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We present a study on a class of interconnected nonlinear systems and give some criteria for them to behave like a filter. Some
chaotic systems present this kind of interconnected nonlinear structure, which enables the synchronization of amaster-slave system.
Interconnected nonlinear filters have been defined in terms of interconnected nonlinear systems. Furthermore, their behaviors have
been studied numerically and theoretically on different input signals.

1. Introduction

In the study of nonlinear dynamics, much research was
devoted to synchronization of chaotic systems, which have
been unidirectional coupling [1], and one of the main
applications is in secure communications systems [2]. Under
unidirectional coupling, there is a master system that forces
a slave system. Let us begin by considering a master system
whose temporal evolution is ruled by the following equation:

ẏ = 𝑓 (y) , (1)

where y ∈ R𝑛 is the state vector, with 𝑓 defining a vector field
𝑓 : R𝑛 → R𝑛. The slave system is given by

ẋ = 𝑔 (x, y) , (2)

where x ∈ R𝑚 is the state vector, and the function 𝑔 :

R𝑚 × R𝑛 → R𝑚 describes the dynamics of the slave system
and coupling. The master system behaves as an autonomous
system and the slave system is a forced system that under
certain conditions could behave as a nonautonomous system,
where its dynamic is completely determined by the master
system; that is, it means that the slave system acts in function

of the master system. Hence, the slave system can be seen as a
driven system by an external force, and then it can be studied
as a filter when the input signal comes from a master system
or any external signal unidirectional coupled.

There are several asymptotical behaviors reported based
on master-slave configuration. Some cases are summarized
as follows: Identical Synchronization (IS) implies coincidence
of the corresponding states of the interacting systems [1].
Lag Synchronization (LS) occurs when the trajectory of one
oscillator is delayed by a specific time and is identical to the
trajectory of the other oscillator [3]. Phase Synchronization
(PS) means the lock of chaotic oscillator phases, regardless of
their amplitudes [4]. Frequency Entrainment Synchronization
(FES) occurs when two systems are oscillating with the same
frequency [5]. Generalized Synchronization (GS) is defined
as the presence of some functional relationship between
the states of the slave and master systems [6]. Multimodal
Generalized Synchronization (MGS) is presented when there
are several basins of attraction for the slave system, and
generalized synchronization is also presented [7, 8]. The
aforementioned chaotic synchronization phenomena tell us
that some types of synchronization are stronger than others.
Another characteristic of these asymptotic behaviors is that
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they always can be described in terms of a functional
relationship. For example, let Φ be the GS function which
relates the master system with the slave system; that is, y =

Φ(x). In general, the way how synchronization phenomena
can be detected is by means of the auxiliary method [6]; thus
the way one can know that unidirectional coupled systems
present GS is when they present asymptotic behavior:

lim
𝑡→∞











x1 (𝑡) − x2 (𝑡)




= 0, (3)

where x1(𝑡) and x2(𝑡) are solutions of the slave and auxiliary
systems, respectively, initialized with different initial condi-
tion x1(0) ̸= x2(0). If this limit is satisfied, it indicates that the
slave system has lost its sensitivity to initial conditions, thus
losing their autonomy.Thence, the trajectory of the response
system depends on the input signal frommaster system. If we
consider the slave system as a forced system, then we will see
that its behavior depends on an external forcing, like a filter
does.

Forced Synchronization (FS) is defined as a phenomenon
that occurs when oscillations of several chaotic systems
x(1)(𝑡), x(2)(𝑡), . . . , x(𝑘)(𝑡) show correlated behavior because of
an external signal applied to these oscillators [9]. Meanwhile,
the conditions in order that a chaotic systembehaves as a filter
for an external signal under a specific coupling are given in
[10] where this phenomenon was called nonlinear filtering
(NF). So, these three phenomena (GS, FS, and NF) can be
recognized when the limit (3) is satisfied and can be studied
from the viewpoint of forced chaotic systems. GS containsNF
and MGS because these two phenomena present asymptotic
behavior. Nevertheless, there exists a difference between NF
and MGS. For MGS, the initial conditions determine the
basin of attraction where the trajectory of the slave system
converges, the fact despite that there exists a functional
relationship between the slave and the master systems, the
slave system does not behave like a filter. For NF, the slave
systemmust act in function of the external force and never in
function of its initial conditions.

Thedynamic of at least one state of several chaotic systems
has similar structure to low pass filter, for example, the first
equation of the Lorenz system �̇� = −𝜎𝑥 + 𝜎𝑦, where 𝑥 and 𝑦

can be seen as the output and input signals of a low pass linear
filter, respectively. The second equation of the Lorenz system
can be seen as a low pass nonlinear filter, �̇� = −𝑦 + 𝑥(𝜌 − 𝑧),
where 𝑦 is the output and 𝑥 and 𝑧 are the input signals of
a low pass nonlinear filter. Without loss of generality, from
the viewpoint of continuous dynamical systems, a filter can
be seen as a forced dynamical system in which its response
depends on its structure, given by their equations, and can
be linear or nonlinear. Then a natural question would be
the following: what is the effect on the response of forced
nonlinear system given an input signal? In order to answer
this question, wemake a study of a chaotic system forcedwith
different kinds of signals.

We are interested in explaining synchronization phe-
nomenon of chaotic systems based on nonlinear intercon-
nected structures, as these structures behave as a nonlinear
filter that allows synchronization ofmaster and slave systems.
Thereby, the target is not to put forward a new nonlinear

filter that can replace those designedwith the specific purpose
of preventing noise in the signal. Thus, the objective of this
research is to show how the synchronization phenomenon
underlies nonlinear interconnected structure. This kind of
structure which is immersed in some chaotic systems could
have some useful applications in filtering waves such as those
originated from earthquakes and tsunamis, because they can
be tuned to produce resonance at certain frequencies. So,
the target of this work is to give features of the nonlinear
filter as those given by the second and third equations of
the Lorenz system in function of the parameters of the input
signal 𝑢, which gives us a complementary perspective with
respect to the analysis made in [9], where it was only proved
and showed that a forced-chaotic system filters constant,
sinus, and random signals. To achieve this goal, we make a
study on the effect of nonlinear filter based on interconnected
nonlinear systems for different input signals𝑢, like sinusoidal,
chaotic, and random signals. Several chaotic systems that
have a similar structure to interconnected systems can be
analyzed like a nonlinear filtering phenomenon.

The paper is organized as follows: Section 2 contains basic
definitions of nonlinear filters based on 𝑛-interconnected
systems; Section 3 presents a way how tuning the parameters
of an 𝑛-interconnected system in order to the system behaves
as a nonlinear filter; in Section 4 is the study of the response
to amplitude and frequency of a nonlinear filter; Section 5
shows the response of the filter when the input signal is noise;
Section 6 presents a study case of correlation coefficient anal-
ysis; in Section 7, we present the relation between nonlinear
filters and chaotic systems; finally, conclusions are given in
Section 8.

2. Nonlinear Filter Structure

In the theory of linear systems, it is very well known that a
first-order low pass linear filter is given as follows:

�̇�

1
= 𝑘

1
𝑥

1
+ 𝑘

2
𝑢, (4)

where 𝑥

1
∈ R is the output of the filter, and 𝑘

1
, 𝑘

2
∈ R

are parameters of the filter (4). These parameters control
attenuation and amplitude of the input signal, respectively,
and 𝑢 ∈ R is the input signal to be filtered. Based on
the configuration of low pass filter given by (4), a low pass
nonlinear filter is defined as follows.

Definition 1. Let 𝑥
1
∈ R be an output signal, 𝑢 ∈ R an input

signal, and 𝑘

1
, 𝑘
2
, and 𝑘

3
∈ R parameters. Thus, a low pass

nonlinear filter can be defined as follows:

�̇�

1
= 𝑘

1
𝑥

1
+ (𝑘

2
+ 𝑘

3
𝑥

1
) 𝑢. (5)

The parameter 𝑘

3
in the above definition is used to control

the nonlinear term 𝑥

1
𝑢. Notice that when 𝑘

3
= 0, the

nonlinear term disappears, 𝑘

3
𝑥

1
𝑢, and then the nonlinear

filter (5) behaves as a linear filter. The structure of nonlinear
filters (5) has been used to generate chaos, as it can be seen
in the Lorenz system [11], but its states are interconnected.
Therefore, a natural question emerges around nonlinear
filtering: what are the characteristics of two nonlinear filters if
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they are interconnected and forced by the same signal 𝑢? An
interconnected system via nonlinear filters is given as follows:

Definition 2. Let 𝑥
1
, 𝑥

2
∈ R be output signals, 𝑢 ∈ R an input

signal, and 𝑘

1
, 𝑘
2
, 𝑘
3
, 𝑘
4
, 𝑘
5
, and 𝑘

6
∈ R parameters. So, let us

define an interconnected system via low pass nonlinear filters
as follows:

�̇�

1
= 𝑘

1
𝑥

1
+ (𝑘

2
+ 𝑘

3
𝑥

2
) 𝑢,

�̇�

2
= 𝑘

4
𝑥

2
+ (𝑘

5
+ 𝑘

6
𝑥

1
) 𝑢.

(6)

Thus the system (6) is called two-interconnected systems.

Now, in Definition 2, the parameters 𝑘

3
and 𝑘

6
are

coupling parameters for the outputs 𝑥

1
and 𝑥

2
, respectively.

In general, an 𝑛-interconnected system can be defined by
coupled 𝑥

𝑛
to the output 𝑥

𝑛+1
with 𝑛 > 2. This 𝑛-

interconnected system has a core based on low pass linear
filters �̇� = 𝐾x + 𝐵𝑢, where x ∈ R𝑛 is a state vector, 𝐾 ∈

R𝑛×𝑛 is a matrix, and 𝐵 ∈ R𝑛×1 is a constant vector. Thus,
we can define 𝑛-interconnected system with the following
expression:

�̇� = 𝐾x + 𝐵𝑢 + 𝑓 (x, 𝑢) , (7)

where the nonlinear function 𝑓(x, 𝑢) ∈ R𝑛 is constituted
by terms 𝑘

𝑖
𝑥

𝑗
𝑢, 𝑖 ∈ {1, 2, . . . , 3𝑛}, 𝑗 ∈ {1, 2, . . . , 𝑛}. An 𝑛-

interconnected system (7) is studied in [12] where the authors
found that its model produces hyperbolic chaos when it is
forced by a sinusoidal wave. On the other hand, system (7)
is formed by a linear part 𝐾x, an input signal 𝐵𝑢, and a
nonlinear part 𝑓(x, 𝑢), which can induce sensitivity to initial
conditions (𝑥

1
(0), 𝑥

2
(0), . . . , 𝑥

𝑛
(0)). But a filter must act in

function of the input signal and not in function of the initial
condition. Therefore, it is important to find conditions in
order to guarantee that an interconnected system behaves as a
filter. Roughly speaking, the response of a filter only depends
on the kind of input signal and if the interconnected systems
depend on initial condition, this is classified as generalized
forced synchronization phenomenon by forced systems [9].
Therefore, according to context, a nonlinear filter is defined
in the next way.

Definition 3. Let x𝑖(𝑡) = (𝑥

𝑖

1
(𝑡), 𝑥

𝑖

2
(𝑡), . . . , 𝑥

𝑖

𝑛
(𝑡))

𝑇 be a vector
of output signals given by 𝑛-interconnected system (7) with
initial condition x𝑖(0) = (𝑥

𝑖

1
(0), 𝑥

𝑖

2
(0), . . . , 𝑥

𝑖

𝑛
(0))

𝑇. System
(7) is called an 𝑛-interconnected nonlinear filter if it always
presents asymptotic behavior:

lim
𝑡→∞











x(1) (𝑡) − x(2) (𝑡)




= 0. (8)

In Definition 3, if 𝑡 → ∞ and the output of the 𝑛-
interconnected system is independent of the initial condi-
tions, then system (7) is considered an 𝑛-interconnected
nonlinear filter.

3. Tuning of the Parameters

We select the entries of the matrices 𝐾 and 𝐵 in order for
condition (8) to be satisfied. Let us start by considering

𝛿(𝑡) = x(1)(𝑡) − x(2)(𝑡), and then ̇

𝛿(𝑡) = ẋ(1)(𝑡) − ẋ(2)(𝑡). Now,
by using (7) we deduce that ̇𝛿 = 𝐾𝛿(𝑡) +𝑓(x(1), 𝑢) −𝑓(x(2), 𝑢)
which can be rewritten as follows:

𝛿 (𝑡) = 𝛿 (0) 𝑒
𝐾𝑡

+ 𝑒

𝐾𝑡

∫

𝑡

0

𝑒

𝐾𝑠

(𝑓 (x(2), 𝑢)

−𝑓 (x(1), 𝑢)) 𝑑𝑠.

(9)

In order to describe the asymptotic behavior of (9), we state
the following theorem.

Theorem 4. If system (7), forced by signal 𝑢, satisfyies the
following conditions:

(1) there exists a positive constant 𝑘 such that Re{𝜆} ≤ −𝑘,
for every eigenvalue 𝜆 of the linear part of system (7);

(2) 𝑓(x, 𝑢) is a continuous Lipschitz; that is, there exists
a positive function 𝐶[𝑢] < ∞ such that |𝑓(x(2), 𝑢) −

𝑓(x(1), 𝑢)| ≤ 𝐶[𝑢]|x(2) − x(1)|,

then, system (7) is a filter for 𝑢, provided that 𝑘 > 𝐶[𝑢], where

𝐶[𝑢] := lim
𝑡→∞

1

𝑡

∫

𝑡

0

𝐶 [𝑢 (𝑠)] 𝑑𝑠.
(10)

Proof. Let x(1)(𝑡), x(2)(𝑡), and 𝛿(𝑡) defined be before.Wewant
to prove that 𝑘 > 𝐶[𝑢] implies lim

𝑡→∞
|𝛿(𝑡)| = 0. From (9)

we have the following estimate:

|𝛿 (𝑡)| ≤










𝑒

𝐾𝑡










|𝛿 (0)| +










𝑒

𝐾𝑡










× ∫

𝑡

0











𝑒

𝐾(−𝑠)




















𝑓 (x(2), 𝑢) − 𝑓 (x(1), 𝑢)




𝑑𝑠

≤ 𝑒

‖𝐾‖|𝑡|

|𝛿 (0)| + 𝑒

‖𝐾‖|𝑡|

× ∫

𝑡

0

𝑒

‖𝐾‖|−𝑠|










𝑓 (x(2), 𝑢) − 𝑓 (x(1), 𝑢)




𝑑𝑠.

(11)

Using hypothesis (1), we obtain from the previous inequality
the following estimate:

|𝛿 (𝑡)| ≤ 𝑒

−𝑘𝑡

|𝛿 (0)|

+ 𝑒

−𝑘𝑡

∫

𝑡

0

𝑒

𝑘𝑠










𝑓 (x(2), 𝑢) − 𝑓 (x(1), 𝑢)




𝑑𝑠.

(12)

If we multiply by 𝑒

𝑘𝑡, the last expression results in

𝑒

𝑘𝑡

|𝛿 (𝑡)| ≤ |𝛿 (0)| + ∫

𝑡

0

𝑒

𝑘𝑠










𝑓 (x(2), 𝑢) − 𝑓 (x(1), 𝑢)




𝑑𝑠.
(13)

Using the hypothesis (2), it follows that

𝑒

𝑘𝑡

|𝛿 (𝑡)| ≤ |𝛿 (0)| + ∫

𝑡

0

𝑒

𝑘𝑠

𝐶 [𝑢] |𝛿 (𝑠)| 𝑑𝑠. (14)

Application of Gronwall’s inequality yields

|𝛿 (𝑡)| ≤ |𝛿 (0)| 𝑒
−𝑡(𝑘−(1/𝑡) ∫

𝑡

0
𝐶[𝑢(𝑠)]𝑑𝑠)

,

(15)

which proves the theorem.
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Figure 1: The maximal range of values of the filter (5) in function of its parameters when it is forced by 𝑢 = sin 𝑡: (a) 𝑅(𝑘

1
, 𝑘

2
) and (b)

𝑅(𝑘

1
, 𝑘

3
).

We can infer from the above theorem that all elements of
the matrix 𝐾 must be negative; that is, 𝑘

𝑖
< 0 for 𝑖 = 1, . . . , 𝑛.

On the other hand, due to the fact that (9) does not depend
on matrix 𝐵, then its terms are not conditioned and they can
take any real value.These will be carried out in the remainder
of this paper.

3.1. A Low Pass Nonlinear Filter. The analyzed case is the
one-interconnected system given by (7); this case is confined
to the particular case of the filter given by (5); where its
elements are 𝑥 = 𝑥

1
∈ R, 𝐴

1×1
= 𝑘

1
, 𝐵

1×1
= 𝑘

2
, and

𝑓(𝑥

1
, 𝑢) = 𝑢𝑘

3
. According to the first condition of the above

theorem, we have 𝑘

1
< 0, and now considering the nonlinear

part of the filter, if the Lipschitz condition is satisfied when
|𝑓(𝑥

1
)

(1)

− 𝑓(𝑥

1
)

(2)

| ≤ |𝑘

3
||𝑢||𝛿(𝑡)|, giving as a result 𝑐[𝑢] =

|𝑘

3
||𝑢|, therefore the parameter 𝑘

3
can be any real value. Now,

the interest is that the one-interconnected system behaves as
a nonlinear filter; then Theorem 4 needs to be satisfied by
𝑘

1
< −|𝑘

3
||𝑢|. If the input signal is a constant, 𝑢 = 𝜇 (𝜇 ∈ 𝑍)

and 𝜇 ≤ −𝑘

1
/|𝑘

3
|, then the response of the filter converges

to zero; otherwise it diverges. Another case is when the input
signal is 𝑢 = 𝜇 sin(𝜔𝑡), we have the following:

|𝛿 (𝑡)| ≤ |𝛿 (0)| 𝑒

𝑘
1
𝑡+|𝑘
3
| ∫

𝑡

0
|𝜇 sin(𝜔𝑠)|𝑑𝑠

≤ |𝛿 (0)| 𝑒

𝑘
1
𝑡+|𝑘
3
||𝜇| ∫

𝑡

0
𝑑𝑠

,

(16)

which converges 𝜇 ≤ −𝑘

1
/|𝑘

3
|. Generally, condition (8) is

always satisfied for oscillating functions 𝑢 with |𝑢(𝑡)| ≤ 𝑀.
However, for the case that 𝑢 is a polynomial of grade greater
than 1, that is, 𝑢 = 𝑎

𝑛
𝑡

𝑛

+𝑎

𝑛−1
𝑡

𝑛−1

+⋅ ⋅ ⋅+ 𝑎

0
for 𝑛 > 1, condition

(8) is not satisfied.
Due to the fact that our interest is to tune the value of the

parameters 𝑘

1
, 𝑘

2
, and 𝑘

3
, we make a numerical study on the

effect of these parameters on the response of𝑥
1
when the one-

interconnected system (7) is being forced by the sinusoidal

input signal 𝑢 = sin(𝑡). After a transient time, we calculate
themaximal range of values of the one-interconnected system
(7) by obtaining 𝑅(𝑘

𝑖
, 𝑘

𝑗
) = MAX{𝑥

1
(𝑡)}−MIN{𝑥

1
(𝑡)} (𝑖 ̸= 𝑗),

where MAX{𝑥

1
(𝑡)} and MIN{𝑥

1
(𝑡)} are the maximum and

minimum values, respectively, of the response time series
𝑥

1
(𝑡) in function of the parameters 𝑘

𝑖
, 𝑘

𝑗
. For example, if

we want to calculate 𝑅(𝑘

1
, 𝑘

2
), then we fix the value of 𝑘

3

and simulate different time series of the one-interconnected
system (7) for different values of 𝑘

1
, 𝑘
2
. In general, the value of

𝑅(𝑘

𝑖
, 𝑘

𝑗
) is calculated in function of the parameters which are

varied and in each case condition (8) is verified if it is satisfied.
Figures 1(a) and 1(b) show the graphs of 𝑅(𝑘

1
, 𝑘

2
) for 𝑘

3
= −1

and 𝑅(𝑘

1
, 𝑘

3
) for 𝑘

2
= 1, respectively. These graphs show that

the one-interconnected system (7) increments exponentially
the amplitude of its responsewhen the parameter 𝑘

3
increases

its magnitude; meanwhile, the amplitude of 𝑥

1
is mildly

incremented in a linear rate in function of the magnitude of
the parameter 𝑘

2
.

3.2. Interconnected Nonlinear Filters. Now, the first case is a
two-interconnected system (6); the matrices 𝐾

2×2
, 𝐵
2×1

, and
the nonlinear function 𝑓(x, 𝑢) : R2 × R → R2 are assumed
as follows:

𝐾 = (

𝑘

1
0

0 𝑘

4

) , 𝐵 = (

𝑘

2

𝑘

5

) ,

𝑓 (x, 𝑢) = (

𝑘

3
𝑢𝑥

2

𝑘

6
𝑢𝑥

1

) .

(17)

System (6) is asked to behave as a nonlinear filter, so the
conditions of Theorem 4 are used to select the value of the
parameters {𝑘

𝑖
}. From the first condition of the theorem, we

realize that 𝑘

1
, 𝑘

4
< 0, {𝑘

2
, 𝑘

5
} ∈ R, and if 𝐴 > 𝐵∫

𝑡

0

|𝑢|𝑑𝑠,
where 𝐴 = max{𝑘

1
, 𝑘

4
} and 𝐵 = max{𝑘

3
, 𝑘

6
}, then system (6)

is a filter for the signal 𝑢. In order to know more about the
characteristics of the values of the parameters, we calculate
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Figure 2: The maximal range of values of the filter (17) in function of its parameters when the filter is forced by 𝑢 = sin 𝑡. (a) 𝑅(𝑘

1
, 𝑘

4
) and

(b) 𝑅(𝑘

2
, 𝑘

5
).

the eigenvalues of the Jacobian of system (6), which results in
the following:

𝜆

1,2
=

1

2

(𝑘

1
+ 𝑘

4

±

√

(𝑘

1
+ 𝑘

4
)

2

− 4 (𝑘

1
𝑘

4
− 𝑘

3
𝑘

6
𝑢

2
)) .

(18)

Our purpose is that system (6) converges; then Re{𝜆
𝑖
}

must be negative.Therefore, we need to guarantee that 𝑘
1
𝑘

4
≥

𝑘

3
𝑘

6
𝑢

2 is true. Due to 𝑢

2

≥ 0, then the parameters 𝑘

3
and

𝑘

6
need to be opposite sign, that is, either 𝑘

3
< 0, 𝑘

5
> 0 or

𝑘

3
> 0, 𝑘

6
< 0.We choose arbitrarily the first relation of signs.

The effect of the parameters {𝑘

𝑖
} on the response 𝑥 of

the interconnected nonlinear filters is computed by 𝑅(𝑘

𝑖
, 𝑘

𝑗
)

when system (6) is forced by 𝑢 = sin(𝑡). Several calculations
were made and for each of them we verify that the non-
linear filtering condition (8) was satisfied. Figure 2(a) shows
𝑅(𝑘

1
, 𝑘

4
) when the parameters of the filter (6) are fixed to

𝑘

2
= 𝑘

5
= 𝑘

6
= 1, 𝑘

3
= −1. Figure 2(b) shows 𝑅(𝑘

2
, 𝑘

5
) for

𝑘

1
= 𝑘

4
= 𝑘

3
= −1 and 𝑘

6
= 1.

In the remainder of this paper, we studied the effect of
the parameters input signal 𝑢 on the response of the coupled
filter (6); that is, we tune the parameters of the filter, vary the
parameter’s values of the input signal, and observe the effect
of the response. Therefore, we need to fix 𝑘

𝑖
(𝑖 = 1, . . . , 6).

Our interest is focus on the study of the response to the input
𝑢when the linear filters 𝑥

1
, 𝑥
2
are coupled in a nonlinear way.

Without loss of generality and seeking clarity in our study, we
consider 𝑘

5
= 0. The rest of the parameter values could vary

in the intervals 𝑘

1
< 0, 𝑘

4
< 0, 𝑘

3
𝑘

6
< 0, {𝑘

2
, 𝑘

5
} ∈ R, which

is a rich variety of values where the filter works.We can select
any value in these intervals and produce similar responses;
nevertheless, we fix the values to 𝑘

1
= −1, 𝑘

2
= 28, 𝑘

3
= −1,

𝑘

4
= −2.66, 𝑘

5
= 1, which will be used in the rest of the paper.

4. Response to the Amplitude and Frequency

In this section, we present a study on the effect of the
filter’s response (6) as function of parameter’s values of the
sinusoidal input signal 𝑢(𝑡) = 𝜇 sin(𝜔𝑡). Figure 3(a) shows
the output signals of the 𝑛-interconnected nonlinear filter for
the cases 𝜇 = 1, 𝜔 = 3 and 𝜇 = 1, 𝜔 = 5. One can see that
the orbits have a form of a Lissajous curve and the amplitude
of the output signal as the frequency of the input signal is
increased. In general, to see the effect of amplitude 𝜇 on the
filter’s response, we calculate the length of the Lissajous 𝐿 in
this way

𝐿 = ∫

𝑇

0

√

(�̇�

1
)

2

+ (�̇�

2
)

2

𝑑𝑡,
(19)

where 𝑇 is the period of the orbit (𝑥
1
(𝑡), 𝑥
2
(𝑡)). The effect of

the input signal’s frequency 𝜔 on the length 𝐿 of the orbit
of the filter’s response is shown in Figure 3(b). Thus, 𝐿 falls
exponentially according to the increment of the frequency 𝜔.
System (6) presents a rejection to high frequencies because it
is a low pass filter.

Now, fixing the frequency to 𝜔 = 1.0 and varying the
amplitude 𝜇, we observe that new frequency components
appear in the Fourier Transform (FT) of the output signal 𝑥

1
.

When the amplitude increases, thenmore peaks of frequency
appear as multiples of the input signal’s frequency. As is
shown in Figures 4(a) and 4(b), 𝜇 = 1 and 5, respectively.
This is a characteristic of a nonlinear filter that linear filters
do not present.

The nonlinear filters display assorted behaviors, that
is, contrary to the example shown in Figure 4, where the
amplitude is fixed to𝜇 = 10 and frequency𝜔 is varied. Figures
5(a) and 5(b) show the FT of the response of the filter (6)
for 𝜔 = 1 and 𝜔 = 2, respectively. Comparing both plots of
Figure 5, we see that frequency peaks appear at multiples of
input signal’s frequency 𝜔.
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Figure 4: Both plots are the FT for the state 𝑥

1
of the filter (6) when it is filtering the input signal 𝑢 = 𝜇 sin(𝑡) for the cases (a) 𝜇 = 1.0 and (b)

𝜇 = 5. These graphs show that when 𝜇 is incremented, new component frequency peaks appear in the power spectrum of the filter’s response.

4.1. A Theoretical Justification. For the purpose of giving a
theoretical justification of the behavior of the filter (6) when
it is forced by the sinusoidal signals, we can see in the
interconnected nonlinear filter (6) that �̇�

1
and �̇�

2
are linear

first-order differential equationswhich can be rewritten in the
next form:

𝑥

1
(𝑡) = 𝜇𝑒

𝑘
1
𝑡

(𝑘

2
∫ 𝑒

−𝑘
1
𝑡 sin (𝜔𝑡) 𝑑𝑡

+𝑘

4
∫ 𝑒

−𝑘
1
𝑡 sin (𝜔𝑡) 𝑥

2
(𝑡) 𝑑𝑡) ,

(20)

𝑥

2
(𝑡) = 𝑘

6
𝜇𝑒

𝑘
5
𝑡

∫ 𝑒

−𝑘
5
𝑡 sin (𝜔𝑡) 𝑥

1
(𝑡) 𝑑𝑡. (21)

Without loss of generality and for seeking clarity, we consider
the parameter 𝑘

5
= 0. Applying integration by parts to (20)

and considering that the states 𝑥

1
(𝑡) and 𝑥

2
(𝑡) are functions

that depend on time and frequency and that 𝜇 is a constant,
we have the following:

𝑥

1
(𝑡) =

−𝜇

𝜔

2
+ 𝑘

2

1

(𝑘

2
(𝑘

1
sin (𝜔𝑡) + 𝜔 cos (𝜔𝑡))

+ 𝑘

3
(𝑘

1
sin (𝜔𝑡) + 𝜔 cos (𝜔𝑡) 𝑥

2
(𝑡))

−𝑘

4
𝑒

𝑘
1
𝑡

∫ 𝑒

−𝑘
1
𝑡

(𝑘

1
sin (𝜔𝑡)

+𝜔 cos (𝜔𝑡) ) �̇�

2
𝑑𝑡) .

(22)
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Figure 5: Both plots are the FT of the state 𝑥

1
of the filter (6) when it is filtering the input signal 𝑢 = 10 sin(𝜔𝑡) for the cases (a) 𝜔 = 1 and

(b) 𝜔 = 2.

And for (21) we have

𝑥

2
(𝑡) =

−𝜇𝑘

6

𝜔

2
+ 𝑘

2

5

((𝑘

5
sin (𝜔𝑡) + 𝜔 cos (𝜔𝑡)) 𝑥

1
(𝑡)

− 𝑒

𝑘
5
𝑡

∫ 𝑒

−𝑘
5
𝑡

(𝑘

5
sin (𝜔𝑡)

+𝜔 cos (𝜔𝑡) ) �̇�

1
𝑑𝑡) .

(23)

Note that in (22) and (23), the magnitude values of
𝑥

1
(𝑡) and 𝑥

2
(𝑡) decrease when the frequency 𝜔 increases.

Furthermore, since the terms

𝑒

𝑘
1
𝑡

∫ 𝑒

−𝑘
1
𝑡

(𝑘

1
sin (𝜔𝑡) + 𝜔 cos (𝜔𝑡)) �̇�

2
𝑑𝑡,

𝑒

𝑘
5
𝑡

∫ 𝑒

−𝑘
5
𝑡

(𝑘

5
sin (𝜔𝑡) + 𝜔 cos (𝜔𝑡)) �̇�

1
𝑑𝑡

(24)

have factors (𝜔

2

+ 𝑘

2

5
)

𝑛, (𝜔

2

+ 𝑘

2

1
)

𝑛 for 𝑛 ≤ −2, then we
approximate (22) and (23) to

𝑥

1
(𝑡) ≈ −

𝜇

𝜔

2
+ 𝑘

2

1

(𝑘

2
𝐺

1
(𝑡) + 𝑘

3
𝐺

1
(𝑡) 𝑥

2
(𝑡)) , (25)

𝑥

2
(𝑡) ≈ −

𝜇𝑘

6

𝜔

2
+ 𝑘

2

5

𝐺

2
(𝑡) 𝑥

1
(𝑡) , (26)

where 𝐺

1
(𝑡) = 𝑘

1
sin(𝜔𝑡) + 𝜔 cos(𝜔𝑡), 𝐺

2
(𝑡) = 𝑘

5
sin(𝜔𝑡) +

𝜔 cos(𝜔𝑡) are periodic functions with period given by the
input signal. Substituting (25) in (26), we have

𝑥

1
(𝑡) ≈ −

𝜇𝑘

2
𝐺

1
(𝑡)

𝜔

2
+ 𝑘

2

1

+

𝜇

2

𝑘

4
𝑘

8
𝐺

1
(𝑡) 𝐺

2
(𝑡)

(𝜔

2
+ 𝑘

2

1
) (𝜔

2
+ 𝑘

2

5
)

𝑥

1
(𝑡) . (27)
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Figure 6: Comparison of Lissajouses. Lissajous with solid line
corresponds to the solution of system (6) and Lissajous with dashed
line corresponds to its approximated solution plotted with the
parametric equations (28) and (29).

Now, solving for 𝑥

1
(𝑡) from (27), it results that

𝑥

1
(𝑡) ≈

−𝜇𝑘

2
(𝜔

2

+ 𝑘

2

5
)𝐺

1
(𝑡)

𝜔

4
+ (𝑘

2

1
+ 𝑘

2

5
) 𝜔

2
+ 𝑘

2

1
𝑘

2

5
− 𝜇

2
𝑘

3
𝑘

6
𝐺

1
(𝑡) 𝐺

2
(𝑡)

.

(28)

And for 𝑥

2
(𝑡) it results that

𝑥

2
(𝑡) ≈

𝜇

2

𝑘

2
𝑘

6
𝐺

1
(𝑡) 𝐺

2
(𝑡)

𝜔

4
+ (𝑘

2

5
+ 1) 𝜔

2
+ 𝑘

2

5
− 𝜇

2
𝑘

3
𝑘

6
𝐺

1
(𝑡) 𝐺

2
(𝑡)

. (29)

Figure 6 shows the orbit of the solution of (28) and (29)
and the orbit of the numerical solution of the filter (6) when
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.
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1
in function of the 𝜅 when

system (6) filters random signal.

𝜇 = 1.0 and 𝜔 = 1.0. The thin Lissajous curve is calculated
with (6) and another with (28) and (29). We can see that
both orbits oscillate in a Lissajous curve of one knot and the
same symmetric form with respect to the 𝑦-axis, but slightly
different amplitude.

Now, we analyze the FT of the equations of system (6)
which are given as follows:

𝑗Ω𝑋

1
(Ω) = 𝑘

1
𝑋

1
(Ω) + 𝑘

2
FT {𝑢} + 𝑘

3
FT {𝑢𝑥

2
} , (30)

𝑗Ω𝑋

2
(Ω) = 𝑘

5
𝑋

2
+ 𝑘

6
FT {𝑢𝑥

1
} (Ω) , (31)

where FT{𝑥

𝑖
} = 𝑋

𝑖
(Ω) is the FT of the signal 𝑥

𝑖
. For the case

when 𝑢 = 𝜇 sin(𝜔𝑡), we have

Ω𝑋

1
(Ω) = − 𝑗𝑘

1
𝑋

1
(Ω) +

𝑘

3
𝜇

2

(𝑋

2
(Ω + 𝜔) − 𝑋

2
(Ω − 𝜔))

+ 𝑘

2
𝜇𝜋 (𝛿 (Ω + 𝜔) − 𝛿 (Ω − 𝜔)) ,

Ω𝑋

2
(Ω) = −𝑗𝑘

5
𝑋

2
(Ω) +

𝑘

6
𝜇

2

(𝑋

1
(Ω + 𝜔) − 𝑋

1
(Ω − 𝜔)) .

(32)

Now, solving for 𝑋

1
(Ω) and 𝑋

2
(Ω), we have

𝑋

1
(Ω)

=

𝜇

Ω + 𝑗𝑘

1

[𝑘

2
𝜋 (𝛿 (Ω + 𝜔) − 𝛿 (Ω − 𝜔))

+

𝑘

3

2

(𝑋

2
(Ω + 𝜔) − 𝑋

2
(Ω − 𝜔))] ,

(33)

𝑋

2
(Ω) =

𝜇𝑘

6

2 (Ω + 𝑗𝑘

5
)

[𝑋

1
(Ω + 𝜔) − 𝑋

1
(Ω − 𝜔)] . (34)

Equations (33) and (34) show that variables 𝑥

1
, 𝑥
2
have the

form of low pass filters (as we commented previously). Thus,
the terms 𝑋

2
(Ω − 𝜔) and 𝑋

2
(Ω + 𝜔) in (33) are as follows:

𝑋

2
(Ω − 𝜔) =

𝑘

6
𝜇

2 (Ω − 𝜔 + 𝑗𝑘

5
)

[𝑋

1
(Ω) − 𝑋

1
(Ω − 2𝜔)] ,

𝑋

2
(Ω + 𝜔) =

𝑘

6
𝜇

2 (Ω + 𝜔 + 𝑗𝑘

5
)

[(𝑋

1
(Ω + 2𝜔) − 𝑋

1
(Ω))] ,

(35)

and using (33) and (35), we obtain

𝑋

1
(Ω) =

𝜇𝐷

Ω + 𝑗𝑘

1

[𝑘

2
𝜋 (𝛿 (Ω + 𝜔) − 𝛿 (Ω − 𝜔)) +

𝜇𝑘

3
𝑘

6

2

×(

𝑋

1
(Ω + 2𝜔)

2 (Ω + 𝜔 + 𝑗𝑘

5
)

+

𝑋

1
(Ω − 2𝜔)

2 (Ω − 𝜔 + 𝑗𝑘

5
)

)] ,

(36)

where

𝐷 =

2 ((Ω + 𝑗𝑘

5
)

2

− 𝜔

2

) (Ω + 𝑗𝑘

1
)

2 (((Ω + 𝑗𝑘

5
)

2

− 𝜔

2
) (Ω + 𝑗𝑘

1
) + 𝜇

2
𝑘

3
𝑘

6
(Ω + 𝑗𝑘

5
))

⋅

(37)

Equation (36) has the terms 𝑋

1
(Ω − 2𝜔) and 𝑋

1
(Ω + 2𝜔),

which are calculated by developing recursively (33), giving as
a result

𝑋

1
(Ω − 2𝜔)

=

𝜇

Ω − 2𝜔 + 𝑗𝑘

1

[𝑘

2
𝜋 (𝛿 (Ω − 𝜔) − 𝛿 (Ω − 3𝜔))

+

𝑘

3

2

(𝑋

2
(Ω − 𝜔) − 𝑋

2
(Ω − 3𝜔))] ,

𝑋

1
(Ω + 2𝜔)

=

𝜇

Ω + 2𝜔 + 𝑗𝑘

1

[𝑘

2
𝜋 (𝛿 (Ω + 3𝜔) − 𝛿 (Ω + 𝜔))

+

𝑘

3

2

(𝑋

2
(Ω + 3𝜔) − 𝑋

2
(Ω + 𝜔))] .

(38)

Equations (33) and (38) show that 𝑋

1
(Ω) have terms

which contain factors 𝛿(Ω − 3𝜔), 𝛿(Ω − 𝜔), 𝛿(Ω + 𝜔), and
𝛿(Ω + 3𝜔) and if we develop recursively 𝑛 times (33), then
new terms of the form 𝜇

|𝑘|

𝛿(Ω− (2𝑘 + 1)𝜔)𝐷

𝑘
for −𝑛 ≤ 𝑘 ≤ 𝑛

appear in the solution of 𝑋

1
(Ω), where 𝐷

𝑘
is a so complex

factor which depends on every parameter and variable of
(32) and for 𝜇 < 1.0 the quotient |𝜇

𝑘

|/|𝐷

𝑘
| ≈ 0. Therefore,

when the amplitude 𝜇 is incremented, then the amplitude
of the peaks 𝛿(Ω − (2𝑘 + 1)𝜔) does too. For this reason,
the numerical evidence shows that if the parameter input
signal 𝜇 is incremented, then apparently new components of
frequency appear in the spectrum 𝑋

1
(Ω). These frequencies

always form part of 𝑋
1
(Ω) but with a very small amplitude.

They are so small that they look like noise.
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Figure 10: Correlation between the response of the filter (6) and the input signal 𝑢 = 𝜇 ∈ (𝜔𝑡): (a) 𝐶
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and (b) 𝐶
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Figure 11: Correlation in function of the parameter of the random
input signal 𝜅. Dashed line and continuous line correspond to 𝐶
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and 𝐶

𝑢𝑥2
, respectively.

5. Response to Random Signals

Now, let 𝑢 = 𝜅𝜂(𝑡), where 𝜂(𝑡) is a random signal equidis-
tributed on the interval [−1, 1] and 𝜅 is its amplitude. When
𝑢 = 10𝜂(𝑡) is the input signal of the filter (6), the phase space
of the response is a limit cycle that has the form of a quarter
moon which is shown in Figure 7(a). As a first glimpse the
filter’s response seems to be a periodic orbit like in the case
of the sinusoidal input signal, but the time series 𝑥

1
(𝑡) and

𝑥

2
(𝑡), which are respectively shown in Figures 7(b) and 7(c),

are aperiodic signals.
The following remarks are pertinent.

(i) The output signal of the filter has a normal (or Gaus-
sian) distribution when the input signal is random
with uniform distribution. For the case 𝑢 = 𝜂(𝑡),
Figures 8(a) and 8(b) show the histogram and the FT

of the 𝑥

1
signal, respectively, where one can see that

the FT of the response has an exponential decay.
(ii) The filter presents saturation after a threshold value

of the amplitude of input signal 𝑢 = 𝜅𝜂(𝑡). Figure 9
shows the range of values 𝑅(𝜅) = MAX{𝑥

1
} −

MIN{𝑥

1
} of the response 𝑥

1
versus the amplitude of

the parameter 𝜅.

To justify the exponential decay of the filter’s responsewhen it
is forced with random signal, we consider FT{𝑢} = 𝐾

1
, where

𝐾

1
is a constant which depends on 𝜅, the amplitude of the

random signal, and 𝑥

3
≪ FT{𝑢}. Thus the following terms

of (30) are 𝑘

2
FT{𝑢} = 𝑘

2
𝐾

1
and FT{𝑢𝑥

2
} ≈ 𝐾

2
, where 𝐾

2

depends on 𝜅 too. So, the FT results are

𝑗Ω𝑋

1
(Ω) ≈ −𝑋

1
(Ω) − 𝐾

2
+ 𝑟𝐾

1
, (39)

and for the magnitude of 𝑋
1
(Ω) we have









𝑋

1
(Ω)









≈

















𝑟𝐾

1
+ 𝐾

2

1 + Ω

2

















. (40)

Figure 8(b) shows the form of the curve |𝑋

1
(Ω)| which

corresponds to (40).

6. Correlation Coefficient

Because a filter acts in function of the input signal, another
way to characterize the effect of the input signal on the filter’s
response is to compute the correlation between the input and
output signals. If we have time series of𝑁data, the correlation
coefficient 𝐶

𝑥𝑦
of series 𝑥(𝑖) and 𝑦(𝑖) is defined as

𝐶

𝑥𝑦
=

∑

𝑁

𝑖=1
(𝑥 (𝑖) − 𝑥) (𝑦 (𝑖) − 𝑦)

(𝑁 − 1) 𝑆

𝑥
𝑆

𝑦

, (41)

where 𝑥, 𝑦 are the means and 𝑠

𝑥
, 𝑠
𝑦
are the standard devi-

ations of the series 𝑥(𝑖) and 𝑦(𝑖), respectively. We calculate
correlation coefficients for different input signals and the
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Figure 12: (a) Orbit of the filter (43) when the external input is 𝑢 = 𝑦
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of system (42). (b) The maximal range of response of system (43).
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Table 1: Coefficient correlations between different input signals and
the responses 𝑥

1
, 𝑥
2
of the filter (6).

External force 𝑢 𝐶

𝑥1𝑢
𝐶

𝑥2𝑢

sin(𝑡) 0.7455 −0.0021

The state variable 𝑥

1
of the Rössler system 0.7453 0.0574

𝜂(𝑡) 0.1160 0.0630

output signals 𝑥

1
and 𝑥

2
which are given in Table 1. The first

two cases in Table 1 correspond to a periodic and chaotic
signals, 𝐶

𝑢𝑥
1

≈ 0.745 and 𝐶

𝑢𝑥
2

≈ 0.0, and the last case
considers a random signal as an input signal.

We make a further numerical study of the coefficient
correlation in function of the parameters of the sinusoidal

input signal. In Figure 10(a), we can see that the correlation
between sinusoidal external signals is not constant and that
it depends on both parameters 𝜇 and 𝜔. On the contrary,
Figure 10(b) shows that the absence of correlation between
the response 𝑥

2
and their respective forces is independent

of almost the whole range of values of the input signal
parameters.

On the other hand, the last row in Table 1 shows that
𝐶

𝑢𝑥
1

≈ 0.1160 and 𝑅

𝑢𝑥
2

≈ 0.0630. This means that the
filter’s response (6) does not have correlation when the input
is a random signal. Despite the fact that the amplitude of the
parameter 𝜅 is increased, the output signal of the filter does
not have correlation with input signal (random), as shown
in Figure 11. Therefore, the correlation between the input
random signal and its filter’s response cannot be induced
by incrementing the value of its amplitude. A similar result
occurs for the sinusoidal signal and its response 𝑥

2
.

7. Low Pass Filters in Chaotic Systems

The Lorenz system is a very well-known third-order chaotic
system [11] which is defined as

�̇�

1
= −𝜎𝑦

1
+ 𝜎𝑦

2
,

�̇�

2
= 𝑟𝑦

1
− 𝑦

2
− 𝑦

1
𝑦

3

= −𝑦

2
+ (𝑟 − 𝑦

3
) 𝑦

1
,

�̇�

3
= 𝑦

1
𝑦

2
− 𝑏𝑦

3
= −𝑏𝑦

3
+ 𝑦

2
𝑦

1
,

(42)

where y = (𝑦

1
, 𝑦

2
, 𝑦

3
)

𝑇 is the state vector and 𝜎, 𝑟, and 𝑏

are parameters. Each component of system (42) is defined
based on low pass filters. For example, the first equation is
a linear low pass filter, where the state variables 𝑦

1
and 𝑦

2

are the input and output signals, respectively.The second and
third equations comprise a 𝑡𝑤𝑜-interconnected nonlinear
filter whose outputs are 𝑦

2
and 𝑦

3
, and the input signal is
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Figure 14: Correlations between the state variables of the Lorenz system (42) against the parameters (a) 𝑟 and (b) 𝑏. Each continuous line
and dashed line correspond to 𝐶
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, respectively.

𝑢 = 𝑦

1
.The 𝑡𝑤𝑜-interconnected nonlinear filter of the Lorenz

system (42) can be rewritten in terms of (7) as follows:

𝐾 = (

−1 0

0 −𝑏

) , 𝐵 = (

𝑟

0

) ,

𝑓 (𝑥, 𝑢) = (

𝑢𝑦

3

𝑢𝑦

2

) ,

(43)

where 𝑥

1
= 𝑦

2
, 𝑥

2
= 𝑦

3
, and 𝑢 = 𝑦

1
. The projection

of the Lorenz attractor onto the plane (𝑦

1
, 𝑦

2
) is shown in

Figure 12(a) for the following parameter’s values: 𝜎 = 10, and
𝑏 = 2.66, and 𝑟 = 28.0. In order to study the response of the
interconnected system (43) when the input signal is the state
variable 𝑦

1
, we have calculated 𝑅(𝜎) which is the maximal

range of values of the time series 𝑦

2
. In Figure 12(b), we can

see that 𝑅 ≈ 0 for 0 ≤ 𝜎 ≤ 5; this means that the solution
converges to a fixed point. For 𝜎 ∈ [5, 7], there is a transition
period in the behavior of the filter, and for 𝜎 ≥ 7 the range of
values of the filter’s response is approximately constant.

When calculating the correlation coefficient between the
components of the 𝑡𝑤𝑜-interconnected system (43), it results
that 𝐶

𝑦
1
𝑦
2

= 0.9022, 𝐶
𝑦
1
𝑦
3

= −0.0384, and 𝐶

𝑦
2
𝑦
3

= −0.0424.
The high correlation between the state variables 𝑦

1
and 𝑦

2

occurs because of 𝑦
1
is a simple low pass lineal filter for the

signal 𝑦
2
without any nonlinear term included in its equation

(see �̇�

1
in (42)). On the other hand, the time series 𝑦

1
has no

correlation with 𝑦

3
which could be induced by the nonlinear

term settles in the equation �̇�

3
of system (42). Now, we put a

parameter to control the amplitude of the input signal such
that 𝑢 = 𝜅

1
𝑦

1
and calculate 𝐶

𝑦
1
𝑦
2

and 𝐶

𝑦
2
𝑦
3

as a function
of the parameter 𝑘

1
. In Figure 13, it is shown that only 𝐶

𝑦
1
𝑦
2

is affected when the value of 𝜅

1
is incremented, while the

absence of correlation between states 𝑦

2
and 𝑦

3
remains for

all values of 𝜅
1
. For 𝜅

1
> 32, the trajectories of system (43)

diverge.

We have shown by means of numerical experiments in
previous sections that the absence of correlation between the
external force 𝑢 and the state variable 𝑥

2
of the filter response

generally does not depend on the parameters of the input
signal. Similar result occurs when the Lorenz autonomous
system is considered like a 𝑡𝑤𝑜-interconnected system which
is forced by the signal 𝑢 = 𝑦

1
. As shown in Figure 13, there

exists a high correlation between the state variables 𝑦
1
and 𝑦

2
,

and an absence of correlation between state variables 𝑦

2
and

𝑦

3
. But can the correlation between the state variables 𝑦

1
and

𝑦

2
be incremented by changing the value of the parameters

of the Lorenz system? With the purpose of answering this
question, we have calculated 𝐶

𝑦
1
𝑦
2

, 𝐶
𝑦
1
𝑦
3

as a function of the
autonomous Lorenz system parameter 𝑟 keeping the value of
the parameter 𝑏 constant and vice versa. Figure 14(a) shows
that for 𝑟 < 15 approximately, correlations 𝐶

𝑦
1
𝑦
2

, 𝐶
𝑦
1
𝑦
3

have
a transition period, and for 𝑟 ≥ 15, the correlations return to
their previously showed behavior: 𝐶

𝑦
1
𝑦
2

≈ 1.0 and 𝐶

𝑦
1
𝑦
3

≈ 0.
Figure 14(b) shows that the parameter 𝑏 does not affect the
correlation between 𝑦

1
and the responses 𝑦

2
, 𝑦
3
.

If Lorenz system parameters are tuned so that the Lorenz
system behaves as a filter and can be used as a slave system,
then generalized synchronization ofmaster and slave systems
always appears.

8. Conclusions

An 𝑛-interconnected nonlinear system given by (6) always
behaves as a filter if the condition given by Theorem 4 is
satisfied. Despite of the nonlinearities in the structure of
𝑛-interconnected nonlinear system, its dynamical behavior
does not depend on the initial conditions but it does as a
function of the input signal. The nonlinear filter’s response
to sinusoidal input signal presents several interesting phe-
nomena such as (i) frequency components at multiples of the
input signal’s frequency (ii) when the amplitude of the input
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signal increases, the number of peaks of the filter’s response
increases (iii) the amplitude of the filter’s response falls
exponentially as a function of the input signal’s frequency.

The Lorenz system is described in terms of low pass
filters which consists of a linear low pass filter and a 𝑡𝑤𝑜-
interconnected nonlinear low pass filter. This gives us the
possibility to describe all the systems that conform the Lorenz
family and others with similar structure in terms of low pass
filters.

In several studies of chaos synchronization, specifically in
forced systems ẋ = 𝑓(x, 𝑢), x ∈ R𝑛, it has been found that
generalized synchronization of response systems occurs for
specific external signals 𝑢, but all these cases satisfy condition
(8). Then, the general synchronization phenomenon and the
phenomenon of nonlinear filter are seen to be the same.
Nevertheless, condition (8), in generalized synchronization
phenomenon, could not be satisfied, because of the trajecto-
ries generated with different initial conditions asymptotically
could go to a different basin of attractions.This characteristic
is different to the phenomenon of nonlinear filter which by
definition condition (8) needs to be always satisfied if a system
behaves like a nonlinear filter. Several chaotic systems have
a similar structure to 𝑛-interconnected system, so that we
conjecture that this study can help to distinguish between
generalized synchronization behavior and nonlinear filtering
behavior of an 𝑛-interconnected system.
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[9] J. S. González Salas, E. Campos Cantón, F. C. Ordaz Salazar, and
I. Campos Cantón, “Forced synchronization of a self-sustained
chaotic oscillator,” Chaos, vol. 18, no. 2, Article ID 023136, p. 9,
2008.

[10] E. C. Cantón, J. S. C. Salas, and J. Uŕıas, “Filtering by nonlinear
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