed method is
intentionally proposed for corticomuscular coupling analysis,
it can also be applied to analyze other types of concurrent
signals, including, but not limited to, fMRI, photoplethys-
mograph (PPG), electrocardiography (ECG), and kinematic
data.

2. Materials and Methods

2.1. Methods. In this section, we first analyze the properties
of PLS and CCA and demonstrate their complementarity.
Based on this observation, we then propose combining the
two approaches to have the PLS + CCA method. The two
zero-mean data sets are stored in two matrices, the predictor
matrixX(𝑁×𝑝) and the response matrix Y(𝑁×𝑞), where𝑁
means the number of observations and 𝑝 and 𝑞 indicate the
numbers of variables in corresponding matrices.

2.1.1. Partial Least Squares. PLS exploits the covariation
between predictor variables and response variables and tries
to find a new set of LVs that maximally relate to them [13]. In
otherwords, the covariance between the extracted LVs should
be maximized as

max
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where w
𝑖

’s (𝑖 = 1, 2) are the weight vectors. A typical PLS
can be implemented by the classical NIPALS algorithm [10].
Also, an alternative calculation way is to perform eigenvalue-
eigenvector decomposition [17]. Therefore, the maximum of
(1) is achieved by havingw

1

andw
2

as the largest eigenvectors
of the matrices X𝑇YY𝑇X and Y𝑇XX𝑇Y, respectively. To
obtain subsequent weights, the algorithm is repeated with
deflatedX andYmatrices.The detailed calculation procedure
can be found in the appendix.

The number of components to be extracted is a very
important parameter of a PLS model. Although it is possible
to extract as many PLS components as the rank of the data
matrixX, not all of them are generally used.Themain reasons
for this are the following: the measured data are never noise-
free and some small components only describe noise, and
it is common to ignore small components because of the
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problems of collinearity. Therefore, appropriate measures are
needed to determine when to stop. Typically, the number
of components needed to describe the data matrices is
determined based on the amount of variation remained in the
residual data [10].

2.1.2. Canonical Correlation Analysis. Different from PLS,
CCA is to find linear combinations of both X and Y variables
which havemaximum correlation coefficient with each other.
This leads to the same objective function but different
constraints compared with (1):
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where k
𝑖

’s (𝑖 = 1, 2) are the weight vectors.
The solutions to this problem are the largest eigenvec-

tors of the matrices (X𝑇X)
−1X𝑇Y(Y𝑇Y)

−1Y𝑇X and
(Y𝑇Y)

−1Y𝑇X(X𝑇X)
−1X𝑇Y, respectively. The subsequent

weights are the eigenvectors of the same matrix in the order
of decreasing eigenvalues. The predictor LVs UX can be
calculated directly from the original X matrix as UX = XV

1

,
the columns of which are uncorrelated with each other. The
detailed derivation is shown in the appendix. However, the
solution depends heavily on whether or not the covariance
matrix X𝑇X is invertible. In practice, it is possible to have
rank (X𝑇X) < 𝑝 so that the invertibility cannot be satisfied,
and directly applying eigenvalue decomposition in the
raw data space may lead to the ill-conditioned problem.
Therefore, some appropriate preprocessing strategies are
needed in practice before applying CCA.

2.1.3. The Combined PLS + CCA Method. Based on the
discussion above, we can see that the fundamental difference
between PLS and CCA is that PLS maximizes the covariance
while CCA maximizes the correlation. The objective of PLS
is to construct LVs which could most explain their own data
set andmeanwhile are well correlated with the corresponding
LVs in the other set. In other words, the first priority of PLS
is to find the LVs which can explain significant proportion
of variance in each data set, and the second priority is
to find the LVs with relatively high correlation coefficients
between the two data sets. In contrast, the only objective
of CCA in the construction of LVs is to maximize their
correlation coefficients with the LVs in another data set.
From this point of view, the LVs extracted by PLS are
able to represent major information for individual data sets
while the ones extracted by CCA may be trivial (e.g., noises
with similar patterns) even if their correlation coefficient is
maximum. This is an advantage of PLS over CCA. Besides,
PLS can handle high-dimensional and collinear data, which
is often the case in real-world biological applications, while
applying CCAdirectly to the raw datamay be ill-conditioned.
However, we should note that our goal is to find the
relationships between two data sets, not just to explore the
information within individual data sets. It is possible that a
higher covariance merely results from the larger variance of

LVs, which may not necessarily imply strong correlations.
To overcome this, CCA is a powerful tool to ensure that
the extracted LVs have similar patterns across the data
sets.

For corticomuscular activity modeling, the coupling
relationships between EEG and EMG signals are what to
be explored. In practice, EEG and EMG signals can be
contaminated by other types of signals and are never noise-
free. In addition, the signals from adjacent channels generally
are similar, which leads to collinear data. By employing
PLS, we can deal with the collinear EEG/EMG data sets
and extract significant LVs, but it cannot guarantee that the
corresponding LVs are highly correlated with each other.
With using CCA, we can extract highly correlated LVs
from EEG and EMG signals, but it cannot ensure that
such LVs are nontrivial and we may face the ill-conditioned
problem.

For corticomuscular coupling analysis, both PLS and
CCA have their advantages and disadvantages, but perhaps
most importantly, these two methods can be considered
complementary. It is natural for us to think of combining PLS
and CCA to form a two-step modeling strategy. In the first
step, PLS is performed for preliminary LV preparation. The
aim of this step is to extract LVs which can most explain its
own data set and meanwhile are well correlated to the LVs
in another data set. In this case, the trivial and irrelevant
information across data sets could be removed. Besides,
this step can also prevent the ill-conditioned problem when
applying CCA directly to the raw data. In the second step,
CCA is applied to the prepared LVs by PLS to construct the
LVs by maximizing the correlation coefficients. After these
two steps, it is ensured that the extracted components are
maximally correlated across data sets and meanwhile can
well explain the information within each individual data set.
The details of the proposed PLS + CCA method are given in
the appendix, and the specific implementation procedure is
shown in Algorithm 1.

2.2. Synthetic Data. In this simulation, we applied the pro-
posed method to synthetic data and also reported the results
of the PLS and CCA approaches for comparison. As an
illustrative example, without loss of generality, four sources
were generated and analyzed for each data set.

The following four source signals were considered for the
data set X:

s
11

= 1.5 sin (0.025 (𝑡 + 63)) sin (0.2𝑡) ,

s
12

= 1.5 sin (0.025𝑡) ,

s
13

= sign (sin (0.3𝑡) + 3 cos (0.1𝑡)) ,
s
14

= uniformly distributed noise in the range [−1.5, 1.5] ,

(3)

where 𝑡 denotes the time index vector, valued from 1 to 1000,
and s
1𝑖

’s (𝑖 = 1, 2, 3, 4) represent four simulated sources, as
shown in Figure 1(a). Note that here s

1𝑖

’s are column vectors.
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Input: two data sets X (with size𝑁 × 𝑝) and Y (with size𝑁 × 𝑞)
Output: corresponding LVs matrices UX, and UY

The First Step:
(1) Solve the eigen decomposition problems:

(X𝑇YY𝑇X)w
1

= 𝜆
1

w
1

and (Y𝑇XX𝑇Y)w
2

= 𝜆
2

w
2

.
(2) Determine 𝑅

1

and 𝑅
2

, the numbers of LVs extracted, corresponding to
the above two problems by the ratio of explained variance.

(3) Determine the final number of LVs: 𝑅 = min(𝑅
1

, 𝑅
2

).
(4) Set 𝑐𝑜𝑢𝑛𝑡 = 𝑅.
(5) Initialize both LVs matrices to be empty, that is, TX = [] and TY = [].
(6) while 𝑐𝑜𝑢𝑛𝑡 > 0 do
(7) Set w

1

and w
2

to be the largest eigenvectors of the matrices
X𝑇YY𝑇X and Y𝑇XX𝑇Y, respectively.

(8) Calculate the LVs as tX = Xw
1

and tY = Yw
2

.
(9) Set TX = [TX tX] and TY = [TY tY].
(10) Deflate X by subtracting the effects of the LV tX from the data space:

X = X − tX(t𝑇XtX)
−1t𝑇XX.

(11) Deflate Y by subtracting the effects of the LV tY from the data space:
Y = Y − tY(t𝑇YtY)

−1t𝑇YY.
(12) Let 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 − 1.
(13) end while
The Second Step:
(14) Solve the following eigen decomposition problems:

[(T𝑇XTX)
−1T𝑇XTY(T𝑇YTY)

−1T𝑇YTX] k1 = 𝜂
1

k
1

and

[(T𝑇YTY)
−1T𝑇YTX(T𝑇XTX)

−1T𝑇XTY] k2 = 𝜂
2

k
2

.
(15) Set V

1

and V
2

to be the 𝑅 associated eigenvectors, respectively.
(16)The recovered LVs UX and UX can be calculated by

UX = TXV1 and UY = TYV2.

Algorithm 1: The combined PLS + CCA method.

Table 1: The correlation coefficients between the corresponding
source pairs of X and Y.

s11 and s21 s12 and s22 s13 and s23 s14 and s24
CC∗ 0.3655 0.8787 0.5520 1.00
∗Here CC stands for correlation coefficient between two source signals.

Also, four source signals were considered for the data set
Y:

s
21

= 1.5 sin (0.025 (𝑡 + 69)) sin (0.2 (𝑡 + 6)) ,

s
22

= 1.5 sin (0.025 (𝑡 + 20)) ,

s
23

= sign (sin (0.3 (𝑡 + 7)) + 3 cos (0.1 (𝑡 + 7))) ,

s
24

= uniformly distributed noise (the same as s
14

) ,

(4)

where the notations are similarly defined.The four simulated
sources are shown in Figure 1(b).

Two mixed data sets X and Y were generated as follows
with each row denoting one observation in their respective
data space:

X = S
1

⋅ A, Y = S
2

⋅ B, (5)

where S
1

= [s
11

s
12

s
13

s
14

] and S
2

= [s
21

s
22

s
23

s
24

] with

A =
[
[
[

[

0.76 −0.65 0.77 0.83 0.82

0.49 0.25 0.12 0.22 −0.17

0.28 −0.21 0.11 0.19 −0.11

0.07 0.06 −0.08 0.07 −0.04

]
]
]

]

,

B =
[
[
[

[

0.73 −0.82 0.91 −0.79 0.88

0.42 −0.27 0.17 −0.20 −0.30

0.27 0.26 −0.18 0.17 −0.24

0.08 −0.01 0.01 0.09 −0.01

]
]
]

]

.

(6)

The patterns of the corresponding sources are similar
across the two data sets, representing common information.
However, from (3) and (4), we can see that there are some
time-shifts between corresponding source pairs, and their
correlation coefficients are given in Table 1. The first pair
sources have the lowest CC, but in the mixed data sets
we intentionally assign the highest weights to this pair of
sources, as shown in the mixing matrices A and B. This pair
can represent the major information within individual data
sets but cannot reflect too much the coupling relationships
between the two sets. The second and third pairs have
relatively high CCs and moderate weights in the mixed data
sets. These two pairs generally not only contain the major
information within individual data sets, but also represent
the coupling relationships across data sets. The fourth pair
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Figure 1: The four simulated source signals: (a) for X; (b) for Y.
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Figure 2: The squeezing task: the subject was instructed to follow
the target bar (yellow) as closely as possible, and the green bar shows
the force exerted by the subject.

sources have the highest CC, but we assign the smallest
weights. Although this pair sources have the highest CC,
they do not represent significant information due to the
small weights. Generally, they could be regarded as trivial
information. Moreover, different white Gaussian noise with
10% power was added to each source in each data space.

2.3. Real Data. In many medical applications, the results
of analyzing one subject’s data cannot be generalized to
the population level because of the intersubject variability
concern.Therefore, it is necessary to recruit a proper number
of subjects to perform a group analysis in many medical
applications. For modeling the corticomuscular activity, we
apply the proposed method to concurrent EEG and EMG
signals collected from normal subjects and patients with PD
during a motor task.

2.3.1. Data Collection. Thestudywas approved by theUniver-
sity of British Columbia Ethics Board, and all subjects gave
written, informed consent prior to participating. Nine PD
patients (mean age: 66 yrs) were recruited from the Pacific

Parkinson’s Research Centre at the University of British
Columbia (Vancouver, Canada). They all displayed mild to
moderate levels of PD severity (stages 1-2 on the Hoehn and
Yahr scale) and were being treated with L-dopa medication
(mean daily dose of 720mg). All PD subjects were assessed
after a minimum of 12-hour withdrawal of L-dopa medi-
cation, and their motor symptoms were assessed using the
Unified Parkinson’s Disease Rating Scale (UPDRS), resulting
in a mean score of 23. In addition, eight age-matched healthy
subjects were recruited as controls. During the experiment,
subjects seated 2m away from a large computer screen. The
visual target was displayed on the screen as a vertical yellow
bar oscillating in height at 0.4Hz. Subjects were asked to
squeeze a pressure-responsive bulb with their right hand.
The visual feedback representing the force output of the
subject was displayed as a vertical green bar superimposed
on the target bar as shown in Figure 2. Applying greater
pressure to the bulb increased the height of the green bar,
and releasing pressure from the bulb decreased the height of
the green bar. Subjects were instructed to make the height
of the green bar match the height of target bar as closely as
possible. Each squeezing period lasted for 15 seconds and was
followed by a 15-second rest period. The squeezing task was
performed twice. The force required was up to 10% of each
subject’s maximum voluntary contraction (MVC), which was
measured at the beginning of each recording session.

The EEG data were collected using an EEG cap (Quick-
Cap, Compumedics, TX, USA) with 19 electrodes based
on the International 10–20 system. The EEG data were
sampled at 1000Hz using SynAmps2 amplifiers (NeuroScan,
Compumedics, TX, USA). A surface electrode on the tip of
the nose was used as ground. Ocularmovement artifacts were
measured using surface electrodes placed above and below
the eyes (Xltek, ON, Canada). Data were later processed
by a band-pass filter (1 to 70Hz) offline and downsampled
to 250Hz. Artifacts associated with eye blinks and muscu-
lar activities were removed using the Automated Artifact
Removal in the EEGLAB Matlab Toolbox [18]. The raw time
sequences of the electrodes were then normalized to have
zero-mean and unit variance. For subsequent analysis, data
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collected during the squeezing periods were concatenated in
time into a single matrix for each individual subject. Data
from the rest periods were excluded from the analysis.

The EMG signals were recorded using self-adhesive,
silver, silver-chloride pellet surface electrodes with 7mm
diameter. A bipolar montage was used with a fixed inter-
electrode distance of 30mm. The surface EMG signals were
simultaneously collected together with the EEG signals and
were amplified and sampled at 1000Hz. To be consistent with
the EEG preprocessing, the EMG signals were downsampled
offline to 250Hz, and only the squeezing periods were used
for subsequent analysis.

2.3.2. Feature Extraction. In most existing studies, the anal-
ysis for corticomuscular coupling is performed directly on
the raw EEG and EMG data. This typically yields quite small
correlation values. Nonetheless, with appropriate preprocess-
ing steps, highly correlated EEG and EMG feature(s) can be
extracted from the raw signals. In this work, we examine the
coupling relationships between time-varying EEG features
and amplitudes of the EMG signals, constituting X

𝑏

and Y
𝑏

,
respectively, for each subject 𝑏 (for 𝑏 = 1, 2, . . . , 𝐵). We have a
total of 𝐵 subjects (𝐵 = 17 in this study). To achieve a group
analysis, all subjects’ data sets are concatenated together as

X = [X
1

,X
2

, . . . ,X
𝐵

] , ∀𝑏 = 1, 2, . . . , 𝐵,

Y = [Y
1

,Y
2

, . . . ,Y
𝐵

] , ∀𝑏 = 1, 2, . . . , 𝐵

(7)

with the assumption that all subjects share common group
patterns in the temporal dimension [19].

EEG Features. Pairwise Pearson’s correlations [20] are consid-
ered in this study. Pearson’s correlation measures the depen-
dency between a pair of EEG signals e∗ = (𝑒
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, 𝑒
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∘
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, (8)

where 𝑒
∗ and 𝑒

∘ are the sample means of e∗ and e∘. In this
work, we calculate the time-varying pairwise correlations
between EEG channels, using a Hamming window with
length 300 and with a 95% overlap. Therefore, the raw EEG
information can be represented by a two-dimensional matrix
with size 𝑁 × 𝑀, where the rows correspond to the samples
at different time points and the columns correspond to
the features, that is, pairwise correlations between the EEG
channels.

EMG Features. An individual EMG channel signal can be
considered as a zero-mean, band-limited and wide-sense sta-
tionary stochastic process modulated by the EMG amplitude,
which represents the overall muscle activity of individual
underlying muscle fibers [21]. While different techniques
have been proposed for accurate amplitude estimation, in this
study, we employ the root-mean-square (RMS) approach to

calculate the EMG amplitude of short-duration EMG signals
e = (𝑒

1

, 𝑒
2

, . . . , 𝑒
𝑛

):

𝑒rms = √
1

𝑛
(𝑒
2

1

+ 𝑒
2

2

+ ⋅ ⋅ ⋅ + 𝑒2
𝑛

). (9)

A moving window with length 𝑛 = 300 and a 95% overlap
is applied here, the same as in the EEG feature calculation,
to ensure that the obtained EEG and EMG features are
temporally aligned and matched.

In the above setting, for each subject 𝑏 (for 𝑏 =

1, 2, . . . , 𝐵), X
𝑏

and Y
𝑏

represent the time-varying feature
matrices of EEG and EMG, respectively. The length of
the time sequences here is 480 associated with the 300-
length moving window and a 95% overlap. For the EEG
correlation feature, since we have 19 EEG channels based
on the International 10–20 system, thus there are a total of
𝐶
19

2

= 171 correlation connections. Therefore, X
𝑏

is of size
480 × 171. For the EMG amplitude feature, since there are
three surface EMG channels, Y

𝑏

is of size 480 × 3.

2.3.3. Significance Assessment. To determine the statisti-
cal significance levels of the extracted LVs, we employ a
nonparametric permutation test [22] in which the temporal
order of EEG features X

𝑏

is uniformly permuted for all sub-
jects while keeping the EMG featuresY

𝑏

intact. Two hundred
random permutations are generated. The proposed PLS +
CCA method described in Section 2.1.3 is applied to each
of these permutations. The correlation coefficients among
the extracted temporal patterns from permuted EEG features
and unchanged EMG features are then calculated to form
an empirical null distribution. The 𝑝 value of the original
EEG/EMG correlation coefficient is then computed from the
null distribution as the proportion of sampled permutations
whose correlation coefficients are greater than or equal to
the original correlation coefficient. The components with 𝑝

value being less than 0.05 are considered to be statistically
significant, denoted as LVEEG and LVEMG, bothwith size (𝑁×

𝐾), where𝐾means the number of significant components.

2.3.4. Spatial Pattern Extraction. Our goal is to investigate
the differences in spatial patterns of EEG channels between
the normal and PD patient groups when the subjects perform
a motor task. After the identification of significant temporal
patterns, we can regress the EEG-related components LVEEG
back onto the EEG features X

𝑏

(for 𝑏 = 1, 2, . . . , 𝐵) for each
subject as follows:

p
𝑏𝑘

= √
1

lk𝑇
𝑘

X
𝑏

X𝑇
𝑏

lk
𝑘

X𝑇
𝑏

lk
𝑘

, 𝑘 = 1, 2, . . . , 𝐾, (10)

where lk
𝑘

is the 𝑘th column of LVEEG and p
𝑏𝑘

is the spatial
pattern of the 𝑘th component for subject 𝑏. In addition, we
also want to determine which EEG features in the spatial
patterns have significant contributions to the corresponding
temporal patterns. This is done by identifying EEG features
that have weights statistically different from zero. To deter-
mine the group-level spatial pattern, for each significant
component, we apply a two-tailed 𝑡-test to each element of
the spatial patterns of all subjects with each group.
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Figure 3: (a) The LVs estimated in X using PLS. (b) The LVs estimated in Y using PLS.
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Figure 4: (a) The LVs estimated in X using CCA. (b) The LVs estimated in Y using CCA.
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Figure 5: (a) The LVs estimated in X using the proposed PLS + CCA. (b) The LVs estimated in Y using the proposed PLS + CCA.
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Figure 6: The two components from the proposed PLS + CCA method when using the EEG correlation features and the EMG amplitude
features as data sets. Top panel: temporal patterns of the EEG (blue, solid) and the EMG (red, dashed). The oscillation of the target bar is
also shown (black, solid). Bottom panel: EEG spatial patterns of normal subjects (left) and PD subjects (right). The connections reflect the
respective spatial patterns in the two groups. CC means correlation coefficient.

3. Results and Discussion

3.1. The Synthetic Data Case. The extracted components
using PLS, CCA, and the proposed PLS + CCA methods
are shown in Figures 3, 4, and 5, respectively. The LVs
extracted by PLS are automatically ordered in terms of their
significance. To some extent, the LVs successfully reflect
the corresponding relationships of the underlying sources
between X and Y. However, compared with the original
sources, the extracted LVs are distorted, suggesting that a
higher covariance may merely result from the larger variance
of LVs, which may not necessarily imply strong correlations.
We can see that CCA can recover the original sources
accurately in both data spaces, and the LVs are ordered strictly
according to their correlation coefficients, but it completely
ignores the influence of the variance and thus the extracted
LVs may only reflect trivial information of the data sets (e.g.,
the 1st LV). For instance, although the first pair of LVs has
the highest correlation coefficient, they do not contain major
information of the data spaces. In practice, such LVs generally
represent the noises with similar patterns simultaneously
coupled into the two data modalities. When jointly modeling
the data sets, they should be removed. We also note that PLS
only extracts three LVs since they are sufficient to describe the
data sets. These LVs do not include the first pair recovered by
CCA due to their triviality. The above observations motivate
us to employ the proposed PLS + CCA method.

When the proposed method is employed, the dominant
sources which make significant contributions to both data
spaces are first identified and ordered in terms of covariance.
At the same time, trivial information is removed. Then,

within the extracted major information, sources that are
highly correlated are accurately recovered with the focus on
correlation. In this case, it is ensured that the extracted LVs
are maximally correlated across two data sets and meanwhile
can well explain the information within each individual data
set.

3.2. The Real Data Case. In this case study, we applied the
proposed method for corticomuscular activity modeling to
the EEG and EMG features generated using the procedure
described in Section 2.3.2 from 8 normal and 9 PD subjects
simultaneously. The joint modeling of normal and PD data
allows the identification of common temporal patterns across
the groups. Meanwhile, the spatial patterns may be different
across subjects, fromwhichwe could identify specific correla-
tion connections that are differently recruited by PD subjects
during the motor task.

Using the permutation test, two components were
deemed significant (𝑃 ≤ 0.05) (Figure 6). Note that in the
figure only connections whose weights are statistically differ-
ent from zero are shown. The results based on real data from
PDandnormal subjects performing a dynamicmotor task are
promising. In the past, most EEG/EMGcoupling studies have
compared EEG activity at a specific locus (e.g., sensorimotor
cortex contralateral to the hand performing the task) with the
EMG during sustained contractions. However, we found that
in normal subjects, correlations between the contralateral
sensorimotor cortex and other regions are closely associated
with ongoing EMG features during dynamic motor tasks
(Figure 6). It is likely that the dynamic nature of the task
might require the recruitment of additional regions such as
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frontal regions for motor selection [23], contralateral (i.e.,
ipsilateral to hand movement) sensorimotor cortex for fine
modulatory control [24], and occipital regions for posterror
adaptations [25].

From Figure 6, we note similar connections between
the PD and control groups, especially when comparing
connections associated with each component, but we also
note significant differences when comparing the PD and
control groups. It is noted that PD subjects have increased
connectivity between the frontal regions and central and
sensorimotor cortices, compared with control subjects. This
may reflect the enhanced effort required by PD subjects for
motor task switching [26], a problem common in this PD
population [27]. In addition, PD subjects have a significant
connection between the left sensorimotor and occipital
regions, that is, not present in the control group. We note
that the connections with occipital regions are prominent in
PD subjects. Compared to normal subjects, the PD subjects
heavily rely on visual cues for the initiation [28] and ongoing
control ofmovement [29].Moreover, the increased intra- and
interhemispheric connections observed in the PD subjects
are consistent with the findings in previousMEG studies [30].

4. Conclusions

In this paper, we combine the advantages of PLS andCCAand
propose a PLS + CCA method to improve the performance
of the joint LV extraction. We illustrate the performances of
the proposed approach using both synthetic data and real-life
data. For corticomuscular activity modeling, we note highly
correlated temporal patterns between EEG and EMG signals
and meaningful spatial activation patterns. The proposed
method is a promising analysis technique for multisubject
and bimodal data sets, including, but not limited to, fMRI,
PPG, ECG, and kinematic data.

Appendix

A. The Derivation of the Algorithm

In this appendix, we show how to mathematically derive the
solution of the proposed PLS + CCA method.

A.1.The First Step: PLS. The cost function of PLS is as follows
(the same as (1) in Section 2.1.1):

max
w
1
,w
2

(w𝑇
1

X𝑇Yw
2

)
2

s.t. w𝑇
𝑖

w
𝑖

= 1, 𝑖 = 1, 2,

(A.1)

where w
𝑖

’s (𝑖 = 1, 2) are the weight vectors.
By employing the method of Lagrange multipliers, we

rewrite the initial cost function as

L (w
𝑖

, 𝜆
𝑖

) = (w𝑇
1

X𝑇Yw
2

)
2

−

2

∑

𝑖 =1

𝜆
𝑖

(w𝑇
𝑖

w
𝑖

− 1) , (A.2)

where 𝜆
𝑖

’s are Lagrange multipliers.

Now we only present the detailed derivations regarding
w
1

since w
2

can be similarly derived. Taking the derivatives
of L(w

𝑖

, 𝜆
𝑖

) with respect to w
1

and 𝜆
1

and setting them to be
zero, we have

∇Lw
1

= 2

w𝑇
1

X𝑇Yw
2


X𝑇Yw

2

− 2𝜆
1

w
1

= 0, (A.3)

∇L
𝜆
1

= w𝑇
1

w
1

− 1 = 0. (A.4)

Left multiplying both sides of (A.3) by w𝑇
1

, we have

2 (w𝑇
1

X𝑇Yw
2

)
2

− 2𝜆
1

w𝑇
1

w
1

= 0. (A.5)

According to (A.4), 𝜆
1

can be calculated as

𝜆
1

= (w𝑇
1

X𝑇Yw
2

)
2

. (A.6)

Through the similar procedure, ∇Lw
2

and 𝜆
2

can be easily
derived as

∇Lw
2

= 2
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2
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2
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Substituting (A.8) into (A.3) and (A.7), respectively, we have
the following two expressions:

√𝜆
2

X𝑇Yw
2

= 𝜆
1

w
1

, (A.9)

1

√𝜆
2

Y𝑇Xw
1

= w
2

. (A.10)

By substituting (A.10) into (A.9), we can formulate an
eigenvalue-eigenvector decomposition problem:

(X𝑇YY𝑇X)w
1

= 𝜆
1

w
1

. (A.11)

Similarly, we can have the formulation for w
2

as

(Y𝑇XX𝑇Y)w
2

= 𝜆
2

w
2

. (A.12)

The above solutions are straightforward. A practical issue
is to determine the number of LVs. In our study, we determine
the number 𝑅 by setting a threshold that corresponds to
the ratio of explained variance (e.g., 95%). Therefore, the
corresponding LVs in X and Y can be calculated by

TX = XW
1

, TY = YW
2

, (A.13)

where W
1

is composed of the first 𝑅 eigenvectors associated
with (A.11) and the columns of TX represent the 𝑅 compo-
nents extracted from X.W

2

and TY are similarly defined.
However, the collinearity problem may exist in the LVs

calculated through the above procedure since each data set is
used repetitively for each LV’s calculation. The extracted LVs
are not necessarily uncorrelated to each other. To effectively
implement the second step and avoid the ill-conditioned
problem, we need to address this uncorrelatedness concern
and thus we design a deflation procedure: before extracting



10 Journal of Applied Mathematics

the second common LV in each data space, X and Y are
deflated by their corresponding first LVs as follows:

X = X − tX(t
𝑇

XtX)
−1

t𝑇XX,

Y = Y − tY(t
𝑇

YtY)
−1

t𝑇YY.

(A.14)

Then the above procedure will be repeated for the further
extraction of commonLVs. In this way, the following newLVs
are uncorrelated to the previous ones.

The purpose of this step is to extract LVs which can
most explain the individual data sets and meanwhile are well
correlated to the LVs in another data set. With this step,
trivial and irrelevant information across data sets could be
removed. However, a higher covariance may merely result
from the larger variance of LVs, which may not necessarily
imply strong correlations. To address this concern, the 2nd
step will help further refine the results.

A.2.The Second Step: CCA. Based on the extracted LVs in the
first step, the objective function of CCA can be constructed as
follows:

max
k
1
,k
2

(k
𝑇

1

T𝑇XTYk2)
2

s.t. k
𝑇

1

T𝑇XTXk1 = 1, k
𝑇

2

T𝑇YTYk2 = 1,
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where k
𝑖

’s (𝑖 = 1, 2) are the weight vectors.
By employing the method of Lagrange multipliers, we

rewrite the initial objective function as

L (k
𝑖

, 𝜂
𝑖
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T𝑇XTYk2)
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1
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2
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2

T𝑇YTYk2 − 1) ,

(A.16)

where 𝜂
𝑖

’s are Lagrange multipliers. Similar to the derivation
in the first step, we can obtain the following eigenvalue-
eigenvector decomposition problem:

[(T𝑇XTX)
−1

T𝑇XTY(T
𝑇

YTY)
−1

T𝑇YTX] k1 = 𝜂
1

k
1

. (A.17)

Similarly, for k
2

, we have

[(T𝑇YTY)
−1

T𝑇YTX(T
𝑇

XTX)
−1

T𝑇XTY] k2 = 𝜂
2

k
2

. (A.18)

The solutions to this problem are the𝑅 largest eigenvectors of
the corresponding matrices. The recovered LVs UX and UX
can be calculated directly from the matrices TX and TY by

UX = TXV1, UY = TYV2, (A.19)

where V
1

is composed of the 𝑅 eigenvectors associated with
(A.17) and the columns of UX represent the 𝑅 components
extracted from TX. V2 and UY are similarly defined.

After these two steps, it is ensured that the extracted
componentsUX andUY are maximally correlated across data
sets and meanwhile can well explain the information within
each individual data set.
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