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This paper addresses the adaptive synchronization of complex dynamical networks with nonlinear dynamics. Based on the
Lyapunov method, it is shown that the network can synchronize to the synchronous state by introducing local adaptive strategy to
the coupling strengths. Moreover, it is also proved that the convergence speed of complex dynamical networks can be increased via
designing a state predictor. Finally, some numerical simulations are worked out to illustrate the analytical results.

1. Introduction

In recent years, the synchronization problem of complex
networks is a hot topic inmany areas, includingmathematics,
physics, biology, computer, and artificial intelligence [1–37].
A complex dynamical network is composed of a large number
of nodes to be steered to arrive synchronization. However, it
is so hard and impractical to control all nodes to synchronize
in the large complex network. In order to solve this problem,
the pinning control is introduced, which can decrease the
number of controllers for synchronization of the complex
networks. Pinning control scheme is an effective way to
control dynamical networks to a desired state. The idea of
the pinning control is to steer a small fraction nodes, and all
nodes of the complex network can achieve control target via
localized feedback of those nodes.

A lot of outstanding works about the synchronization
problem of complex networks are presented in the recent
references [1–37]. In [1], Wang and Chen used specifically
and randomly pinning control strategies for scale-free chaotic
dynamical networks. De Lellis et al. [19] considered the
synchronization of complex networks through local adaptive
coupling.The authors [20] proposed a decentralized adaptive
pinning control scheme for synchronization of undirected
networks using a local adaptive strategy to both coupling
strengths and feedback gains. In [4], Yu et al. investigated

the synchronization via pinning control on general complex
networks. In [5, 6], second-order consensus problem for
multiagent systems was investigated by using pinning control
method.

The convergence speed of complex dynamical networks
is a significant issue. Through limited communication, each
agent can forecast the future states of its neighbors and itself;
as well as the new control law can be constructed by the
predicted states. With this strategy, the complex dynamical
network can evolve more quickly to equilibrium. Motivated
by it, this paper investigates the synchronization via designing
a state predictor. It is proved that all nodes will asymptotically
synchronize to the given homogeneous stationary state using
the adaptive strategy to the coupling strengths designed, if
the complex dynamical network is connected and at least
one node is informed. Introducing the state predictor for
formation algorithm in multiagent systems, the simulation
results show that using the state predictor in multiagent
systems can improve the speed of the system to complete the
desired task.

The rest of this paper is designed as follows. Section 2
gives a model of the complex dynamical network. Some
preliminaries are introduced to solve the adaptive syn-
chronization. Section 3 provides the theoretical analysis of
adaptive synchronization of the complex dynamical network.
Furthermore, some more detailed analyses are presented in
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this section. Section 4 gives some simulations to illustrate
our theoretical results. Conclusion is finally summarized in
Section 5.

2. Preliminaries and Problem Statement

Consider a complex dynamical network described by

𝑥̇

𝑖 (
𝑡) = 𝑓 (𝑥

𝑖 (
𝑡)) − ∑

𝑗∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) (𝑥𝑖 (

𝑡) − 𝑥

𝑗 (
𝑡))

+ 𝛾 ∑

𝑗∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) (𝑥̇

𝑝

𝑖
(𝑡) − 𝑥̇

𝑝

𝑗
(𝑡)) ,

(1)

where 𝑥

𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥

𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))

𝑇
∈ 𝑅

𝑛
, (𝑖 =

1, 2, . . . , 𝑁) represents the state vector of the node 𝑖 at time
𝑡; 𝑁
𝑖
is the neighbor set of node 𝑖; 𝑓(⋅) ∈ 𝑅

𝑛 is continuously
differentiable; 𝑎

𝑖𝑗
is the coupling weight between any two

agents, where 𝑎
𝑖𝑗
≥ 0 and 𝑎

𝑖𝑖
= 0; 𝑐
𝑖𝑗
(𝑡) denotes the coupling

strengths between nodes 𝑖 and node 𝑗; the weighted coupling
configuration matrix of the system is defined as

𝑈 = [𝑢

𝑖𝑗
] =

[

[

[

[

[

𝑢

11
𝑢

12
⋅ ⋅ ⋅ 𝑢

1𝑁

𝑢

21
𝑢

22
⋅ ⋅ ⋅ 𝑢

2𝑁

...
... d

...
𝑢

𝑁1
𝑢

𝑁2
⋅ ⋅ ⋅ 𝑢

𝑁𝑁

]

]

]

]

]

∈ 𝑅

𝑁×𝑁
, (2)

with 𝑢

𝑖𝑖
= 𝑎

𝑖𝑖
𝑐

𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑎

𝑖𝑗
𝑐

𝑖𝑗
and 𝑢

𝑖𝑗
= 𝑎

𝑖𝑗
𝑐

𝑖𝑗
for 𝑖 ̸= 𝑗.

Design the state predictor for the control law as

̇

𝑋

𝑝
= −𝐿𝑋, (3)

where ̇

𝑋

𝑝
= (𝑥̇

𝑝

1
, 𝑥̇

𝑝

2
, . . . , 𝑥̇

𝑝

𝑁
) and 𝛾 is the impact factor of the

state predictor.
Under state predictor (3), network (1) can be rewritten as

𝑥̇

𝑖 (
𝑡) = 𝑓 (𝑥

𝑖 (
𝑡)) − ∑

𝑗∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) (𝑥𝑖 (

𝑡) − 𝑥

𝑗 (
𝑡))

− 𝛾( ∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑎

𝑖𝑘
𝑐

𝑖𝑗 (
𝑡) 𝑐𝑖𝑘 (

𝑡) (𝑥𝑖
− 𝑥

𝑘
)

− ∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑎

𝑗𝑝
𝑐

𝑖𝑗 (
𝑡) 𝑐𝑗𝑝 (

𝑡) (𝑥𝑗
− 𝑥

𝑝
)) .

(4)

Definition 1. Network (4) is said to achieve synchronization
if

lim
𝑡→∞

󵄩

󵄩

󵄩

󵄩

𝑥

𝑖 (
𝑡) − 𝑥 (𝑡)

󵄩

󵄩

󵄩

󵄩

= 0, 𝑖 = 1, . . . , 𝑁, (5)

where the homogeneous state satisfies

̇

𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡) = 0. (6)

The adaptive control at node 𝑖 is designed as

̇𝑐

𝑖𝑗 (
𝑡) = ∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑎

𝑗𝑝
𝑐

𝑗𝑝 (
𝑡) [𝑥𝑖

(𝑡) − 𝑥(𝑡)]

𝑇
[𝑥

𝑖 (
𝑡) − 𝑥 (𝑡)]

+ ∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑎

𝑖𝑘
𝑐

𝑖𝑘 (
𝑡) [𝑥𝑘 (

𝑡) − 𝑥 (𝑡)]

𝑇
[𝑥

𝑘 (
𝑡) − 𝑥 (𝑡)] ,

(7)

where 𝑐
𝑖𝑗
(0) ≥ 0.

In the following, some necessary assumptions and lem-
mas are stated.

Assumption 2. The coupling strengths of the network are
bounded:

󵄩

󵄩

󵄩

󵄩

󵄩

𝑐

𝑖𝑗 (
𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝑐

𝑖𝑗
. (8)

Assumption 3 (see [5]). The vector field 𝑓

𝑖
: 𝑅

𝑛
→ 𝑅

𝑛
(𝑖 =

1, 2, . . . , 𝑁) in network (4) satisfies the Lipschitz condition;
there exists a positive constant 𝜌 > 0, such that

󵄩

󵄩

󵄩

󵄩

𝑓 (𝑥) − 𝑓 (𝑦)

󵄩

󵄩

󵄩

󵄩

≤ 𝜌

󵄩

󵄩

󵄩

󵄩

𝑥 − 𝑦

󵄩

󵄩

󵄩

󵄩

. (9)

Assumption 4. The weights satisfy the balance condition:

∑

𝑗∈𝑁𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) = ∑

𝑗∈𝑁𝑖

𝑎

𝑗𝑖
𝑐

𝑗𝑖 (
𝑡) , ∀𝑖. (10)

Lemma 5 (see [29]). For any vectors 𝑥, 𝑦 ∈ 𝑅

𝑛 and positive
definitematrix𝐺 ∈ 𝑅

𝑛×𝑛, the followingmatrix inequality holds:

2𝑥

𝑇
𝑦 ≤ 𝑥

𝑇
𝐺𝑥 + 𝑦

𝑇
𝐺

−1
𝑦. (11)

Lemma6 (see [6]). Supposing that 𝑎 and 𝑏 are vectors, then for
any positive-definite matrix 𝐸, the following inequality holds:

−2𝑎

𝑇
𝑏 ≤ inf
𝐸>0

{𝑎

𝑇
𝐸𝑎 + 𝑏

𝑇
𝐸

−1
𝑏} . (12)

Lemma 7 (see [38]). The matrix 𝐴 of an undirected graph 𝐺

is irreducible if and only if the undirected graph is connected.

3. Main Results

In this section, we will give detailed analysis of the adaptive
synchronization of the network with the state predictor. By
using the Lyapunov function approach, adaptive synchro-
nization conditions of such work are obtained.

Theorem 8. Considering network (4) with𝑁 nodes steered by
adaptive control (7), under Assumptions 2–4, then all nodes
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will asymptotically synchronize to the given homogeneous
stationary state; that is,

lim
𝑡→∞

󵄩

󵄩

󵄩

󵄩

𝑥

𝑖 (
𝑡) − 𝑥 (𝑡)

󵄩

󵄩

󵄩

󵄩

= 0. (13)

Proof. Let 𝑥

𝑖
(𝑡) ≜ 𝑥

𝑖
(𝑡) − 𝑥(𝑡). Construct the following

Lyapunov function:

𝑉 (𝑡) = 𝑉

1 (
𝑡) + 𝑉

2 (
𝑡) , (14)

where

𝑉

1 (
𝑡) =

1

2

𝑁

∑

𝑖=1

𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡) ,

𝑉

2 (
𝑡) =

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

[(1 − 𝑚) 𝑐𝑖𝑗 (
𝑡)]

2

2

,

(15)

where𝑚 > 0 is sufficiently large.
By the definition of the matrix 𝑈, it is to see that 𝑈 is

symmetric and irreducible. By Lemmas 5–7, differentiating
𝑉

1
(𝑡), we can have

̇

𝑉

1 (
𝑡) =

𝑁

∑

𝑖=1

𝑥

𝑇

𝑖
(𝑡) [𝑓 (𝑥

𝑖 (
𝑡)) − 𝑓 (𝑥 (𝑡))]

−

𝑁

∑

𝑖=1

𝑥

𝑇

𝑖
(𝑡) ∑

𝑗∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) (𝑥𝑖 (

𝑡) − 𝑥

𝑗 (
𝑡))

− 𝛾𝑥

𝑇

𝑖
(𝑡) ∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡) (𝑥𝑖 (

𝑡) − 𝑥

𝑘 (
𝑡))

+ 𝛾𝑥

𝑇

𝑖
(𝑡) ∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡) (𝑥𝑗 (

𝑡) − 𝑥

𝑝 (
𝑡))

≤ 𝜌

𝑁

∑

𝑖=1

𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡) −

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑗 (

𝑡)

− 𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+ 𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑘 (

𝑡)

+ 𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑗 (

𝑡)

− 𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑝 (

𝑡)

=

𝑁

∑

𝑖=1

[

[

𝜌 − ∑

𝑗∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡)

− 𝛾 ∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡)

]

]

𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

[

[

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡)

+ 𝛾 ∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡)

]

]

𝑥

𝑇

𝑖
(𝑡) 𝑥𝑗 (

𝑡)

+ 𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑘 (

𝑡)

− 𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑝 (

𝑡)

≤

𝑁

∑

𝑖=1

[

[

𝜌 − ∑

𝑗∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) − 𝛾 ∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡)

]

]

× 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+

1

2

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

[

[

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) + 𝛾 ∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡)

]

]

× 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+

1

2

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

[

[

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) + 𝛾 ∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡)

]

]

× 𝑥

𝑇

𝑗
(𝑡) 𝑥𝑗 (

𝑡)

+

1

2

𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+

1

2

𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡) 𝑥

𝑇

𝑘
(𝑡) 𝑥𝑘 (

𝑡)

+

1

2

𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+

1

2

𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡) 𝑥

𝑇

𝑝
(𝑡) 𝑥𝑝 (

𝑡)



4 Journal of Applied Mathematics

=

𝑁

∑

𝑖=1

[

[

𝜌 − ∑

𝑗∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) − 𝛾 ∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡)

]

]

× 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

[

[

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) + 𝛾 ∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡)

]

]

× 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑗 (

𝑡)

+ 𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑘 (

𝑡)

− 𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑝 (

𝑡)

≤

𝑁

∑

𝑖=1

[

[

𝜌 − ∑

𝑗∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) − 𝛾 ∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡)

]

]

× 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+

1

2

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

[

[

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) + 𝛾 ∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡)

]

]

× 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+

1

2

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

[

[

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) + 𝛾 ∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡)

]

]

× 𝑥

𝑇

𝑗
(𝑡) 𝑥𝑗 (

𝑡)

+

1

2

𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+

1

2

𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡) 𝑥

𝑇

𝑘
(𝑡) 𝑥𝑘 (

𝑡)

+

1

2

𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+

1

2

𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡) 𝑥

𝑇

𝑝
(𝑡) 𝑥𝑝 (

𝑡)

=

𝑁

∑

𝑖=1

[

[

𝜌 − ∑

𝑗∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) − 𝛾 ∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡)

+

1

2

∑

𝑗∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡)

+

1

2

𝛾 ∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡)

+

1

2

𝛾 ∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡)

+

1

2

𝛾 ∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡)

]

]

× 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+

1

2

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

[

[

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) + 𝛾 ∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡)

]

]

× 𝑥

𝑇

𝑗
(𝑡) 𝑥𝑗 (

𝑡)

+

1

2

𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡) 𝑥

𝑇

𝑘
(𝑡) 𝑥𝑘 (

𝑡)

+

1

2

𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡) 𝑥

𝑇

𝑝
(𝑡) 𝑥𝑝 (

𝑡)

=

𝑁

∑

𝑖=1

[

[

𝜌 −

1

2

∑

𝑗∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡)

−

1

2

𝛾 ∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡)

+𝛾 ∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡)

]

]

× 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+

1

2

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

[

[

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) + 𝛾 ∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡)

]

]

× 𝑥

𝑇

𝑗
(𝑡) 𝑥𝑗 (

𝑡)

+

1

2

𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡) 𝑥

𝑇

𝑘
(𝑡) 𝑥𝑘 (

𝑡)

+

1

2

𝛾

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡) 𝑥

𝑇

𝑝
(𝑡) 𝑥𝑝 (

𝑡) .

(16)

Therefore,
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̇

𝑉

1 (
𝑡)

≤ [𝑥

𝑇

1
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑁
(𝑡)]

[

[

[

[

[

[

[

[

[

𝜌 −

1

2

𝑙

11
−

1

2

𝛾𝑙

2

11
+ 𝛾

𝑁

∑

𝑗=1

𝑎

1𝑗
𝑐

1𝑗 (
𝑡) 𝑙𝑗𝑗

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 𝜌 −

1

2

𝑙

𝑁𝑁
−

1

2

𝛾𝑙

2

𝑁𝑁
+ 𝛾

𝑁

∑

𝑗=1

𝑎

𝑁𝑗
𝑐

𝑁𝑗 (
𝑡) 𝑙𝑗𝑗

]

]

]

]

]

]

]

]

]

[

[

[

[

[

𝑥

1 (
𝑡)

𝑥

2 (
𝑡)

...
𝑥

𝑁 (
𝑡)

]

]

]

]

]

+ [𝑥

𝑇

1
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑁
(𝑡)]

[

[

[

[

[

[

[

[

[

1

2

𝑙

11
+

1

2

𝛾𝑙

2

11
0 ⋅ ⋅ ⋅ 0

0

1

2

𝑙

22
+

1

2

𝛾𝑙

2

22
⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅

1

2

𝑙

𝑁𝑁
+

1

2

𝛾𝑙

2

𝑁𝑁

]

]

]

]

]

]

]

]

]

[

[

[

[

[

𝑥

1 (
𝑡)

𝑥

2 (
𝑡)

...
𝑥

𝑁 (
𝑡)

]

]

]

]

]

+ [𝑥

𝑇

1
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑁
(𝑡)]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1

2

𝛾

𝑁

∑

𝑖=1

𝑎

𝑖1
𝑐

𝑖1 (
𝑡) 𝑙𝑖𝑖

0 ⋅ ⋅ ⋅ 0

0

1

2

𝛾

𝑁

∑

𝑖=1

𝑎

𝑖2
𝑐

𝑖2 (
𝑡) 𝑙𝑖𝑖

⋅ ⋅ ⋅ 0

...
... d

...

0 0 ⋅ ⋅ ⋅

1

2

𝛾

𝑁

∑

𝑖=1

𝑎

𝑖𝑁
𝑐

𝑖𝑁 (
𝑡) 𝑙𝑖𝑖

]

]

]

]

]

]

]

]

]

]

]

]

]

]

[

[

[

[

[

𝑥

1 (
𝑡)

𝑥

2 (
𝑡)

...
𝑥

𝑁 (
𝑡)

]

]

]

]

]

+ [𝑥

𝑇

1
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑁
(𝑡)]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1

2

𝛾

𝑁

∑

𝑖=1

𝑎

𝑖1
𝑐

𝑖1 (
𝑡) 𝑙𝑖𝑖

0 ⋅ ⋅ ⋅ 0

0

1

2

𝛾

𝑁

∑

𝑖=1

𝑎

𝑖2
𝑐

𝑖2 (
𝑡) 𝑙𝑖𝑖

⋅ ⋅ ⋅ 0

...
... d

...

0 0 ⋅ ⋅ ⋅

1

2

𝛾

𝑁

∑

𝑖=1

𝑎

𝑖𝑁
𝑐

𝑖𝑁 (
𝑡) 𝑙𝑖𝑖

]

]

]

]

]

]

]

]

]

]

]

]

]

]

[

[

[

[

[

𝑥

1 (
𝑡)

𝑥

2 (
𝑡)

...
𝑥

𝑁 (
𝑡)

]

]

]

]

]

= [𝑥

𝑇

1
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑁
(𝑡)]

[

[

[

𝜌 + 𝛾 (𝑊

1
+ 𝑉

1
) ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 𝜌 + 𝛾 (𝑊

𝑁
+ 𝑉

𝑁
)

]

]

]

[

[

[

[

[

𝑥

1 (
𝑡)

𝑥

2 (
𝑡)

...
𝑥

𝑁 (
𝑡)

]

]

]

]

]

,

(17)

where 𝑙
𝑖𝑖
= −𝑢

𝑖𝑖
= ∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑎

𝑖𝑗
𝑐

𝑖𝑗
(𝑡),𝑊

𝑖
= ∑

𝑁

𝑗=1
𝑎

𝑖𝑗
𝑐

𝑖𝑗
(𝑡)𝑙

𝑗𝑗
, 𝑉
𝑗
=

∑

𝑁

𝑖=1
𝑎

𝑖𝑗
𝑐

𝑖𝑗
(𝑡)𝑙

𝑖𝑖
, 𝑖, 𝑗 = 1, 2, . . . , 𝑁.

Differentiating 𝑉
2
(𝑡), we get

̇

𝑉

2 (
𝑡) = (1 − 𝑚) 𝑐𝑖𝑗 (

𝑡) ̇𝑐

𝑖𝑗 (
𝑡)

=

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

(1 − 𝑚) 𝑐𝑖𝑗 (
𝑡)

×

{

{

{

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑎

𝑗𝑝
𝑐

𝑗𝑝 (
𝑡) [𝑥𝑖 (

𝑡) − 𝑥 (𝑡)]

𝑇

× [𝑥

𝑖 (
𝑡) − 𝑥 (𝑡)]

+ ∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑎

𝑖𝑘
𝑐

𝑖𝑘 (
𝑡) [𝑥𝑘

(𝑡) − 𝑥(𝑡)]

𝑇
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× [𝑥

𝑘 (
𝑡) − 𝑥 (𝑡)]

}

}

}

= (1 − 𝑚)

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑝∈N𝑗

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑗𝑝

𝑐

𝑗𝑝 (
𝑡) 𝑥

𝑇

𝑖
(𝑡) 𝑥𝑖 (

𝑡)

+ (1 − 𝑚)

𝑁

∑

𝑖=1

∑

𝑗∈N𝑖

∑

𝑘∈N𝑖

𝑎

𝑖𝑗
𝑐

𝑖𝑗 (
𝑡) 𝑎𝑖𝑘

𝑐

𝑖𝑘 (
𝑡) 𝑥

𝑇

𝑘
(𝑡) 𝑥𝑘 (

𝑡)

= [𝑥

𝑇

1
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑁
(𝑡)]

×

[

[

[

(1 − 𝑚) (𝑊1
+ 𝑉

1
) ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ (1 − 𝑚) (𝑊𝑁
+ 𝑉

𝑁
)

]

]

]

×

[

[

[

[

[

𝑥

1 (
𝑡)

𝑥

2 (
𝑡)

...
𝑥

𝑁 (
𝑡)

]

]

]

]

]

.

(18)

Combining ̇

𝑉

1
(𝑡) and ̇

𝑉

2
(𝑡), and since 𝑚 > 0 is sufficiently

large, then we can have

̇

𝑉 (𝑡) =

̇

𝑉

1 (
𝑡) +

̇

𝑉

2 (
𝑡)

≤ [𝑥

𝑇

1
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑁
(𝑡)] ×

[

[

[

𝜌 + (𝛾 + 1 − 𝑚) (𝑊

1
+ 𝑉

1
) ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 𝜌 + (𝛾 + 1 − 𝑚) (𝑊

𝑁
+ 𝑉

𝑁
)

]

]

]

×

[

[

[

[

[

𝑥

1 (
𝑡)

𝑥

2 (
𝑡)

...
𝑥

𝑁 (
𝑡)

]

]

]

]

]

< 0,

(19)

where 𝑙
𝑖𝑖
,𝑊
𝑖
, 𝑉
𝑗
are defined as before.

So,

lim
𝑡→∞

󵄩

󵄩

󵄩

󵄩

𝑥

𝑖 (
𝑡) − 𝑥 (𝑡)

󵄩

󵄩

󵄩

󵄩

= 0. (20)

These complete the proof.

Theorem 9. Network (4) solves an agreement problem faster
than the same network without the state predictor.

Proof. The proof is similar to that of Theorem 2 in [33].

4. Simulations

In this section, we give the numerical simulations to illustrate
the analytical results.

Consider a small network with the undirected topology
described as the following symmetric matrix:

𝐴 =

[

[

[

[

0 0.0964 0.0757 0.0570

0.0964 0 0.1199 0.1396

0.0757 0.1199 0 0.0581

0.0570 0.1396 0.0581 0

]

]

]

]

, (21)

where all nodes of the pagebreak network and their syn-
chronous goal will obey the same nonlinear dynamics
described as the Lorenz system:

𝑓 (𝑥 (𝑡)) = 𝑓 (𝑥

1
, 𝑥

2
, 𝑥

3
) =

{

{

{

{

{

{

{

{

{

{

{

𝑥̇

1
= 10 (𝑥

2
− 𝑥

1
)

𝑥̇

2
= 28𝑥

1
− 𝑥

1
𝑥

3
− 𝑥

2

𝑥̇

3
= 𝑥

1
𝑥

2
−

8

3

𝑥

3
,

(22)

as shown in Figure 1.
Figure 2 describes the convergence of the state errors on

the x-axis, y-axis, and z-axis, respectively. From this figure, we
can see that all nodes of the above network can synchronize
to the synchronous state gradually.With the same initial state
and the same nonlinear dynamics, influenced by the same
adaptive strategy, it can be easy to find as in Figure 3 that the
network with a state predictor can also synchronize to the
synchronous state and be faster than the network without a
state predictor.

5. Conclusion

In this paper, we have investigated the adaptive synchroniza-
tion of complex dynamical networks with nonlinear dynam-
ics. By introducing local decentralized adaptive strategies to
the coupling strengths, we have proved that the network with
a state predictor can synchronize to the synchronous state.
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Figure 1: The nonlinear dynamics of the network.
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Figure 2: The trajectories of four agents in the dynamical network
without a state predictor.
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Figure 3: The trajectories of four agents in the dynamical network
with a state predictor when 𝛾 = 200.
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