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The reliability of discrete elementmethod (DEM) numerical simulations is significantly dependent on the particle-scale parameters
and boundary conditions. To verify the DEMmodels, two series of biaxial compression tests on ellipse-shaped steel rods are used.
The comparisons on the stress-strain relationship, strength, and deformation pattern of experiments and simulations indicate that
the DEM models are able to capture the key macro- and micromechanical behavior of inherently anisotropic granular materials
with high fidelity. By using the validated DEM models, the boundary effects on the macrodeformation, strain localization, and
nonuniformity of stress distribution inside the specimens are investigated using two rigid boundaries and one flexible boundary.
The results demonstrate that the boundary condition plays a significant role on the stress-strain relationship and strength of granular
materials with inherent fabric anisotropy if the stresses are calculated by the force applied on the wall. However, the responses of the
particle assembly measured inside the specimens are almost the same with little influence from the boundary conditions.The peak
friction angle obtained from the compression tests with flexible boundary represents the real friction angle of particle assembly. Due
to the weak lateral constraints, the degree of stress nonuniformity under flexible boundary is higher than that under rigid boundary.

1. Introduction

The natural granular materials such as sands and gravels
universally have the characteristics of anisotropy due to
deposition under gravity or compaction. A number of studies
in the bearing capacity of shallow foundations [1–3] and
slope stability [4, 5] demonstrated that the deformation and
strength anisotropy of the granular materials played a signif-
icant role on the geotechnical engineering.

The mechanical behavior of granular materials with
inherent fabric anisotropy has been investigated using almost
all the available laboratory testing methods such as triaxial
compression tests [6, 7], direct shear tests [8, 9], plane strain
compression tests [6, 10, 11], and hollow cylinder torsion shear
tests [10, 12]. All of these experimental results indicate that the
deformation and strength of inherently anisotropic granular
materials are significantly dependent on the direction of

applied stresses with respect to the bedding plane. In order to
correlate these macrodeformation behaviors to the evolution
of fabric characteristics, various new testing technologies
including microstructural observation of thin sections fixed
by resin [13], X-ray CT [14, 15], and stereophotogrammetry
[16] have been used. However, these methods are too expen-
sive or even impossible to capture the particle-scale quantities
during the whole process of deformation.

Instead ofmaking efforts on the particle-scale fabricmea-
surement of real 3D laboratory experiments, the biaxial com-
pression tests were conducted using two-dimensional rod
assemblages [19, 20]. In the tests conducted by Konishi et al.
[19], the photoelastic rods with oval cross-section were used
to investigate the inherent anisotropy and shear strength.
Their test results indicated that the deformation behavior
of these 2D rods resembled that of real granular materials
to a great extent. However, compared to the 3D laboratory
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experiments, it is much easier to catch the evolution of the
fabric characteristics during the deformation process of the
specimen.

The discrete element method (DEM) is capable of pro-
viding the detailed information about particle movement,
rotation, and interaction between particles. A large number
of numerical simulations for the biaxial/triaxial compression
tests [18, 21–25] and direct/simple shear tests [18, 22, 26–
28] have demonstrated that DEM is a powerful tool to study
the microdeformation mechanism of granular materials.
However, these DEM models differ greatly in the simulation
of particle shape and boundary conditions, which have great
effects on themacro- and particle-scale responses of granular
materials.

The present paper aims at simulating the biaxial com-
pression tests of ellipse-shaped steel rod assembly with high
fidelity. The DEM model is validated by comparing the
macro- and particle-scale responses of laboratory experi-
ments and numerical simulations for two series of biaxial
compression tests. The effects of boundary conditions on the
stress-strain relationship, strength, strain localization, and
stress nonuniformity are investigated.

2. Validation of Discrete Element Models

2.1. Biaxial Compression Experiments. Two series of biaxial
compression tests on ellipse-shaped steel rod assembly are
used to validate the DEM models in this paper. The biaxial
compression test equipment was developed by the second
author [17]. Its structure diagram was shown in Figure 1.
A rectangular sample container A, 240mm in height and
120mm in width, was constituted by the top plateB, bottom
plate D, and two side plates C. The base E was supported
by the vertical loading platformF of a conventional triaxial
compression apparatus and the component labeled as G
was the reaction frame. During the shearing, the vertical
deformation of the sample was controlled by the vertical
movement of the loading platform F, while the top plate
B was kept immovable. It should be pointed out that the
baseE together with both side platesC and bottom plateD
moved upward at the same speed as the movement of loading
platform F in this equipment, which was not common for
the compression tests. The vertical pressure applied on the
sample wasmeasured by the force gauge𝐹𝑇

𝑉
.The force gauge

𝐹
𝐿
and 𝐹
𝑅
was used to measure the confined pressure applied

on the left and right side platens, respectively. Each of the left
and right side plates C together with the base of the frame
E was installed two displacement sensors, and totally six
displacement sensors, denoted by DT1 to DT6, were used.

The materials tested were the ellipse-shaped steel rods
with a uniform aspect ratio (the ratio of theminor axis length
[𝑑] to themajor axis length [𝐷]) of 1 : 2 and a length of 40mm.
The aggregate of the specimen was made by mixing three
kinds of rods with their major axis length of 4mm, 2mm,
and 1mm. And their mass ratio was controlled to be 8 : 2 : 1.

To investigate the loading direction-dependent responses
of the rod assembly, the specimens with various tilting angles,
denoted by 𝛿, were fabricated as Figure 2 shown. The tilting
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Figure 1: The structure diagram of the biaxial compression test
equipment (Zhang [17]).

angle 𝛿 is defined as the angle between the bedding plane and
the plane of the major principal stress. One black rectangular
frame was used to contain the rod assembly, whose inside
dimensions were 240mm high, 120mm wide, and 50mm
long. To fix the black rectangular frame at a prescribed tilting
angle, one transparent organic glass with marked lines and
holes was used. The specimen with the tilting angle of 𝛿
was fabricated as follows. Firstly, according to the required
tilting angle 𝛿, the horizontal black rectangular frame was
rotated clockwise by the angle of 𝛿 and fixed on the organic
glass using bolts. Then the mixed iron rods were placed into
the frame layer by layer by hand while keeping the major
axis of rods horizontal. When the frame was filled with iron
rods, small shaking was applied for 1 minute to uniform the
rod assembly. After that, the frame was removed from the
organic glass and returned back to the horizontal direction
by rotating counterclockwise by 𝛿. Finally the rod assembly
was pushed horizontally to the rectangular sample container
A of the biaxial compression equipment using an organic
glass plate, which has the same inside width and height as
the frame and the rectangular sample container A. Till now
the specimen with the tilting angle of 𝛿 was prepared and
ready for biaxial compression tests. Two series of biaxial
compression tests by changing tilting angles and confining
pressures were conducted.

2.2. Discrete Element Model. The DEM simulation package
PPDEM developed by Fu and Dafalias [18, 22] was used in



Journal of Applied Mathematics 3

(a)

𝛿

𝜎1

𝜎3

𝛿

𝜎3

𝜎1

(b)

Figure 2: Specimen fabrication method for the tilting angle of 𝛿: (a) fix the rectangular frame according to the required tilting angle of 𝛿;
horizontally place the mixed rods into the frame layer by layer, (b) remove the rectangular frame when it was filled with rods, and rotate back
to the horizontal direction.
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Figure 3: Specimen preparation and boundary of biaxial compression simulations: (a) fabrication of specimen with a tilting angle of 𝛿 (Fu
and Dafalias [18]) and (b) the boundary control of the specimen.

this study. As described in the papers of Fu and Dafalias [18,
22], the PPDEM is capable of characterizing any noncircular
particle shapes by using “polyarc” element. The initial fabric
anisotropy of the specimen can be well represented by mod-
eling the deposition process under gravity. In addition, local
quantities such as local stress, strain, particle orientation,
rotation, and void ratio can be measured conveniently by
defining a polygon-shaped “mask”, whose vertex is attached
to a particle.

To simulate the biaxial compression experiments of the
rod assembly described above, three particle sizes with the
major axis length of 4mm, 2mm, and 1mm, respectively,
were produced with their number ratio of 1 : 1 : 2, which was
the same as the tested rod assembly. The biaxial compression

specimens with various tilting angles were produced using
the same method as described by Fu and Dafalias [18]. As
Figure 3(a) shows, a “master pack” of 30000 particles was
fabricated firstly by particle pluviation, whose bedding plane
is horizontal. Then the “master pack” was rotated counter-
clockwise by the tilting angle of 𝛿, and the biaxial com-
pression specimens were “trimmed” horizontally out of the
master pack. Around 10000 particles were included in the
“trimmed” specimen with the initial size of 240mm in height
(𝐻
0
) and 120mm in width (𝑊

0
). The initial void ratios of all

the specimens with different tilting angles were 0.190 ± 0.01.
When the specimen was fabricated, four rigid walls were

applied as the boundary of the specimen. The loading in the
numerical simulations was controlled to be the same as that



4 Journal of Applied Mathematics

Experiment  Simulation
State B: specimen deformation State C: specimen deformation

Experiment  Simulation

Experiment  Simulation
State A: specimen deformation

Experiment  Simulation
State D: specimen deformation

4.0
3.5
3.0
2.5
2.0

−1.5
−2.0

−1.0
−0.5

0.0
0.5
1.0
1.5

1.0
1.5

𝜎
1
/𝜎

3
𝜀 �

(%
)

0 2 4 6 8 10 12 14 16
𝜀1 (%)

A B C D

Experiment  Simulation

(a) 𝛿 = 0∘; 𝜎3 = 200 kpa

4.0
3.5
3.0
2.5
2.0

1.0
1.5

𝜎
1
/𝜎

3

−1.0
−0.5

0.0
0.5
1.0
1.5

−1.5
−2.0

𝜀 �
(%

)

0 2 4 6 8 10 12 14 16
𝜀1 (%)

Experiment  Simulation

E

Experiment  Simulation
State E: specimen deformation
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Figure 4: Stress-strain relationship and deformation comparison between experiments and simulations at different tilting angles: (a) 𝛿 = 0∘,
(b) 𝛿 = 30∘, (c) 𝛿 = 60∘, and (d) 𝛿 = 90∘.
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in laboratory experiments, which was shown in Figure 3(b).
After the specimen was consolidated isotropically at the
required confining pressure of 𝜎

3
, the shearing began. In the

vertical direction, the bottom wall moved upward at a speci-
fied rate while the top wall was kept immovable.The two end
walls were free tomove in the horizontal direction. For the left
and right lateral walls, the horizontal confining pressure of 𝜎

3

was maintained constant by the wall servocontrol. However,
both lateral walls moved vertically at the same speed as the
bottom wall.

As described by Fu et al. [29], the overlap-area contact
law was adopted for the interparticle behavior in PPDEM.
The research conducted by Mirghasemi et al. [30] has
demonstrated that the format of contact laws has minor
effects on the macroscopic behavior of particle assemblage
as long as the model parameters are appropriately selected.
Thus the contact model for the tested steel rods has not been
measured, and the overlap-area contact law is used for the
numerical simulations. By conducting parameter sensitivity
analysis, it is found that two parameters, the interparticle
friction angle and the friction angle betweenparticle andwall,
have significant effects on the macromechanical behavior of
particle assembly. These two parameters are chosen to be
30∘ and 10∘, respectively, by comparing the stress-strain
relationship between experiments and simulations for two
series of tests varied in tilting angles and confining pressures.

2.3. Verification of Discrete Element Model. Two series of bia-
xial compression tests are used to validate the discrete
element models. One is the tests with the tilting angle of 𝛿
varying from 0∘ to 90∘ with interval of 15∘ while keeping the
same confining pressure 𝜎

3
= 200 kPa; the other is conducted

by changing the confining pressures at the same tilting angle
𝛿 = 0
∘. Figures 4(a)–4(d) compare the evolution of the stress

ratio 𝜎
1
/𝜎
3
, volumetric strain 𝜀V, and deformation pattern of

laboratory experiments and numerical simulations for the
first series of tests with 𝛿 = 0∘, 30∘, 60∘, and 90∘, respec-
tively. The principal stresses of 𝜎

1
and 𝜎

3
are calculated

4.0

3.5

3.0

2.5

2.0

1.0

1.5

𝜎
1
/𝜎

3

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5

−2.0

𝜀 �
(%

)

0 2 4 6 8 10 12 14 16
𝜀1 (%)

𝛿 = 0∘

𝜎3 = 100 kPa
𝜎3 = 200 kPa
𝜎3 = 400kPa

Experiment  
Experiment  
Experiment  

Simulation
Simulation
Simulation

Figure 6: Stress-strain relationship comparison between experi-
ments and simulations under different confining pressures.

using the same method as the laboratory experiments. The
𝜎
1
is obtained by dividing the average vertical force of two

end walls by the specimen width, and the 𝜎
3
is calculated

by dividing the horizontal force of two lateral walls by the
specimen height.

As Figures 4(a)–4(d) show, the key direction-related
mechanical behavior of granular materials with inherent
fabric anisotropy can be captured by numerical simulations
with high fidelity, although the initial shear modulus of all
simulations is a little bit higher than that of experiments. The
response of the granular materials is significantly dependent
on the loading direction for both simulations and experi-
ments. For 𝛿 = 0∘ and 𝛿 = 30∘, the principal stress ratio
𝜎
1
/𝜎
3
reaches a peak followed by strain softening. As the

tilting angle 𝛿 increases, the strain softening is weakened. For
𝛿 = 60

∘ and 𝛿 = 90∘, the development of the principal stress
ratio 𝜎

1
/𝜎
3
tends to be strain hardening, which progressively

approaches plateaus and then remains constant. With the
continuation of the deformation, the specimen contracts
firstly and then dilates. The dilation is reduced with the
increase of the tilting angle 𝛿. It should be pointed out that
these results are qualitatively similar to the plane strain test
results obtained by Oda et al. [6] and Tatsuoka et al. [10].
In addition, the deformation pattern of specimens at typical
states of A to G visually looks similar, which shows that both
experiments and simulates should possess the same particle-
scale deformation mechanism.

Figure 5 gives the comparison of the peak friction angle
𝜙
𝑝
with respect to the tilting angle 𝛿. The peak friction angle
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Figure 7: The other two boundaries used for comparison.

𝜙
𝑝
corresponds to the maximum principal stress ratio 𝜎

1
/𝜎
3

in Figures 4(a)–4(d), which is calculated through the curve
of the principal stress ratio 𝜎

1
/𝜎
3
versus axial strain 𝜀

1
by

assuming zero cohesion. It can be seen that the evolution of
the peak friction angle 𝜙

𝑝
with respect to the tilting angle

𝛿 follows the same tendency for both experiments and
simulations. As the tilting angle 𝛿 increases, the peak friction
angle 𝜙

𝑝
decreases. The biggest difference of 𝜙

𝑝
between

simulations and experiments is about 2∘, which happens at
𝛿 = 60

∘.
Figure 6 shows the comparison of experiments and sim-

ulations for the second series of tests, in which three different
confining pressures are applied for the tilting angle 𝛿 = 0∘. For
𝛿 = 0
∘, the stress-strain relationship shows the characteristics

of strain softening under three different confining pressures.
The effects of confining pressure can be modeled. With the
increase of confining pressure, the peak strength reduces.
The specimen contracts followed by dilation. The maximum
volumetric contraction increases as the confining pressure
increases.

3. Investigation of Boundary Effects

It should be pointed out that the two lateral platens move ver-
tically at the same speed as the bottom platen in the above
biaxial compression tests and simulations, which is not
common for compression tests. In the following, thismode of
boundary control is denoted by Rigid boundaryA. To investi-
gate the effects of boundary condition, two other boundaries
are used as Figure 7 shows. One boundary, denoted by Rigid
boundary B, is the same as Rigid boundary A except that the
two lateral walls are free to move in the vertical direction.

Theother boundary, denoted by Flexible boundary, resembles
the conventional triaxial compression tests. The top and
bottom boundaries are simulated by the rigid walls. The two
lateral boundaries are flexible like membrane. The confining
pressure 𝜎

3
is directly applied on particles as described by Fu

and Dafalias [18].

3.1. Boundary Effects on the Stress-Strain Relationship and
Strength. Figures 8(a)–8(d) compare the development of the
principal stress ratio 𝜎

1
/𝜎
3
and volumetric strain 𝜀V with axial

strain 𝜀
1
under the above three different boundary conditions

for the tilting angle 𝛿 = 0∘, 30∘, 60∘, and 90∘, respectively. All
the principal stresses of 𝜎

1
and 𝜎

3
are calculated by dividing

the force applied on the wall by the relevant specimen size,
except that the 𝜎

3
is directly applied on particles under

Flexible boundary. The averaged specimen width, dividing
the specimen volume by the height, is used to calculate 𝜎

1

under Flexible boundary.
It can be seen that the stress-strain relationship and

strength are dependent on the boundary condition. Much
stronger strain softening happens under Flexible boundary
compared to the other two rigid boundaries. For 𝛿 = 60∘
and 90∘, the development of stress ratio 𝜎

1
/𝜎
3
shows strain

hardening characteristics under Rigid boundary A and Rigid
boundary B, while the marked drop of 𝜎

1
/𝜎
3
still occurs

after the peak under Flexible boundary. The reason for the
strong strain softening under Flexible boundary may be due
to the lateral bulging of the specimen at large deformation.
The maximum peak friction angles 𝜙

𝑝
and the initial shear

modulus are achieved under Rigid boundary A, and the
corresponding minimum values are obtained under Flexible
boundary for any tilting angle 𝛿. The effects of boundary
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Figure 8: The development of stress ratio 𝜎
1
/𝜎
3
and volumetric strain 𝜀V with axial strain 𝜀

1
for three different boundary conditions: (a)

𝛿 = 0
∘, (b) 𝛿 = 30∘, (c) 𝛿 = 60∘, and (d) 𝛿 = 90∘.
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Figure 10: The development of “real” stress ratio 𝜎
1
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3
with axial strain 𝜀

1
for three different boundary conditions: (a) 𝛿 = 0∘, (b) 𝛿 = 30∘,

(c) 𝛿 = 60∘, and (d) 𝛿 = 90∘. The 𝜎
1
and 𝜎

3
are measured inside the specimen by defining a mask.
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Figure 12: Deformation of biaxial compression tests at axial strain of 15% under Rigid boundary B: (a) overall deformation and (b) contours
of individual particle rotation.
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Figure 13: Deformation of biaxial compression tests at axial strain of 15% under Flexible boundary: (a) overall deformation and (b) contours
of individual particle rotation.

condition on the development of volumetric strain 𝜀V are
not as significant as on the stress ratio 𝜎

1
/𝜎
3
. At the initial

stage of volume contraction, the volumetric strain 𝜀V is almost
the same for three different boundary conditions. As the
deformation continues, someminor differences are observed.

The DEM package PPDEM used is capable of measuring
the average local stresses in any domain inside the specimens
by defining a mask as described by Fu and Dafalias [18]. To
obtain “real” average stresses inside the specimens, the mask
is defined firstly as Figure 9 shows. The mask defined under
two rigid boundaries is a little bit smaller than thewhole spec-
imen and the same mask is used during the shearing process.
However, under Flexible boundary, due to the distortion of
the specimen, the particles bulged outside are not included
in the mask, and the mask is changed at each 4% axial strain.
The average stresses inside the mask are calculated.

The development of the “real” stress ratio 𝜎
1
/𝜎
3
measured

by the above masks is shown in Figures 10(a)–10(d) for tilting
angle 𝛿 = 0∘, 30∘, 60∘, and 90∘, respectively. It can be
seen that the “real” stress-strain relationship measured inside
the specimen is almost the same except that some minor
difference happens for 𝛿 = 0∘. The minor difference of the
𝜎
1
/𝜎
3
among different boundary conditions may be due to

the differentmasks used.However, reviewing the stress-strain

relationship presented in Figure 8, in which the stresses are
calculated by the force applied on the wall, the stress ratio
𝜎
1
/𝜎
3
is affected significantly by the boundary conditions.

To investigate the boundary effects on the strength,
Figure 11 gives the peak friction angle 𝜙

𝑝
calculated on the

basis of Figures 8 and 10, which are indicated with “by wall”
and “by mask”, respectively, for three different boundary
conditions. It can be found that the peak friction angle 𝜙

𝑝

decreases as the tilting angle 𝛿increases for all cases.The peak
friction angle 𝜙

𝑝
calculated “by wall” under Rigid boundary

A is the maximum, which is almost 1.5∘ higher than that
under Rigid boundary B and 3.5∘ higher than that under
Flexible boundary. However, when the “real” stresses inside
the specimen are calculated by “mask”, the difference of
the peak friction angle 𝜙

𝑝
among three different boundary

conditions is less than 1∘ as far as the same tilting angle is
considered. In addition, one interesting phenomenon found
in Figure 11 is that, under Flexible boundary, the peak friction
angle 𝜙

𝑝
obtained by “wall” is very close to the real value

obtained by mask. The difference between them is less than
1∘, which indicates that the peak friction angle 𝜙

𝑝
obtained

usually by triaxial compression tests can represent the true
strength of the granular materials.
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Mask-up

Mask-mid

Mask-bot

Figure 14: Definition of three different masks.

3.2. Boundary Effects on the Strain Localization. The strain
localization happens in almost all kinds of granular materials
during the shearing process. The shear localization pattern
is very complex and may be affected by many parameters,
among which the effect of the boundary condition is signif-
icant [10, 16]. To study the effects of boundary conditions
on the strain localization, Figures 12 and 13 show the grid
deformation and the particle rotation contours at the axial
strain of 15% under Rigid boundary B and Flexible boundary
for the tilting angle 𝛿 = 0∘, 30∘, 60∘, and 90∘, respectively.The
grid was originally “painted” on the consolidated specimen.
Considering that the specimens have almost the same defor-
mation pattern under two rigid boundaries, only the results
under Rigid boundary B are presented in Figure 12.

It can be seen that the grid deformation and the particle
rotation contour give the same shear localization region.
The primary shear plane is dependent on the boundary
condition. Under Rigid boundary B, the primary shear plane
extends from corner to corner due to the strong constraint
of the four rigid walls. However, under Flexible boundary,
the constraint of the boundary is much weaker, and large
bulging of the particles is found. At any tilting angle 𝛿, the
primary shear plane extends upward from left to right, which
was denoted as Type-b failure plane in Tatsuoka et al. [10].
And the shear localization mainly focuses in the middle part
of the specimen. However, under Rigid boundary B, the
primary shear plane produced is significantly dependent on
the direction of loading. Different types of shear planes are
found when the tilting angle 𝛿 changes from 0∘ to 90∘ as
Figure 12 shows. For𝛿 = 0∘ and 60∘, the shear plane extending

from the left-up corner to the right-down corner is dominant,
which was denoted as Type-a failure plane in Tatsuoka et al.
[10]. For 𝛿 = 30∘, the primary shear plane is Type-b mode.
The X-type shear plane happens for 𝛿 = 90∘.

3.3. Boundary Effects on the Stress Nonuniformity Inside the
Specimen. To investigate the boundary effects on the stress
nonuniformity inside the specimen, three different masks,
denoted by mask-up, mask-mid, and mask-bot, respectively,
are defined in the upper middle, central middle, and bottom
middle part of the specimen as shown in Figure 14. Eachmask
contains over 1000 particles. The averaged stresses in these
masks are calculated. Given typical examples of 𝛿 = 0∘ and
90∘, Figures 15 and 16 show the evolution of stress ratio 𝜎

1
/𝜎
3

measured in different masks with axial strain 𝜀
1
under the

conditions of Rigid boundary B and Flexible boundary. The
curves of Figure 10 under the same conditions are plotted for
comparison, which are indicated with “mask-whole.”

It can be found that the boundary conditions affect the
stress distribution inside the specimen. The stresses in the
central middle part of the specimen are higher than those
in the upper and bottom parts. And the stresses denoted
by “mask-whole” can represent the average stresses of the
upper middle, central middle, and bottom middle masks. In
addition, the degree of stress nonuniformity under Flexible
boundary is higher than that under Rigid boundary B.
The reason for the high stress nonuniformity under Flex-
ible boundary can be explained as follows. Under Flexible
boundary, the lateral constraints are weak. More particles in
the middle part of the specimen extrude and they cannot
transfer the vertical stresses efficiently. Thus high forces
concentrate in the central middle particles.

4. Conclusion

The DEM numerical simulations are a very promising tool
to investigate the macro- and micromechanical behavior of
granular materials. However, its reliability is significantly
dependent on the particle-scale parameters and boundary
conditions. In this paper, two series of biaxial compression
tests varied in bedding plane inclination angles, and con-
fining pressures are conducted on the ellipse-shaped steel
rod assembly. The DEM models are validated by compar-
ing the stress-strain relationship, strength, and deformation
pattern of experiments and simulations. On this basis, three
different boundary conditions are applied to investigate the
boundary effects on the macrodeformation, strain localiza-
tion, and the nonuniformity of stress distribution inside
the specimen. The main conclusions can be summarized as
follows.

(1) The stress-strain relationship and strength measured
by the force on the wall are significantly dependent
on the boundary conditions. The peak friction angle
obtained under rigid boundary is higher than that
under flexible boundary.

(2) The boundary condition has minor effects on the
mechanical behavior of particle assembly inside
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Figure 15: The evolution of stress ratio 𝜎
1
/𝜎
3
measured in different masks with axial strain 𝜀

1
under Rigid boundary B: (a) 𝛿 = 0∘ and (b)

𝛿 = 90
∘.
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Figure 16: The evolution of stress ratio 𝜎
1
/𝜎
3
measured in different masks with axial strain 𝜀

1
under Flexible boundary: (a) 𝛿 = 0∘ and (b)

𝛿 = 90
∘.

the specimen.The peak friction angle obtained under
flexible boundary is the closest to the real friction
angle of granular materials.

(3) The strain localization pattern of granular materials
with inherent fabric anisotropy is dictated by the
boundary condition and the bedding plane incli-
nation angle. Under the rigid boundary conditions,
various types of shear planes are observed for different
loading directions.

(4) The boundary condition affects the stress distribution
inside the specimen. The degree of stress nonuni-
formity under flexible boundary is higher than that
under rigid boundary due to the weak lateral con-
strains under flexible boundary.
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