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It is shown that a strong solution of the Degasperis-Procesi equation possesses persistence property in the sense that the solution
with algebraically decaying initial data and its spatial derivative must retain this property. Moreover, we give estimates of measure
for the momentum support.

1. Introduction

Recently, Degasperis and Procesi [1] consider the following
family of third order dispersive conservation laws:
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where 𝛼, 𝛾, 𝑐
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, and 𝑐

3
are real constants. Within this

family, only three equations that satisfy asymptotic integra-
bility condition up to third order are singled out, namely, the
KdV equation
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and a new equation (the Degasperis-Procesi equation, the DP
equation, for simplicity) which can be written as (after rescal-
ing) the dispersionless form [1]
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It is worth noting that in [2] both the Camassa-Holm and
DP equations are derived as members of a one-parameter
family of asymptotic shallow water approximations to the
Euler equations: this is important because it shows that (after

the addition of linear dispersion terms) both the Camassa-
Holm andDP equations are physically relevant; otherwise the
DP equation would be of purely theoretical interest.

When 𝑐
1
= −3𝑐

3
/2𝛼
2 and 𝑐

2
= 𝑐
3
/2 in (1), we recover the

Camassa-Holm equation derived physically by Camassa and
Holm in [3] by approximating directly the Hamiltonian for
Euler’s equations in the shallow water regime, where 𝑢(𝑥, 𝑡)
represents the free surface above a flat bottom. There is also
a geometric approach which is used to prove the least action
principle holding for the Camassa-Holm equation, compared
with [4]. It is worth pointing out that a fundamental aspect of
the Camassa-Holm equation, the fact that it is a completely
integrable system, was shown in [5, 6]. Some satisfactory
results have been obtained for this shallow water equation
recently, we refer the readers to see [7–19].

Although, the DP equation (4) has a similar form to the
Camassa-Holm equation and admits exact peakon solutions
analogous to the Camassa-Holm peakons [20], these two
equations are pretty different. The isospectral problem for
equation (4) is
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− 𝜆𝑦Ψ = 0, (5)
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where 𝑦 = 𝑢 − 𝑢
𝑥𝑥

for both cases. This implies that the inside
structures of the DP equation (4) and the Camassa-Holm
equation are truly different. However, we not only have some
similar results [21–23], but also have considerable differences
in the scattering/inverse scattering approach, compared with
the discussion in [5, 6] and in the paper [24].

Analogous to the Camassa-Holm equation, (4) can be
written in Hamiltonian form and has infinitely many con-
servation laws. Here we list some of the simplest conserved
quantities [20]:
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where V = (4−𝜕
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𝑥
)
−1
𝑢. So they are different from the invariants

of the Camassa-Holm equation
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Set 𝑄 = (1 − 𝜕
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expressed by
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Equation (4) can be written as
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while the Camassa-Holm equation can be written as
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On the other hand, the DP equation can also be expressed in
the following momentum form:
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This formulation is important to motivate us to consider
the measure of momentum support which is the second
object of this paper, since we found that (12) is similar to the
vorticity equation of the three-dimensional Euler equation
for incompressible perfect fluids (𝑈 is the speed, and 𝜔 is its
vorticity)

𝜔
𝑡
+ (𝑈 ⋅ ∇) 𝜔 = (𝜔 ⋅ ∇)𝑈,

div𝑈 = 0,

curl𝑈 = 𝜔.

(13)

The stretching term (𝜔 ⋅ ∇)𝑈 in (13) is similar to the term
−3𝑦𝑢
𝑥
in (12).

One can follow the argument for the Camassa-Holm
equation [8] to establish the following well posedness theo-
rem for the Degasperis-Procesi equation.

Theorem 1 (see [23]). Given 𝑢(𝑥, 𝑡 = 0) = 𝑢
0
∈ 𝐻
𝑠
(R), 𝑠 >

3/2, then there exist a 𝑇 and a unique solution 𝑢 to (4) (also
(10)) such that
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It should be mentioned that due to the form of (10) (no
derivative appears in the convolution term), Coclite and
Karlsen [25] established global existence and uniqueness
result for entropy weak solutions belonging to the class
𝐿
1
(R) ∩ 𝐵𝑉(R).

2. Unique Continuation

Thepurpose of this section is to show that the solution to (10)
and its first-order spatial derivative retain algebraic decay at
infinity as their initial values do. Precisely, we prove.

Theorem 2. Assume that for some 𝑇 > 0 and 𝑠 > 3/2, 𝑢 ∈
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(R)) is a strong solution of the initial value problem
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uniformly in the time interval [0, 𝑇].

Notation. We will say that
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where 𝐿 is a nonnegative constant.

Proof. We introduce the following notations:
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Multiplying (10) by 𝑢2𝑝−1 with 𝑝 ∈ 𝑍
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and for the rest, we have
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From the above inequalities, we get
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We will now repeat the above arguments using the barrier
function
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one gets the inequality

𝑑

𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡)
󵄩
󵄩
󵄩
󵄩2𝑝

≤ 2
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡)
󵄩
󵄩
󵄩
󵄩∞

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡)
󵄩
󵄩
󵄩
󵄩2𝑝

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩2𝑝

,

(38)

and therefore as before

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡)
󵄩
󵄩
󵄩
󵄩2𝑝

≤ (
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(0)

󵄩
󵄩
󵄩
󵄩2p + ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩2𝑝

𝑑𝜏) 𝑒
2𝑀𝑡

.

(39)
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Since 𝜕2
𝑥
𝐺 = 𝐺 − 𝛿, we can use (25) and pass to the limit in

(39) to obtain

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡)
󵄩
󵄩
󵄩
󵄩∞

≤ (
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(0)

󵄩
󵄩
󵄩
󵄩∞

+ ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩∞

𝑑𝜏) 𝑒
2𝑀𝑡

;

(40)

from (36) we get

𝜕
𝑡
(𝑢
𝑥
𝜑
𝑁
) + 𝑢𝑢

𝑥𝑥
𝜑
𝑁
+ (𝑢
𝑥
𝜑
𝑁
) 𝑢
𝑥
+ 𝜑
𝑁
𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢) = 0.

(41)

We need to eliminate the second derivatives in the second
term in (41). Thus, combining integration by parts and (28),
we find
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

∞

−∞

𝑢𝑢
𝑥𝑥
𝜑
𝑁
(𝑢
𝑥
𝜑
𝑁
)
2𝑝−1

𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

∞

−∞

𝑢(𝑢
𝑥
𝜑
𝑁
)
2𝑝−1

(𝜕
𝑥
(𝑢
𝑥
𝜑
𝑁
) − 𝑢
𝑥
𝜑
󸀠

𝑁
) 𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

∞

−∞

𝑢(𝜕
𝑥
(

(𝑢
𝑥
𝜑
𝑁
)
2𝑝

2𝑝

) − 𝑢
𝑥
𝜑
󸀠

𝑁
(𝑢
𝑥
𝜑
𝑁
)
2𝑝−1

)𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜅 ⋅ (‖𝑢 (𝑡)‖
∞
+
󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
𝑢 (𝑡)

󵄩
󵄩
󵄩
󵄩∞

)
󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
𝑢𝜑
𝑁

󵄩
󵄩
󵄩
󵄩

2𝑝

2𝑝
.

(42)

Since 𝜕2
𝑥
𝐺 = 𝐺 − 𝛿, the argument in (32) also shows that

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
𝑁
𝜕
2

𝑥
𝐺 ∗ 𝑓

2
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶
0

󵄩
󵄩
󵄩
󵄩
𝜑
𝑁
𝑓
󵄩
󵄩
󵄩
󵄩∞

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩∞

. (43)

Similarly, we get
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡) 𝜑
𝑁

󵄩
󵄩
󵄩
󵄩∞

≤ 𝐶
2
(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(0) 𝜑
𝑁

󵄩
󵄩
󵄩
󵄩∞

+ ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
𝑢 (𝜏) 𝜑

𝑁

󵄩
󵄩
󵄩
󵄩∞

𝑑𝜏) ,

(44)

where 𝐶
2
= 𝐶
2
(𝑀; 𝑇).

Then, taking the limit as 𝑁 goes to infinity, we find that
for any 𝑡 ∈ [0, 𝑇]

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑥
(𝑡) 𝑥
𝜃󵄨󵄨
󵄨
󵄨
󵄨
≤ 𝐶
2
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(0) 𝑥
𝜃󵄩󵄩
󵄩
󵄩
󵄩∞

+ ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 (𝜏) 𝑥

𝜃󵄩󵄩
󵄩
󵄩
󵄩∞

𝑑𝜏) . (45)

Since |𝑢(𝑥, 𝑡)| = 𝑂(𝑥
−𝜃
) as 𝑥 ↑ ∞ and (15), we get

󵄨
󵄨
󵄨
󵄨
𝜕
𝑥
𝑢 (𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
= 𝑂 (𝑥

−𝜃
) , as 𝑥 ↑ ∞. (46)

This completes the proof.

3. Measure of Momentum Support

It is known that, for the Degasperis-Procesi equation, the
momentum density 𝑦(𝑥, 𝑡) with compactly supported initial
data 𝑦

0
(𝑥) will retain this property; that is, 𝑦(𝑥, 𝑡) is also

compactly supported [21]. However, the same argument for
𝑢(𝑥, 𝑡) is false [21]. Note that a detailed description of solution
𝑢(𝑥, 𝑡) outside of the support of 𝑦(𝑥, 𝑡) is given in [26, 27].

Moreover, the exponential behavior of 𝑢 in 𝑥 outside this
support is obvious. The comparison of the DP equation and
the incompressible Euler equation above implies that the
momentum 𝑦(𝑥, 𝑡) in (12) plays a similar role as the vorticity
does in (13). This motivates us to estimate the size of supp
𝑦(𝑡, ⋅) for strong solutions. The approach is inspired by the
work of Kim [28] and the recent work [29].

We first introduce the particle trajectory method. Let 𝑢 ∈

𝐶([0, 𝑇],𝐻
3
(R)) ∩ 𝐶

1
([0, 𝑇],𝐻

2
(R)) be a strong solution of

(4) guaranteed by the well posedness Theorem 1. Let 𝑠 ∈

[0, 𝑇], 𝑞(𝑡; 𝛼, 𝑠) be the solution of the following initial value
problem:

𝑑𝑞 (𝑡; 𝛼, 𝑠)

𝑑𝑡

= 𝑢 (𝑠 + 𝑡, 𝑞 (𝑡; 𝛼, 𝑠)) , 𝑠, 𝑠 + 𝑡 ∈ [0, 𝑇] , 𝛼 ∈ R,

𝑞 (0; 𝛼, 𝑠) = 𝛼, 𝛼 ∈ R.

(47)

Then, 𝑞(𝑡; ⋅, 𝑠) : R → R is an increasing diffeomorphism. It
is shown [21, 23] that

𝑦 (𝑞 (𝑡; 𝑥, 0) , 𝑡) 𝑞
3

𝑥
(𝑡; 𝑥, 0) = 𝑦 (𝑥, 0) ; (48)

this implies that the support of 𝑦 propagates along the flow.
Set𝐷(𝑡) to be the support of 𝑦(⋅, 𝑡). Let 𝜓 ∈ 𝐿

2
(𝐷(𝑠)), and let

𝜓
𝑡
∈ 𝐿
2
(𝐷(𝑠 + 𝑡)) be given by the following:

𝜓
𝑡
(𝑞 (𝑡; 𝛼, 𝑠)) = 𝜓 (𝛼) . (49)

Moreover, we also want to mention the standard argument
on the first Dirichlet eigenvalue problem. Let Ω be an open
interval in R, and, 𝜆

1
(Ω) be the first Dirichlet eigenvalue of

the Laplacian onΩ. Then we have

𝜆
1
(Ω) = inf {󵄩󵄩󵄩󵄩

󵄩
𝜙
󸀠󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(Ω)

| 𝜙 ∈ 𝐻
1

0
(Ω) with 󵄩

󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩𝐿
2
(Ω)

= 1} .

(50)

It is just (𝜋/|Ω|)2 and the normalized eigenfunctions are the
suitable translations of

±(

2

|Ω|

)

1/2

sin( 𝜋𝑥

|Ω|

) . (51)

Theorem 3. Let 𝑦 ∈ 𝐶([0, 𝑇];𝐻
1
(R)) ∩ 𝐶

1
([0, 𝑇]; 𝐿

2
(R)) be

a strong solution of (12). Let 𝐷(𝑡) be the support of 𝑦(⋅, 𝑡) for
𝑡 ∈ [0, 𝑇] with its initial𝐷(0) being connected.

(I) Suppose there exists a positive constant 𝐾 such that
𝑢
𝑥
(𝑥, 𝑘) > −𝐾 for (𝑥, 𝑡) ∈ R × [0, 𝑇]. Then

|𝐷 (0)| 𝑒
−(exp(5𝐾𝑇/2)‖𝑦

0
‖
𝐿
2
(R)
)𝑡

≤ |𝐷 (𝑡)| ≤ |𝐷 (0)| 𝑒
(exp(5𝐾𝑇/2)‖𝑦

0
‖
𝐿
2
(R)
)𝑡
.

(52)

(II) 𝑦
0
does not change sign or

𝑦
0
(𝑥) ≤ 0, 𝑥 ∈ (−∞, 𝑥

0
) ,

𝑦
0
(𝑥) ≥ 0, 𝑥 ∈ (𝑥

0
,∞) ,

(53)
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and 𝑦
0
∈ 𝐻
1
(R) ∩ 𝐿

1
(R); then, for all 𝑡 ≥ 0

|𝐷 (0)| 𝑒
−‖𝑦
0
‖
𝐿
1
(R)𝑡 ≤ |𝐷 (𝑡)|

≤ |𝐷 (0)| 𝑒
‖𝑦
0
‖
𝐿
1
(R)𝑡 .

(54)

Proof. (I) The relation of momenta 𝑦 and 𝑢 gives

𝑢 (𝑥, 𝑡) =

1

2

∫

R

𝑒
−|𝑥−𝜉|

𝑦 (𝜉, 𝑡) 𝑑𝜉, (55)

𝑢
𝑥
(𝑥, 𝑡) =

1

2

∫

R

sgn (𝜉 − 𝑥) 𝑒
−|𝑥−𝜉|

𝑦 (𝜉, 𝑡) 𝑑𝜉. (56)

Then, we have by (12) and the lower bound of 𝑢
𝑥

𝑑

𝑑𝑡

∫

R

𝑦
2
(𝑥, 𝑡) 𝑑𝑥

= −5∫

R

𝑢
𝑥
(𝑥, 𝑡) 𝑦

2
(𝑥, 𝑡) 𝑑𝑥 ≤ 5𝐾∫

R

𝑦
2
(𝑥, 𝑡) 𝑑𝑥.

(57)

Thus

𝑑

𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑥, 𝑡)

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 ≤ 5𝐾

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑥, 𝑡)

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 . (58)

Therefore, (56), (58), and Gronwall inequality imply that

󵄨
󵄨
󵄨
󵄨
𝑢
𝑥
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
≤

1

2

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑥, 𝑡)

󵄩
󵄩
󵄩
󵄩𝐿
2 ≤

1

2

𝑒
5𝐾𝑇/2󵄩

󵄩
󵄩
󵄩
𝑦
0

󵄩
󵄩
󵄩
󵄩𝐿
2 . (59)

On the other hand, due to Propositions A.2 and A.3, 𝜆
1
(𝐷(𝑠))

is Lipschitz and differentiable almost everywhere. Moreover,
we have

−4𝑀
1
𝜆
1
(𝐷 (𝑠)) ≤

𝑑

𝑑𝑠

𝜆
1
(𝐷 (𝑠)) ≤ 4𝑀

1
𝜆
1
(𝐷 (𝑠)) . (60)

Then, it follows that

𝑒
−4𝑀
1
𝑠
𝜆
1
(𝐷 (0)) ≤ 𝜆

1
(𝐷 (𝑠)) ≤ 𝑒

4𝑀
1
𝑠
𝜆
1
(𝐷 (0)) (61)

with 𝜆
1
(𝐷(𝑠)) = 𝜋

2
/|𝐷(𝑠)|

2. So (52) follows from (61) and
(59).

(II) If 𝑦
0
∈ 𝐻
1
(R) ∩ 𝐿

1
(R) does not change sign, we

conclude that solutions of (10) exist globally in time. Equality
(56) and the conservation of ∫

R
𝑦(𝑥, 𝑡)𝑑𝑥 yield

󵄨
󵄨
󵄨
󵄨
𝑢
𝑥
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
≤

1

2

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑥, 𝑡)

󵄩
󵄩
󵄩
󵄩𝐿
1
(R)

=

1

2

󵄩
󵄩
󵄩
󵄩
𝑦
0
(𝑥)

󵄩
󵄩
󵄩
󵄩𝐿
1
(R)

. (62)

By similar arguments of (I), constant 𝑀
1
in (61) can be

replaced by ‖𝑦
0
(𝑥)‖
𝐿
1
(R)/2; then (54) follows. If (53) is satis-

fied, we know that the solution of (10) exists globally in time
[21, 30]. From (53) and (48), it is easy to get

𝑦 (𝑥, 𝑡) ≤ 0, 𝑥 ∈ (−∞, 𝑞 (𝑥
0
, 𝑡)) ,

𝑦 (𝑥, 𝑡) ≥ 0, 𝑥 ∈ (𝑞 (𝑥
0
, 𝑡) ,∞) ,

(63)

where we denote 𝑞(𝑡; 𝑥, 𝑠)with 𝑠 = 0 by 𝑞(𝑥, 𝑡). By direct com-
putation, we have

∫

R

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑥 = ∫

∞

𝑞(𝑥
0
,𝑡)

𝑦 (𝑥, 𝑡) 𝑑𝑥 − ∫

𝑞(𝑥
0
,𝑡)

−∞

𝑦 (𝑥, 𝑡) 𝑑𝑥.

(64)

Next, we prove that ‖𝑦(𝑥, 𝑡)‖
𝐿
1
(R) is decreasing with respect to

time. To this end, one gets, by differentiating (64)with respect
to 𝑡 and integrating by parts,
𝑑

𝑑𝑡

∫

R

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑥 = ∫

∞

𝑞(𝑥
0
,𝑡)

𝑦
𝑡
(𝑥, 𝑡) 𝑑𝑥

− ∫

𝑞(𝑥
0
,𝑡)

−∞

𝑦
𝑡
(𝑥, 𝑡) 𝑑𝑥

− 2 (𝑦𝑢) (𝑞 (𝑥
0
, 𝑡) , 𝑡)

= −∫

∞

𝑞(𝑥
0
,𝑡)

(𝑦
𝑥
𝑢 + 3𝑦𝑢

𝑥
) 𝑑𝑥

+ ∫

𝑞(𝑥
0
,𝑡)

−∞

(𝑦
𝑥
𝑢 + 3𝑦𝑢

𝑥
) 𝑑𝑥

− 2 (𝑦𝑢) (𝑞 (𝑥
0
, 𝑡) , 𝑡)

= −2∫

∞

𝑞(𝑥
0
,𝑡)

𝑦𝑢
𝑥
𝑑𝑥 + 2∫

𝑞(𝑥
0
,𝑡)

−∞

𝑦𝑢
𝑥
𝑑𝑥

= 𝑢
2
(𝑞 (𝑥
0
, 𝑡) , 𝑡) − 𝑢

2

𝑥
(𝑞 (𝑥
0
, 𝑡) , 𝑡)

= ∫

∞

𝑞(𝑥
0
,𝑡)

𝑒
−𝜉
𝑦 (𝜉, 𝑡) 𝑑𝑥∫

𝑞(𝑥
0
,𝑡)

−∞

𝑒
𝜉
𝑦 (𝜉, 𝑡) 𝑑𝑥

≤ 0.

(65)

This implies that

󵄨
󵄨
󵄨
󵄨
𝑢
𝑥
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
≤

1

2

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑥, 𝑡)

󵄩
󵄩
󵄩
󵄩𝐿
1
(R)

≤

1

2

󵄩
󵄩
󵄩
󵄩
𝑦
0
(𝑥)

󵄩
󵄩
󵄩
󵄩𝐿
1
(R)

. (66)

Therefore, (54) follows by replacing 𝑀
1
with ‖𝑦

0
(𝑥)‖
𝐿
1
(R)/2

in (61).

Appendix

The following propositions with standard proofs are known
in [29]; we list them here only for convenience of readers.

Proposition A.1. Let 𝑠, 𝑠 + 𝑡 ∈ [0, 𝑇], 𝛼 ∈ 𝐷(𝑠), and 𝜓 ∈

𝐻
1

0
(𝐷(𝑠)); 𝑢

𝑥
can be bounded by a constant𝑀
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(c)
󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩𝐿
2
(𝐷(𝑠))

𝑒
−𝑀
1
|𝑡|/2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝜓
𝑡󵄩󵄩
󵄩
󵄩
󵄩𝐿
2
(𝐷(𝑠+𝑡))

≤
󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩𝐿
2
(𝐷(𝑠))

𝑒
𝑀
1
|𝑡|/2

.

(A.3)

Proof. (a) Differentiating (47) with respect to 𝛼, we obtain
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. (A.4)

Since 𝑞(𝑡; ⋅, 𝑠) : R → R is an increasing diffeomorphism,
then 𝑞

𝛼
> 0. Combining the bound of 𝑢

𝑥
, there holds
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This can be solved as (a).
(b) Differentiating (49) with respect to 𝛼 to get
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(𝛼) , (A.6)

then (A.2) is a direct consequence of (A.1).
(c) Equation (49) and the definition of Sobolev norm give

that
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where we have used the change of variable 𝑥 = 𝑞(𝑡; 𝛼, 𝑠). So
(A.3) follows from (A.1).

PropositionA.2. Under the hypothesis ofTheorem 3, for 𝑠, 𝑠+
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(A.9)

Furthermore
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(A.10)

Combing (A.9) and (A.10) together yields
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The second one follows by similar arguments for 𝑡 < 0.

PropositionA.3. Under the hypothesis ofTheorem 3, for 𝑠, 𝑠+
𝑡 ∈ [0, 𝑇],
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Proof. Let 𝜙
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such that its 𝑡-transport is a normalized first eigenfunction on
𝐷(𝑠+ 𝑡). For 𝑡 > 0, using the left halves of (A.1) and (A.2) and
then the right half of (A.3) we get
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Hence
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(A.14)

The other part is similar.
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