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The aim of the present paper is to obtain sufficient condition for the class of meromorphic p-valent alpha convex functions of
order & and then to study mapping properties of the newly defined integral operators. Many known results appeared as special

consequences of our work.

1. Introduction

Let X,(n) denote the class of meromorphic functions f(z)
normalized by

fl@)=z"+ OZOZakzk_p“, (peN), (1)
k=n

which are analytic and p-valent in the punctured unit disk
U* ={z: 0 < |z| < 1}. In particular, &, (n) = = (n), z,(1)=
Z and %, (1) = Z. For A which is real with [A|] < 7/2,
a>0,0<&< pandn, p e N, we denote byZé’p (A, n, &),
€, (An, &), and M, N n e, &), the subclasses of z, (n)
consisting of all meromorphic p-valent functions of the form
(1) which are defined, respectively, by

—Reei’\% >&cosA, (zeUY),
—Reeik(zjﬂ%;)>fc05/\, (z eUY),
@, ([Fe)
—Ree” 1 (1 - ) @ +a @
>&cosA, (zeU").

)

Making A = 0, n = 1in (2), we get the well-known subclasses
of X, consisting of meromorphic p-valent functions which
are starlike, convex, and alpha convex of order £ (0 < & <
p), respectively. For details of the classes defined by (2) and
related topics, we refer the raeder to the work of Aouf and
Hossen [1], Aouf and Srivastava [2], Ali and Ravichandran
[3], Goyal and Prajapat [4], Joshi and Srivastava [5], Liu and
Srivastava [6], Raina and Srivastava [7], Xu and Yang [8], and
Owa et al. [9].

For f(z) € X, Wang et al. [10] and Nehari and Netan-
yahu [11] introduced and studied the subclass Xy (1) of =
consisting of functions f(z) satisfying

(2f' @)

W<T, (T>1,Z€[U*). (3)

e

We now extended this concept to define a subclass £/, (A,
n,a, ) of z, (n) consisting of functions f(z) of the form (1)
satisfying

| : ')
ki (@@ &
ee”| (1-aw) @ +« 7@ W
<tcosd, (r>pzelU).



For « = 0and « = 1 in (4), we obtain the classes
NG, (A,n,7) and NS, (A,n, 1) of z, (n), respectively,
studied by Arif [12]; also see [13, 14].

Integral operators for different classes of analytic, uni-
valent, and multivalent functions in the open unit disk are
studied by various authors; see [15-21]. We now define the
following general integral operator of meromorphic p-valent
functions:

Gy (2) = L, (8,55 f;(2))

©)

1/8
) {% L V(G (t)))ajdf]’ :

j=1

For § = 1, we obtain the integral operator I, ,(f;(z)) studied
recently in [22, 23], and, further for p = I, we obtain the
integral operator introduced and studied by Mohammed and
Darus [24].

Sufficient conditions were studied by various authors for
different subclasses of analytic and multivalent functions; for
some of the related work see [25-27]. The object of the
present paper is to obtain sufficient conditions for the class
ZM ,(A,n,,§) and then study mapping properties of the
integral operator given by (5). We also consider some special
cases of our results which lead to various interesting corollar-
ies and relevance of some of these results with other known
results which are also mentioned.

We will assume throughout our discussion, unless other-
wise stated, that A is real with [A| < /2,0 <& < p, 7> p, p,
neN,a;> Oforje{l,...m},0>0,a>0,and

zf' (2) (zf’ (Z)), (6)
f@ e

To obtain our main results, we need the following lem-
mas.

Jo(f) = (1-a)

Lemma 1 (see [27]). If q(z) € X(n) withn > 1 and satisfies
the condition

2d @ +1|< == (zeU), )
n-+1
then
q(z) €28 (n). (8)

Lemma 2 (see [28]). Let v : C* — C satisfy the following
condition:

la + is|?

Re {y (is, 1)} <0, (s,teR;ts— ,Re(a)>0,>.
9)

If the function h(z) = a + hyz + hy2> + -+ is analytic in
U=U"\{0}and

Re{y (h(2),zh' (2))} >0, (z€eU), (10)
then

Reh(z) >0, (zel). 1)
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2. Sufficiency Criteria for the Class
M ,(AncE)

In this section we establish a new sufficiency criteria for the
subclass i, A, n,a,&) of z, (n).

Theorem 3. If f(z) € z, (n) satisfies

’ « e“/(p—E) cos A
(e A

+Ecos)t+ipsin)t}+(p—§)cos)t (12
< \/%(p—f,)cos/\ (zeU),
then f(z) € i, (A, n, a0, &), where ] (f) is given by (6).
Proof. Let us set a function g(z) by
’ « e“/(pff) cos A
1 -zf (z)
o 2erelZ2))
z pf(2) (13)

ir
1 aeab,

z " (p—E)COS/\Z I

for f(z) € z, (n). Then clearly (13) shows that g(z) € Z(n).
Logarithmic differentiating of (13) gives
q’ (Z) _ ei/\
q@)  (p-&) cosh

X [(1—oc)f 2 +“(zf ) p:| !

@ Y@ =

which further implies

|zzq' (z) + 1'

’ « e"k/(p—E)cosA il
= (pr(z)(_zf (Z)) ) ¢
pf(2) (p—§)cosA

X [J, (f) +&cosA +ipsinA] +1

(15)

Thus using (12), we get

|22q' (z) + 1| < (zeU"). (16)

n
N
Therefore by Lemma 1, we have q(z) € £§ (n).
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From (14), we can write

zq (z) 1
q(z)  (p-§&)cosA

[eM]a (f)+ Ecos}t+ipsin)t] :
17)

Since g(z) € XS (n), it implies that Re(—zq’(z)/q(z)) > 0.
Therefore, we get

1 i
o eon | Ree e () ~Ecos)]
! (18)
_ Re<_zq (z)) g
q(2)
or
_ReeiA]a (f) > &cosA. (19)

And therefore f(z) € 24 ,(A, n, e, o).
By taking « = 0 and « = 1 in Theorem 3, we obtain
Corollaries 4 and 5, respectively, proved by Arif [12]. O

Corollary 4. If f(z) € z, (n) satisfies

(2 f (z))e“/(p_,s) cos {em —ZJJ: (S) +&cos A +ipsin /\]»

n(p-=&)cosi
< Y= i (z €

+(p—&)cosA u’),

(20)
then f(z) € £ ,(A,n, o).
Corollary 5. If f(z) € X, (n) satisfies

<Zp+1 7 (2) )e"‘/@—:) cos A
-p

X {ei}‘ <—Zj; ((ZZ)) +1)+~fcos A+ipsin /1} +(p-&) cos A

n

<
Vn? +1

(p-&)cosh, (zeU"),

(21)
then f(z) € %, A, n,8).

Remarks. We note that by simple computation (13) gives

z (p—{)cosA/ocei)' «
f(z)= [—BJ (tg 1)) ] . (22)

o Jo tp/oc+1

By taking suitable meromorphic starlike function for g(z) in
(22) suchasq(z) = (1 - 2")?/z, which satisfies the inequality
of Lemma 1, we can conclude that the function f of (22) is
the subclass of a meromorphic function.

3. Some Properties of the Integral Operator
G, (z)

In this section, we discuss some mapping properties of the
integral operator G,), ().

Theorem 6. For j € {1,...m}, let f;(2) € £, (n) and satisfy
0). If

§:“]< (p+1)(2-9)

. , 0<d8<2,
-9 =os (23)

thenG,, (z) € Z./VP (A, n,8,n) withn > p, and G,, (z) is given
by (5).

Proof. From (5), we obtain

82PG T (2) Gl (2) + (p+ 1) 2 G, (2)
m 24
_ aza—ll—[(zpfj (Z))ocj. ( )

j=1
Dividing both sides by zG* (2), we have

8zG,, (2) + (p+1)G,, (2)
1 m « (25)
=876 () [](7f; ).
=1
Differentiating again logarithmically, we have
6zG,, (z) + (p+8+1)G,, (2)
0zG! (2) +(p+1)G,, (2)

G, (2)
G,, (z)

1
=(8—p—1);+(1—8)

& fj,(Z) p)
+j_zlaj<fj(z)+z |

Now by simple computation, we get

(26)

1\ 26, (2) 1(2G, (@)
<I_S> G,@ & G (@

e (2 R)
= (—SZocj( fj(Z) +p>




4 Journal of Applied Mathematics
or equivalently we have Let
G, (2)
! U 1-6
M (1-1) L@, 10 0) G, @ | P10
IR A Y reae S e o
_ z j z id
= lia(—em—zf; © —pe’%> J:Zl 1< 5@ +p>} e
05 ! fi (@) 1 ( )
+<(2+2p-
+é(2+2p—8)ei’\+—GG",‘(Z) 0 ,
zG,, (2) +l§:“,<_ 1 zf; (z) )
m ij' (2) N o T\ cosh fi (@)
x| (p+1-08)-Ya; %) +p ] (p+1)e”. 31)
= j

By taking real part on both sides, we obtain

~ Ree™ {(1— 6) Z((; ((Z)) + =

1 (=G}, (z))’}

5 G, (2)

1 J zf; (2)
52 < Af]( ) —pcos)t)
G,, (z)

+—(2+2p 8)cosA + Re G @)

which further implies that

~Ree” <|(1 - —> ZGG ((ZZ)) +

0 Gl (2)

+%(2+2p—8)cosx\

1(:6, @) }

(28) Clearly we have

17>%(2+2p—8)

(32)
1 & MZf (2)
+—6cos/\j;aj< Ree f]( ) —pcosx\).

Then by using (23) and Theorem 3 with & = 0, we obtain

>é[icxj(f—p)+(2+2p—8):|>p. (33)
j=1

Therefore G, (z) € Z47, (A, n,6,n) withn > p.
Making § = 1 in Theorem 6, we have the following. [J

Corollary 7. For j € {1,...m}
(20). If

< (p+1)
29
) Zl (p-¢ (34)

then I, mp (fj(z)) €INE, (A1) withn > p.

, let fj (z) € z, (n) and satisfy

Theorem 8. For j € {1,...m}, let f;(z) € £, (0, n&). If

Z p+1—6, (35)

=

then G,, (z) € £8, (0,n, p), where 0 < p < pwithp = p+1-
0+ (E_P) Z;'n:l‘xj'

Proof. From (26), we obtain

8(2G,, (2) /G, (2) + 1) + (p + 1) 2G, (2)

G,, (2) (p+1-0) 8(2G,(2) /G, (2))+(p+1) G, (2)
zG' (z) p
m zG,, (2)
=(0-p-1)+(1-08 —"=— e (36)
no ([ zf; (2) ;
—Z (f](z) P>](P+1)6A~ +§(X (Zf (2) )
(30) L@ )
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Let

B 12G,, (2) B

¢ G, (z) =q(2)=((p-p)p(2) +p)cos A +isin ],

(37)

such that g (z) is analytic in U* with q (0) = p. Then (36) can
be written as

Zq, (Z) eiA
(p+1)e* -8q(z)

_ (P+1—5)eia+liaj (_emzfj (2) —pe’“).

q(z) +

) et 1 (@)
(38)
Taking real part on both sides, we have
/ il
zq (z)e
R -
e("(z“ (p1)e" —6q(z))
= IHTI_S cos A
m ! (39)
1 il Zf] (Z) >
+=)a; | -R - pcosh
Z( Hi@ P

iog-) cosA >0,

where we have used (35) and the assumption that fj (z) €
I8, (An, &). Let us put

et
V) = —_—. 40
v (u,v) u+(p+1)e”‘—8u (40)
Then, for s,t € R such that t < —(p2 + s2)/2, we have
N te'*
Re (y (is,t)) = Re {15 + e - iés}
[(p+1)-8ssinA] (p* +57)
) [(p + 1) cos?A + 8252(1 - (p + l)sin/\)z]
(41)

Thus using Lemma 2, we conclude that Re g (z) > 0, which is
equivalent to

1 2G (2)
_R id m . 42
ee eNe) > pcos A (42)
Thatis, G,, (z) € ZoS’p (A, n, p). ]
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