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The stationary fractional advection dispersion equation is discretized by linear finite element scheme, and a full V-cycle multigrid
method (FV-MGM) is proposed to solve the resulting system. Some useful properties of the approximation and smoothing
operators are proved. Using these properties we derive the convergence results in both 𝐿

2 norm and energy norm for FV-MGM.
Numerical examples are given to demonstrate the convergence rate and efficiency of the method.

1. Introduction

We investigate the finite element full V-cycle multigrid
method (FV-MGM) to the boundary value problem of linear
stationary fractional advection dispersion equation (FADE).

Problem 1. Given Ω = (0, 1), 𝑓 : Ω → R, find 𝑢 : Ω → R

such that

−
1

2
𝐷 (
0
𝐷
−𝛽

𝑥
+
𝑥𝐷
−𝛽

1
)𝐷𝑢 + 𝑐 (𝑥) 𝑢 = 𝑓 (𝑥) , in Ω,

𝑢 = 0, on 𝜕Ω,

(1)

where 0 < 𝛽 < 1, 𝑐(𝑥) ≥ 0, 𝐷 represents a single spatial
derivative, and

0
𝐷
−𝛽

𝑥
and
𝑥𝐷
−𝛽

1
represent Riemann-Liouville

left and right fractional integral operators, respectively [1–3].

FADE has been used in modeling physical phenomena
exhibiting anomalous diffusion, that is, diffusion not accu-
rately modeled by the usual advection dispersion equation
[4–7]. For example, solutes moving through aquifers do
not generally follow a Fickian, second-order, and governing
equation because of large deviations from the stochastic
process of Brownianmotion [8–10].Many scholars developed
numerical methods, including finite difference method [11],
finite element method [12–14], spectral method [15] and
moving collocation method [16] to solve FADEs. Most of

them used Gauss elimination method or conjugate gradient
norm residual method to solve the resulting system, so the
computational complexity is O(𝑁

3
) or O(𝑁 log2𝑁). To date

only a few of them consideredMGMnumerical methods. For
example, Pang and Sun [11] developed an MGM to solve the
linear system with Toeplitz-like structure, but the fractional
derivatives are defined in the Grünwald-Letnikov form and
the discretized system is obtained by difference scheme. It
motivates us to design a fast MGM algorithm to deal with FE
equations of FADE.

In this paper, we follow the ideas in [17, 18] to develop
a FV-MGM for solving the resulting system of Problem 1
discretized by linear finite element method. By selecting
appropriate iteration operator and iteration numbers, we
prove that FV-MGM has the same convergence rate as classic
FEM and the computational cost increases linearly with
respect to the increasing of unknown variables.

The remaining of this paper is organized as follows. The
next section recalls the variational formulation of the above
FADE and corresponding convergence results. In Section 3
we describe the multigrid algorithm, estimate the spectral
radius of FE equations, show the properties of approximation
and soothing operators, and prove the convergence theorems
for FV-MGM. Numerical examples demonstrating conver-
gence rate and computationalwork are presented in Section 4.
Concluding remarks are given in the final section.
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2. Variational Formulation and
Convergence Results

Let 𝛼 := (2 − 𝛽)/2, so that 1/2 < 𝛼 ≤ 1. Define the associate
bilinear form 𝐵 : 𝐻

𝛼

0
(Ω) × 𝐻

𝛼

0
(Ω) → R as

𝐵 (𝑢, V) :=
1

2
⟨
0𝐷
−𝛽

𝑥
𝐷𝑢,𝐷V⟩

+
1

2
⟨
𝑥𝐷
−𝛽

1
𝐷𝑢,𝐷V⟩ + (𝑐 (𝑥) 𝑢, V) ,

(2)

and linear functional 𝐹 : 𝐻
𝛼

0
(Ω) → R as

𝐹 (V) := ⟨𝑓, V⟩ , (3)

where (⋅, ⋅) denotes the inner product on 𝐿
2
(Ω) and ⟨⋅, ⋅⟩ the

duality pairing of𝐻−𝜇(Ω) and𝐻
𝜇

0
(Ω), 𝜇 ≥ 0.

Thus, the Galerkin variational solution of Problem 1 may
be defined as follows.

Definition 2 (variational solution). A function 𝑢 ∈ 𝐻
𝛼

0
(Ω) is

a variational solution of Problem 1 provided that

𝐵 (𝑢, V) = 𝐹 (V) , ∀V ∈ 𝐻
𝛼

0
(Ω) . (4)

Ervin and Roop ([17], 2006) proved that the bilinear form
𝐵(⋅, ⋅) satisfies the coercivity and continuity; that is, there exist
two positive constants 𝐶

1
and 𝐶

2
such that

𝐵 (𝑢, 𝑢) ≥ 𝐶
1‖𝑢‖
2

𝐻
𝛼
(Ω)

, ∀𝑢 ∈ 𝐻
𝛼

0
(Ω) , (5)

𝐵 (𝑢, V) ≤ 𝐶
2‖𝑢‖𝐻𝛼(Ω)‖V‖𝐻𝛼(Ω), ∀𝑢, V ∈ 𝐻

𝛼

0
(Ω) . (6)

Hence, they claimed that there exists a unique solution to
(4). Note that from (5) and (6) we have norm equivalence of
‖ ⋅ ‖
𝐻
𝛼
(Ω)

and energy norm ‖ ⋅ ‖
𝐸
= 𝐵(⋅, ⋅)

1/2, that is,

√𝐶
1‖V‖𝐻𝛼(Ω) ≤ ‖V‖𝐸 ≤ √𝐶

2‖V‖𝐻𝛼(Ω), ∀V ∈ 𝐻
𝛼

0
(Ω) . (7)

Let 𝑆
ℎ
denote a partition of Ω such that Ω = {⋃𝐾 : 𝐾 ∈

𝑆
ℎ
}. Assume that there exists a positive constant 𝜌 such that

𝜌ℎ
𝑘

≤ ℎ
𝐾

≤ ℎ
𝑘
, where ℎ

𝑘
= max

𝐾∈𝑆
ℎ

ℎ
𝐾
. Let 𝑃

𝑚
(𝐾) denote

the space of polynomials of degree less than or equal to 𝑚

on 𝐾 ∈ 𝑆
ℎ
. Associated with 𝑆

ℎ
, define the finite-dimensional

subspace 𝑋
ℎ
⊂ 𝐻
𝛼

0
(Ω) as

𝑋
ℎ
:= {V ∈ 𝐻

𝛼

0
(Ω) ∩ 𝐶

0
(Ω) : V|

𝐾
∈ 𝑃
𝑚−1

(𝐾) , ∀𝐾 ∈ 𝑆
ℎ
} .

(8)

Let 𝑢
ℎ
be the solution to the finite-dimensional variational

problem:

𝐵 (𝑢
ℎ
, V
ℎ
) = 𝐹 (V

ℎ
) , ∀V

ℎ
∈ 𝑋
ℎ
. (9)

Note that the existence and uniqueness of solution to
(9) follow from the fact that 𝑋

ℎ
is a subset of the space

𝐻
𝛼

0
(Ω)∩𝐻

𝑚

0
(Ω). Ervin and Roop have obtained convergence

estimate in the energy norm ‖ ⋅ ‖
𝐸
. At the same time, under

the assumption concerning the regularity of the solution
to the adjoint problem of Problem 1 [17, Assumption 4.1],
convergence estimate in the 𝐿

2 norm was proved.

Theorem 3 (see [17, Corollary 4.3]). Let 𝑢 ∈ 𝐻
𝛼

0
(Ω)⋂

𝐻
𝑟
(Ω) (𝛼 ≤ 𝑟 ≤ 𝑚) solve (4) and 𝑢

ℎ
solve (9). Then there

exists a constant 𝐶
3
> 0 such that 𝑒 = 𝑢 − 𝑢

ℎ
satisfies

‖𝑒‖𝐻𝛼(Ω) ≤ 𝐶
3
ℎ
𝑟−𝛼

𝑘
‖𝑢‖𝐻𝑟(Ω). (10)

Theorem 4 (see [17, Theorem 4.4]). Let 𝑢 ∈ 𝐻
𝛼

0
(Ω)⋂

𝐻
𝑟
(Ω) (𝛼 ≤ 𝑟 ≤ 𝑚) solve (4) and 𝑢

ℎ
solve (9), where𝑚−1 is the

degree of Galerkin finite element model. Then, if the regularity
of the solution to the adjoint problem is satisfied, there exists a
constant 𝐶

4
(or 𝐶󸀠
4
) such that the error 𝑒 = 𝑢 − 𝑢

ℎ
satisfies

‖𝑒‖𝐿2(Ω) ≤ 𝐶
4
ℎ
𝛼

𝑘
‖𝑢‖𝐸, 𝛼 ̸=

3

4
,

‖𝑒‖𝐿2(Ω) ≤ 𝐶
󸀠

4
ℎ
𝛼−𝜀

𝑘
‖𝑢‖𝐸, 𝛼 =

3

4
, 0 < ∀𝜀 <

1

2
.

(11)

FromTheorems 3 and 4 and the equivalence of ‖ ⋅ ‖
𝐻
𝛼
(Ω)

and ‖ ⋅ ‖
𝐸
, we have the error estimates in the 𝐿

2 norm.

Theorem 5. Under the same assumptions in Theorem 4, one
has

‖𝑒‖𝐿2(Ω) ≤ 𝐶
5
ℎ
𝑟

𝑘
‖𝑢‖𝐻𝑟(Ω), 𝛼 ̸=

3

4
,

‖𝑒‖𝐿2(Ω) ≤ 𝐶
5
ℎ
𝑟−𝜀

𝑘
‖𝑢‖𝐻𝑟(Ω), 𝛼 =

3

4
, 0 < ∀𝜀 <

1

2
,

(12)

where 𝐶
5
= √𝐶

2
𝐶
3
𝐶
4
(or 𝐶
5
= √𝐶

2
𝐶
3
𝐶
󸀠

4
).

3. Multigrid Method for FADE

For the simpleness, we only discuss the case of linear finite
element, and it is necessary to restrict the mesh partition.
Let {T

𝑘
} denote a sequence of partitions of Ω and ℎ

𝑘
be the

mesh size of T
𝑘
. From now on, we assume that {T

𝑘
} is a

quasiuniform family, that is,

𝜌ℎ
𝑘
≤ 𝑥
𝑖
− 𝑥
𝑖−1

≤ ℎ
𝑘
, 𝑖 = 1, 2, . . . , 𝑁

𝑘
, (13)

with positive constant 𝜌. At the same time, letT
𝑘
be obtained

from T
𝑘−1

via a regular subdivision, that is, T
𝑘−1

⊂ T
𝑘

for 𝑘 ≥ 2. Let 𝑉
𝑘
denote 𝐶

0 piecewise linear functions with
respect toT

𝑘
that vanish on 𝜕Ω.

3.1. Mesh-Dependent Norms

Definition 6. Themesh-dependent inner product (⋅, ⋅)
𝑘
on𝑉
𝑘

is defined by

(V, 𝑤)
𝑘
= ℎ
𝑘

𝑁
𝑘
−1

∑

𝑖=1

V (𝑥
𝑖
) 𝑤 (𝑥

𝑖
) . (14)

Definition 7. The operator 𝐴
𝑘
: 𝑉
𝑘

→ 𝑉
𝑘
is defined by

(𝐴
𝑘
V, 𝑤)
𝑘
= 𝐵 (V, 𝑤) , ∀V, 𝑤 ∈ 𝑉

𝑘
. (15)

In terms of the operator 𝐴
𝑘
, the discretized equation of

(9) can be written as

𝐴
𝑘
𝑢
𝑘
= 𝑓
𝑘
, (16)
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where 𝑓
𝑘
∈ 𝑉
𝑘
satisfies

(𝑓
𝑘
, V
𝑘
) = (𝑓, V) , ∀V ∈ 𝑉

𝑘
. (17)

Remark 8. (i) From the Riesz representation theorem, we
point out that the operator 𝐴

𝑘
is defined uniquely. (ii)

Since 𝐵(V, 𝑤) is symmetric and satisfies the proposition of
coercivity, 𝐴

𝑘
is symmetric positive definite woth respect to

(⋅, ⋅)
𝑘
.

The mesh-dependent norms are defined by

‖|V|‖𝑠,𝑘 = √(𝐴
𝑠

𝑘
V, V)
𝑘
. (18)

Observe that the energy norm ‖ ⋅ ‖
𝐸
coincides with ‖| ⋅ |‖

1,𝑘

normon𝑉
𝑘
. Similarly, ‖| ⋅ |‖

0,𝑘
is the norm associatedwith the

mesh-dependent inner product (14). The following lemma
shows that ‖| ⋅ |‖

0,𝑘
is equivalent to the 𝐿

2 norm.

Lemma 9. The norm ‖ ⋅ ‖
𝐿
2
(Ω)

is equivalent to mesh-depentent
norm ‖| ⋅ |‖

0,𝑘
, that is,

𝜌‖|V|‖0,𝑘 ≤ ‖V‖𝐿2(Ω) ≤ ‖|V|‖0,𝑘, ∀V ∈ 𝑉
𝑘
. (19)

Particularly, ‖| ⋅ |‖
0,𝑘

= ‖ ⋅ ‖
𝐿
2
(Ω)

for the uniform mesh.

Proof. The proof is analogous to Lemma 6.2.7 in reference
[18].

In order to estimate the spectral radius, Λ(𝐴
𝑘
), of 𝐴

𝑘
,

we need the following norm interpolation lemma (see [19,
Theorem 1.3.7].

Lemma 10 (interpolation theorem). Assume thatΩ is an open
set of R𝑑 with a Lipchitz continuous boundary. Let 𝑠

1
< 𝑠
2
be

two real numbers, and 𝜇 = (1 − 𝜃)𝑠
1
+ 𝜃𝑠
2
, 0 ≤ 𝜃 ≤ 1. Then

there exists a constant 𝐶
6
> 0 such that

‖𝑢‖
𝐻
𝜇
(Ω)

≤ 𝐶
6‖𝑢‖
1−𝜃

𝐻
𝑠
1 (Ω)

‖𝑢‖
𝜃

𝐻
𝑠
2 (Ω)

. (20)

Lemma 11 (spectral radius theorem). We have the estimation
for spectral radius Λ(𝐴

𝑘
):

Λ (𝐴
𝑘
) ≤ 𝐶
7
ℎ
−2𝛼

𝑘
, (21)

where 𝐶
7
is a positive constant independent of 𝑘.

Proof. Let 𝜙 ∈ 𝑉
𝑘
. Applying the continuity (6) of 𝐵(⋅, ⋅), norm

interpolation Lemma 10, and inverse estimation, we have

𝐵 (𝜙, 𝜙) ≤ 𝐶
2

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐻
𝛼
(Ω)

≤ 𝐶
2
(𝐶
6

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

1−𝛼

𝐻
0
(Ω)

⋅
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

𝛼

𝐻
1
(Ω)

)
2

≤ 𝐶
2
(𝐶
6

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

1−𝛼

𝐻
0
(Ω)

⋅ 𝐶
8
ℎ
−𝛼

𝑘

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

𝛼

𝐻
0
(Ω)

)
2

= 𝐶ℎ
−2𝛼

𝑘

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐻
0
(Ω)

= 𝐶ℎ
−2𝛼

𝑘

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

,

(22)

where 𝐶
8

> 0 is the constant of inverse estimate and 𝐶 =

𝐶
2
𝐶
2

6
𝐶
2

8
.

Let 𝜆 be an eigenvalue of 𝐴
𝑘
with corresponding eigen-

vector 𝜙 ∈ 𝑉
𝑘
. From Lemma 9, we have

𝐵 (𝜙, 𝜙) = (𝐴
𝑘
𝜙, 𝜙)
𝑘

= 𝜆(𝜙, 𝜙)
𝑘

= 𝜆
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩

2

0,𝑘

= 𝜆
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

.

(23)

Combining (22) and (23), the following inequality holds:

𝜆 =
𝐵 (𝜙, 𝜙)

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

≤

𝐶ℎ
−2𝛼

𝑘

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

= 𝐶
7
ℎ
−2𝛼

𝑘
, (24)

where 𝐶
7
= 𝐶
2
𝐶
2

6
𝐶
2

8
.

3.2. The V-Cycle Multigrid Algorithm. Firstly, we give the
intergrid transfer operators which play a very important role
in convergence analysis.

Definition 12 (intergrid transfer operator). The coarse-to-fine
intergrid transfer operator 𝐼𝑘

𝑘−1
: 𝑉
𝑘−1

→ 𝑉
𝑘
is taken to be the

natural injection, that is,

𝐼
𝑘

𝑘−1
V = V, ∀V ∈ 𝑉

𝑘−1
. (25)

The fine-to-coarse operator 𝐼𝑘−1
𝑘

: 𝑉
𝑘

→ 𝑉
𝑘−1

is defined by

(𝐼
𝑘−1

𝑘
𝑤, V)
𝑘−1

= (𝑤, 𝐼
𝑘

𝑘−1
V)
𝑘
= (𝑤, V)

𝑘
, ∀V ∈ 𝑉

𝑘−1
, 𝑤 ∈ 𝑉

𝑘
.

(26)

Now, we describe the 𝑘th level of V-cycle MGM (V-
MGM) and full V-cycle MGM. Let 𝑚 be the smoothing
number, 𝑛

𝑘
the iteration number of 𝑘th level V-MGM, and

Λ
𝑘
be a parameter dependent on 𝑘. Denote 𝑀𝐺(𝑘, 𝑧

0
, 𝑔)

the approximate solution of the 𝐴
𝑘
𝑧 = 𝑔 obtained from

the 𝑘th level iteration with initial guess 𝑧
0
. The discussion

of parameters Λ
𝑘
and 𝑛

𝑘
is left to the next subsection and

Section 4.

Algorithm 13 (the 𝑘th level V-cycle multigrid algorithm).

BEGIN:
For 𝑘 = 1:𝑀𝐺(1, 𝑧

0
, 𝑔) = 𝐴

−1

1
𝑔.

For 𝑘 > 1, 𝑀𝐺(𝑘, 𝑧
0
, 𝑔) is obtained recursively in

three steps.

Presmoothing Step. For 1 ≤ 𝑙 ≤ 𝑚, let 𝑧
𝑙
= 𝑧
𝑙−1

+

(1/Λ
𝑘
)(𝑔 − 𝐴

𝑘
𝑧
𝑙−1

).
Error Correction.

𝑔 = 𝐼
𝑘−1

𝑘
(𝑔 − 𝐴

𝑘
𝑧
𝑚
),

𝑞
1
= 𝑀𝐺(𝑘 − 1, 0, 𝑔),

𝑧
𝑚+1

= 𝑧
𝑚

+ 𝐼
𝑘

𝑘−1
𝑞
1
.
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Postsmoothing step. For𝑚 + 1 ≤ 𝑙 ≤ 2𝑚 + 1, let
𝑧
𝑙
= 𝑧
𝑙−1

+ (1/Λ
𝑘
)(𝑔 − 𝐴

𝑘
𝑧
𝑙−1

).
The output of the 𝑘th level iteration is
𝑀𝐺(𝑘, 𝑧

0
, 𝑔) := 𝑧

2𝑚+1
.

END.

Algorithm 14 (the full V-cycle multigrid algorithm).

BEGIN:
For 𝑘 = 1, 𝑢̂

1
= 𝐴
−1

1
𝑓
1
.

For 𝑘 ≥ 2,

𝑢
𝑘

0
= 𝐼
𝑘

𝑘−1
𝑢̂
𝑘−1

,
𝑢
𝑘

𝑙
= 𝑀𝐺(𝑘, 𝑢

𝑘

𝑙−1
, 𝑓
𝑘
), 1 ≤ 𝑙 ≤ 𝑛

𝑘
,

𝑢̂
𝑘
= 𝑢
𝑘

𝑛
𝑘

.

END.

3.3. Approximation and Smoothing Properties. In this subsec-
tion, we prove some properties of projection operator 𝑃

𝑘−1

and smoothing operator𝑅
𝑘
, which are the key ingredients for

V-MGM and FV-MGM algorithm.

Definition 15. Let 𝑃
𝑘
: 𝑉 → 𝑉

𝑘
be the orthogonal projection

with respect to 𝐵(⋅, ⋅), that is,

𝐵 (V, 𝑤) = 𝐵 (𝑃
𝑘
V, 𝑤) , ∀𝑤 ∈ 𝑉

𝑘
. (27)

Definition 16. Define the relaxation operator:

𝑅
𝑘
:= 𝐼 −

1

Λ
𝑘

𝐴
𝑘
. (28)

Throughout this paper, we assume that Λ
𝑘
denotes some

upper bound for the spectral radius of 𝐴
𝑘
satisfying Λ

𝑘
≤

𝐶
7
ℎ
−2𝛼

𝑘
.

Lemma 17. Let V ∈ 𝑉
𝑘
, 𝑔 = 𝐼

𝑘−1

𝑘
𝐴
𝑘
V, and 𝑞 ∈ 𝑉

𝑘−1
satisfy the

equation 𝐴
𝑘−1

𝑞 = 𝑔. Then 𝑞 = 𝑃
𝑘−1

V.

Proof. For 𝑤 ∈ 𝑉
𝑘−1

,

𝐵 (𝑞, 𝑤) = (𝐴
𝑘−1

𝑞, 𝑤)
𝑘−1

= (𝑔, 𝑤)
𝑘−1

= (𝐼
𝑘−1

𝑘
𝐴
𝑘
V, 𝑤)
𝑘−1

= (𝐴
𝑘
V, 𝑤)
𝑘

= 𝐵 (V, 𝑤) .

(29)

Therefore, from the definition of 𝑃
𝑘−1

we have 𝑞 = 𝑃
𝑘−1

V.

Remark 18. Let 𝑔 = 𝐴
𝑘
V. From the Riesz representation

theorem there exists a unique 𝑓 ∈ 𝐻
−𝛼

(Ω) such that

(𝑔, 𝑤)
𝑘
= ⟨𝑓,𝑤⟩ , ∀𝑤 ∈ 𝑉

𝑘
, (30)

which means that V is a finite element solution of variational
problem (4) on 𝑉

𝑘
. Observing that

(𝑔, 𝑤)
𝑘−1

= (𝐼
𝑘−1

𝑘
𝑔, 𝑤)
𝑘−1

= (𝑔, 𝑤)
𝑘
= ⟨𝑓,𝑤⟩ , ∀𝑤 ∈ 𝑉

𝑘−1
,

(31)

we claim that 𝑞 = 𝑃
𝑘−1

V is also a finite element solution of
variational problem (4) on 𝑉

𝑘−1
. Therefore, noting 𝑉

𝑘−1
⊂ 𝑉
𝑘

(sinceT
𝑘−1

⊂ T
𝑘
) and applyingTheorem 4, we have

󵄩󵄩󵄩󵄩V − 𝑃
𝑘−1

V
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶
4
ℎ
𝛼

𝑘

󵄩󵄩󵄩󵄩V − 𝑃
𝑘−1

V
󵄩󵄩󵄩󵄩𝐸

, 𝛼 ̸=
3

4
,

󵄩󵄩󵄩󵄩V − 𝑃
𝑘−1

V
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶
󸀠

4
ℎ
𝛼−𝜀

𝑘

󵄩󵄩󵄩󵄩V − 𝑃
𝑘−1

V
󵄩󵄩󵄩󵄩𝐸

, 𝛼 =
3

4
.

(32)

Lemma 19. There exists a positive constant 𝐶
9
such that

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨(𝐼 − 𝑃
𝑘−1

) V
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩0,𝑘

≤ 𝐶
9
ℎ
𝛼

𝑘

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨(𝐼 − 𝑃
𝑘−1

) V
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩1,𝑘
, ∀V ∈ 𝑉

𝑘
, 𝛼 ̸=

3

4
,

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨(𝐼 − 𝑃
𝑘−1

) V
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩0,𝑘

≤ 𝐶
9
ℎ
𝛼−𝜀

𝑘

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨(𝐼 − 𝑃k−1) V
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩1,𝑘
, ∀V ∈ 𝑉

𝑘
, 𝛼 =

3

4
, 0 < 𝜀 <

1

2
.

(33)

Proof. We only prove the case 𝛼 ̸= 3/4, and the proof for the
other case is analogous. Applying Remark 18 and Lemma 9
we have

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨(𝐼 − 𝑃
𝑘−1

) V
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩0,𝑘
≤

1

𝜌

󵄩󵄩󵄩󵄩(𝐼 − 𝑃
𝑘−1

) V
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤
𝐶
4

𝜌
ℎ
𝛼

𝑘

󵄩󵄩󵄩󵄩(V − 𝑃
𝑘−1

V)
󵄩󵄩󵄩󵄩𝐸

= 𝐶
9
ℎ
𝛼

𝑘

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨(𝐼 − 𝑃
𝑘−1

) V
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩1,𝑘
,

(34)

where 𝐶
9
= 𝐶
4
/𝜌.

Lemma 20. There exists a positive constant 𝐶
9
such that

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨(𝐼 − 𝑃
𝑘−1

) V
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩1,𝑘
≤ 𝐶
9
ℎ
𝛼

𝑘
‖|V|‖2,𝑘, ∀V ∈ 𝑉

𝑘
, 𝛼 ̸=

3

4
, (35)

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨(𝐼 − 𝑃
𝑘−1

) V
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩1,𝑘

≤ 𝐶
9
ℎ
𝛼−𝜀

𝑘
‖|V|‖2,𝑘, ∀V ∈ 𝑉

𝑘
, 𝛼 =

3

4
, 0 < 𝜀 <

1

2
.

(36)
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Proof. Applying projection operator 𝑃
𝑘−1

, generalized Cau-
chy-Schwarz inequality (see [18, Lemma 6.2.10]), and
Lemma 19

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨(𝐼 − 𝑃
𝑘−1

)V
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩

2

1,𝑘
=

󵄩󵄩󵄩󵄩(𝐼 − 𝑃
𝑘−1

)V
󵄩󵄩󵄩󵄩

2

𝐸

= 𝐵 (V − 𝑃
𝑘−1

V, V − 𝑃
𝑘−1

V)

= 𝐵 (V − 𝑃
𝑘−1

V, V)

≤
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨(𝐼 − 𝑃
𝑘−1

) V
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩0,𝑘‖|
V|‖2,𝑘

≤ 𝐶
9
ℎ
𝛼

𝑘

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨(𝐼 − 𝑃
𝑘−1

) V
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩1,𝑘‖|
V|‖2,𝑘

= 𝐶
9
ℎ
𝛼

𝑘

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨(𝐼 − 𝑃
𝑘−1

) V
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩1,𝑘‖|
V|‖2,𝑘

(37)

if 𝛼 ̸= 3/4. Therefore, dividing through by ‖|(𝐼 − 𝑃
𝑘−1

)V|‖
1,𝑘

yields (35). The case 𝛼 = 3/4 is analogous.

Lemma 21. Let 𝑚 be the number of smoothing steps. Then

𝐵 ((𝐼 − 𝑅
𝑘
) 𝑅
2𝑚

𝑘
V, V) ≤

1

2𝑚
𝐵 ((𝐼 − 𝑅

2𝑚

𝑘
) V, V) . (38)

Proof. See Lemma 6.6.7 in [18].

Lemma 22. Let 𝑚 be the number of smoothing steps. Then
there exists a positive constant 𝐶

10
such that

𝐵 ((𝐼 − 𝑃
𝑘−1

) 𝑅
𝑚

𝑘
V, (𝐼 − 𝑃

𝑘−1
) 𝑅
𝑚

𝑘
V) ≤

𝐶
10

𝑚
𝐵((𝐼 − 𝑅

2𝑚

𝑘
) V, V) .

(39)

Proof. Applying Lemmas 20, 11, and 21, we have

𝐵 ((𝐼 − 𝑃
𝑘−1

) 𝑅
𝑚

𝑘
V, (𝐼 − 𝑃

𝑘−1
) 𝑅
𝑚

𝑘
V)

=
󵄩󵄩󵄩󵄩(𝐼 − 𝑃

𝑘−1
)𝑅
𝑚

𝑘
V
󵄩󵄩󵄩󵄩

2

𝐸

=
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨(𝐼 − 𝑃
𝑘−1

) 𝑅
𝑚

𝑘
V
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩

2

1,𝑘

≤ 𝐶
2

9
ℎ
2𝛼

𝑘

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑅
𝑚

𝑘
V
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩

2

2,𝑘

= 𝐶
2

9
ℎ
2𝛼

𝑘
(𝐴
2

𝑘
𝑅
𝑚

𝑘
V, 𝑅
𝑚

𝑘
V)
𝑘

= 𝐶
2

9
ℎ
2𝛼

𝑘
𝐵 (𝐴
𝑘
𝑅
𝑚

𝑘
V, 𝑅
𝑚

𝑘
V)

= 𝐶
2

9
ℎ
2𝛼

𝑘
Λ
𝑘
𝐵 ((𝐼 − 𝑅

𝑘
) 𝑅
𝑚

𝑘
V, 𝑅
𝑚

𝑘
V)

≤ 𝐶
2

9
𝐶
7
𝐵 ((𝐼 − 𝑅

𝑘
) 𝑅
𝑚

𝑘
V, 𝑅
𝑚

𝑘
V)

= 𝐶
2

9
𝐶
7
𝐵 ((𝐼 − 𝑅

𝑘
) 𝑅
2𝑚

𝑘
V, V)

≤
𝐶
2

9
𝐶
7

(2𝑚) 𝐵 ((𝐼 − 𝑅
2𝑚

𝑘
) V, V)

=
𝐶
10

𝑚𝐵 ((𝐼 − 𝑅
2𝑚

𝑘
) V, V)

(40)

if 𝛼 ̸= 3/4, where 𝐶
10

= 𝐶
2

9
𝐶
7
/2. Note that (39) also holds for

𝛼 = 3/4 since 𝜀 > 0.

3.4. Convergence Analysis. In this subsection, we prove con-
vergence theorems for V-cycle FE multigrid method.

Definition 23. The error operator of V-cycle multigrid 𝐸
𝑘

:

𝑉
𝑘

→ 𝑉
𝑘
is defined recursively by

𝐸
1
= 0,

𝐸
𝑘
= 𝑅
𝑚

𝑘
[𝐼 − (𝐼 − 𝐸

𝑘−1
) 𝑃
𝑘−1

] 𝑅
𝑚

𝑘
, 𝑘 > 1.

(41)

Proposition 24. The operator 𝐸
𝑘
has the following proposi-

tions (see [18, Lemma 6.6.2 and Proposition 6.6.9]):

(i) if 𝑧, 𝑔 ∈ 𝑉
𝑘
satisfy 𝐴

𝑘
𝑧 = 𝑔, then

𝐸
𝑘
(𝑧 − 𝑧

0
) = 𝑧 − 𝑀𝐺 (𝑘, 𝑧

0
, 𝑔) , (42)

(ii) 𝐸
𝑘
is symmetric positive semidefinite with respect to

𝐵(⋅, ⋅) for 𝑘 ≥ 1, that is,

𝐵 (𝐸
𝑘
V, 𝑤) = 𝐵 (V, 𝐸

𝑘
𝑤) , ∀V, 𝑤 ∈ 𝑉

𝑘
,

𝐵 (𝐸
𝑘
V, V) ≥ 0.

(43)

Theorem 25. Let 𝑚 be the number of smoothing steps. Then

𝐵 (𝐸
𝑘
V, V) ≤

𝐶
10

𝑚 + 𝐶
10

𝐵 (V, V) , ∀V ∈ 𝑉
𝑘
. (44)

Proof. The proof is by induction. For 𝑘 = 1, (44) is trivially
true since 𝐸

𝑘
= 0. Assume that (44) holds for 𝑘 − 1. Let 𝛾 =

𝐶
10
/(𝑚+𝐶

10
); therefore 1−𝛾 = 𝛾𝑚/𝐶

10
. Applying induction

hypothesis, Proposition 24, and Lemma 22, we have

𝐵 (𝐸
𝑘
V, V) = 𝐵 (𝑅

𝑚

𝑘
V, 𝑅
𝑚

𝑘
V) − 𝐵 (𝑃

𝑘−1
𝑅
𝑚

𝑘
V, 𝑃
𝑘−1

𝑅
𝑚

𝑘
V)

+ 𝐵 (𝐸
𝑘−1

𝑃
𝑘−1

𝑅
𝑚

𝑘
V, 𝑃
𝑘−1

𝑅
𝑚

𝑘
V)

≤ 𝐵 ((𝐼 − 𝑃
𝑘−1

) 𝑅
𝑚

𝑘
V, (𝐼 − 𝑃

𝑘−1
) 𝑅
𝑚

𝑘
V)

+ 𝛾𝐵 (𝑃
𝑘−1

𝑅
𝑚

𝑘
V, 𝑃
𝑘−1

𝑅
𝑚

𝑘
V)

= (1 − 𝛾) 𝐵 ((𝐼 − 𝑃
𝑘−1

) 𝑅
𝑚

𝑘
V, (𝐼 − 𝑃

𝑘−1
) 𝑅
𝑚

𝑘
V)

+ 𝛾𝐵 ((𝐼 − 𝑃
𝑘−1

) 𝑅
𝑚

𝑘
V, (𝐼 − 𝑃

𝑘−1
) 𝑅
𝑚

𝑘
V)

+ 𝛾𝐵 (𝑃
𝑘−1

𝑅
𝑚

𝑘
V, 𝑃
𝑘−1

𝑅
𝑚

𝑘
V)

≤
(1 − 𝛾)𝐶

10

𝑚𝐵 ((𝐼 − 𝑅
2𝑚

𝑘
) V, V)

+ 𝛾𝐵 (𝑅
𝑚

𝑘
V, 𝑅
𝑚

𝑘
V)

= 𝛾𝐵 ((𝐼 − 𝑅
2𝑚

𝑘
) V, V) + 𝛾𝐵 (𝑅

𝑚

𝑘
V, 𝑅
𝑚

𝑘
V)

= 𝛾𝐵 (V, V) ,

(45)

which ends the proof.

Corollary 26. Let 𝑚 be the number of smoothing steps. Then
one has the estimation for spectral radius Λ(𝐸

𝑘
):

Λ (𝐸
𝑘
) ≤

𝐶
10

𝑚 + 𝐶
10

. (46)
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Theorem 27 (convergence of the 𝑘th level iteration for
V-cycle). Let 𝑚 be the number of smoothing steps. Then

󵄩󵄩󵄩󵄩𝑧 − 𝑀𝐺 (𝑘, 𝑧
0
, 𝑔)

󵄩󵄩󵄩󵄩𝐸
≤

𝐶
10

𝑚 + 𝐶
10

󵄩󵄩󵄩󵄩𝑧 − 𝑧
0

󵄩󵄩󵄩󵄩𝐸
. (47)

Hence, the 𝑘th level iteration for any 𝑚 is a contraction with
the contraction number independent of 𝑘.

Proof. From (42) in Proposition 24, it suffices to show

󵄩󵄩󵄩󵄩𝐸𝑘V
󵄩󵄩󵄩󵄩𝐸

≤
𝐶
10

𝑚 + 𝐶
10

‖V‖𝐸, (48)

which can be proved by Corollary 26.

Theorem 28 (full multigrid convergence). Let 𝑢 ∈ 𝐻
𝛼

0
(Ω)⋂

𝐻
𝑟
(Ω) (𝛼 ≤ 𝑟 ≤ 2) solve (4). If the iteration numbers in full

multigrid algorithm 𝑛
𝑘
are large enough, there exists a positive

constant 𝐶
11
such that

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢̂
𝑘

󵄩󵄩󵄩󵄩𝐸
≤ 𝐶
11
ℎ
𝑟−𝛼

𝑘
‖𝑢‖𝐻𝑟(Ω). (49)

Proof. For the simpleness we assume that 𝑛
𝑘
≥ 𝑛 ≥ 1. Define

𝑒
𝑘
= 𝑢
𝑘
− 𝑢̂
𝑘
. In particular, 𝑒

1
= 0. Let 𝛾 = 𝐶

10
/(𝑚+𝐶

10
) (𝐶
10

is the constant in Theorem 27). We have

󵄩󵄩󵄩󵄩𝑒𝑘
󵄩󵄩󵄩󵄩𝐸

≤ 𝛾
𝑛󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢̂

𝑘−1

󵄩󵄩󵄩󵄩𝐸

≤ 𝛾
𝑛
(
󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢

󵄩󵄩󵄩󵄩𝐸
+
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑘−1

󵄩󵄩󵄩󵄩𝐸
+
󵄩󵄩󵄩󵄩𝑢𝑘−1 − 𝑢̂

𝑘−1

󵄩󵄩󵄩󵄩𝐸
)

≤ 𝛾
𝑛
[√𝐶
2
𝐶
3
ℎ
𝑟−𝛼

𝑘
‖𝑢‖𝐻𝑟(Ω)

+√𝐶
2
𝐶
3
ℎ
𝑟−𝛼

𝑘−1
‖𝑢‖𝐻𝑟(Ω) +

󵄩󵄩󵄩󵄩𝑒𝑘−1
󵄩󵄩󵄩󵄩𝐸

]

= 𝛾
𝑛
[3√𝐶

2
𝐶
3
ℎ
𝑟−𝛼

𝑘
‖𝑢‖𝐻𝑟(Ω) +

󵄩󵄩󵄩󵄩𝑒𝑘−1
󵄩󵄩󵄩󵄩𝐸

] .

(50)

In the following analysis, we assume that 2𝛾𝑛 < 1 (therefore
𝑛 > log1/2

𝛾
). By iterating the above inequality and from

continuity (6) andTheorem 3, we have

󵄩󵄩󵄩󵄩𝑒𝑘
󵄩󵄩󵄩󵄩𝐸

≤ 3√𝐶
2
𝐶
3
𝛾
𝑛
ℎ
𝑟−𝛼

𝑘
‖𝑢‖𝐻𝑟(Ω)

+ 3√𝐶
2
𝐶
3
𝛾
2𝑛
ℎ
𝑟−𝛼

𝑘−1
‖𝑢‖𝐻𝑟(Ω) + ⋅ ⋅ ⋅

+ 3√𝐶
2
𝐶
3
𝛾
𝑘𝑛
ℎ
𝑟−𝛼

1
‖𝑢‖𝐻𝑟(Ω)

≤ 3√𝐶
2
𝐶
3

𝛾
𝑛

1 − 2𝛾𝑛
ℎ
𝑟−𝛼

𝑘
‖𝑢‖𝐻𝑟(Ω)

= 𝐶
11
ℎ
𝑟−𝛼

𝑘
‖𝑢‖𝐻𝑟(Ω),

(51)

where 𝐶
11

= 3√𝐶
2
𝐶
3
𝛾
𝑛
/(1 − 2𝛾

𝑛
).

The following Corollary is a natural conclusion of Theo-
rems 5 and 28.

Corollary 29. Under the assumptions in Theorem 28, the
convergence rate of multigrid solution 𝑢̂

𝑘
in 𝐿
2 norm is 𝑟; that

is, there exists a constant 𝐶
12

> 0 such that

󵄩󵄩󵄩󵄩𝑢̂𝑘 − 𝑢
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶
12
ℎ
𝑟

𝑘
‖𝑢‖𝐻𝑟(Ω), 𝛼 ̸=

3

4
,

󵄩󵄩󵄩󵄩𝑢̂𝑘 − 𝑢
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶
12
ℎ
𝑟−𝜀

𝑘
‖𝑢‖𝐻𝑟(Ω), 𝛼 =

3

4
, 0 < ∀𝜀 <

1

2
.

(52)

We end this section with a proposition that the work
involved in the full multigrid algorithm is O(𝑑

𝑘
), where 𝑑

𝑘
=

𝑁
𝑘
− 2 = dim𝑉

𝑘
(see [18, Proposition 6.7.4]).

4. Numerical Examples

In this section we employ the FV-MGM listed as Algo-
rithm 14 in Section 3 to solve FADEs, which demonstrate the
convergence rate and involved work in Theorem 28 and its
Corollary 29. The parameter 𝑚 is taken 5, Λ

𝑘
= 𝐶
7
ℎ
−2𝛼

𝑘
, and

𝑛
𝑘
is controlled by the stopping criterion:

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑘
𝑢̂
𝑘

𝑛
𝑘

− 𝑔
󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ O (ℎ
𝛼

𝑘
) . (53)

We note that the positive constants 𝐶
7
can be estimated by

testing examples on the 1th and 2th level meshes, that is,

𝐶
7
=

1

2
(ℎ
2𝛼

1
Λ (𝐴
1
) + ℎ
2𝛼

2
Λ (𝐴
2
)) . (54)

Here we calculate 𝐶
7
= 0.05, and, from experimental expe-

rience, let the right side of stopping criterion be 0.085ℎ
𝛼

𝑘
. All

numerical experiments are run in MATLAB 7.0.0.19920(R14)
on a PC with the configuration: Intel(R)Core(TM)i3-2100
CPU @ 3.2GHz and 1.88GB RAM.

Example 30. Let 𝑐(𝑥) = 1. It can be verified that𝑢(𝑥) = 𝑥
2
−𝑥
3

is the exact solution to the boundary value problem:

−
1

2
𝐷 (
0𝐷
−𝛽

𝑥
+
𝑥𝐷
−𝛽

1
)𝐷𝑢 + 𝑢 = 𝑓,

𝑢 (0) = 0, 𝑢 (1) = 0,

(55)

where

𝑓 (𝑥) = 𝑥
2
− 𝑥
3
+

1

2
𝑓
1
(𝑥) +

1

2
𝑓
2
(𝑥) ,

𝑓
1
(𝑥) = −

2𝑥
𝛽

Γ (1 + 𝛽)
+

6𝑥
1+𝛽

Γ (2 + 𝛽)
,

𝑓
2
(𝑥) = −

𝛽(1 − 𝑥)
𝛽−1

Γ (1 + 𝛽)
+

4 (𝛽 + 1) (1 − 𝑥)
𝛽

Γ (2 + 𝛽)

−
6 (𝛽 + 2) (1 − 𝑥)

𝛽+1

Γ (3 + 𝛽)
.

(56)

As 𝑢 ∈ 𝐻
2

0
(Ω), Corollary 29 predicts a rate of convergence

of 2 in 𝐿
2 norm. Table 1 includes numerical results over
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Table 1: Experimental error ‖ 𝑢 − 𝑢̂
𝑘
‖
𝐿
2
(Ω)

for different 𝛽.

ℎ
𝑘

𝛽 = 0.3 𝛽 = 0.6 𝛽 = 0.9

Error Conv. rate Error Conv. rate Error Conv. rate
1/4 9.3587𝑒 − 3 8.3460𝑒 − 3 7.6044𝑒 − 3

1/8 2.1751𝑒 − 3 2.1388 1.8444𝑒 − 3 2.1779 1.6348𝑒 − 3 2.2177
1/16 5.0679𝑒 − 4 2.1016 4.1362𝑒 − 4 2.1568 3.6349𝑒 − 4 2.1692
1/32 1.1967𝑒 − 4 2.0823 9.4937𝑒 − 5 2.1233 8.3872𝑒 − 5 2.1157
1/64 2.9496𝑒 − 5 2.0205 2.2629𝑒 − 5 2.0688 2.0343𝑒 − 5 2.0436
1/128 7.0818𝑒 − 6 2.0583 5.4727𝑒 − 6 2.0478 5.0852𝑒 − 6 2.0002

Table 2: Comparisons for solving Example 30 with 𝛽 = 0.7 by the GE method, the CGNR method, and the FV-MGM, respectively.

ℎ
𝑘

FVMGM GE CGNR FVMGM
Error CPU(s) 𝑅cpu Iter CPU(s) 𝑅cpu Iter = 𝑛

𝑘
CPU(s) 𝑅cpu

1/128 2.0270𝑒 − 5 0.0313 29 0.0000 4 0.0000
1/256 1.3811𝑒 − 5 0.0625 0.995 46 0.0156 5 0.0156
1/512 1.1507𝑒 − 5 0.1719 1.451 72 0.0313 0.999 5 0.0469 1.579
1/1024 1.1101𝑒 − 5 0.5156 1.580 112 0.2187 2.796 3 0.1250 1.417
1/2048 1.1002𝑒 − 5 2.5000 2.274 174 1.5625 2.833 1 0.2688 1.103
1/4096 1.0849𝑒 − 5 15.484 2.627 270 9.2031 2.554 1 0.5719 1.088

a uniform partition of [0, 1], which support the predicted
rates of convergence for different values of 𝛽.

As comparisons, we also carry out the Gauss elimina-
tion (GE) and conjugate gradient normal residual (CGNR)
method with the same stopping criterion of the FV-MGM,
that is,

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑘
𝑢̂
𝑘

𝑛
𝑘

− 𝑔
󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 10
−𝑛

, (57)

to solve the corresponding system. For escaping “out of
memory,” we define that the data type of 𝐴

𝑘
is short float in

our program. Table 2 includes CPU time (without including
stiffness matrix calculating time) and iteration numbers for
each of the numerical methods with 𝑛 = 4. The rate of the
increasing CPU time is defined by

𝑅cpu

=
log [CPU time on finer mesh/CPU time on coarser mesh]

log [dimof finer mesh/ dimof coarser mesh]
.

(58)

From the table, we see that the numbers of iterations by
our FV-MGM are independent of ℎ

𝑘
. In contrast, the CGNR

method (with the initial value 𝑧
0
= 0) needs more iterations

when ℎ
𝑘
decrease. Similarly, the CPU time needed for GE and

CGNR method increases much faster than that of the FV-
MGM.

5. Concluding Remarks

In general the discretized system of FADE has a full and
ill-conditioned coefficient matrix, so FV-MGM is a high-
efficient algorithm for solving these equations.Theorems and
examples in this paper show that the convergence rate of FV-
MGM is the same as classic FEMunder the stopping criterion
(53), and the computational work is only O(dim𝑉

𝑘
) while

the stopping criterion is taken (57). Different from integer-
order equations, all the convergence analysis is on fractional

Sobolev spaces𝐻𝛼(Ω).The nonsymmetric form of FADEwill
be studied in the future.
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MADE tracer tests,” Transport in Porous Media, vol. 42, no. 1-
2, pp. 211–240, 2001.

[11] H.-K. Pang and H.-W. Sun, “Multigrid method for fractional
diffusion equations,” Journal of Computational Physics, vol. 231,
no. 2, pp. 693–703, 2012.

[12] V. J. Ervin and J. P. Roop, “Variational solution of fractional
advection dispersion equations on bounded domains in R𝑑,”
NumericalMethods for Partial Differential Equations, vol. 23, no.
2, pp. 256–281, 2007.

[13] W. H. Deng, “Finite element method for the space and time
fractional Fokker-Planck equation,” SIAM Journal onNumerical
Analysis, vol. 47, no. 1, pp. 204–226, 2008.

[14] C. M. Chen and T. Shih, Finite Element Methods for Integrodif-
ferential Equations, World Scientific, Singapore, 1998.

[15] X. J. Li and C. J. Xu, “Existence and uniqueness of the weak
solution of the space-time fractional diffusion equation and a
spectral method approximation,” Communications in Compu-
tational Physics, vol. 8, no. 5, pp. 1016–1051, 2010.

[16] J. T. Ma and Y. J. Jiang, “Moving collocation methods for time
fractional differential equations and simulation of blowup,”
Science China Mathematics, vol. 54, no. 3, pp. 611–622, 2011.

[17] V. J. Ervin and J. P. Roop, “Variational formulation for the
stationary fractional advection dispersion equation,”Numerical
Methods for Partial Differential Equations, vol. 22, no. 3, pp. 558–
576, 2006.

[18] S. C. Brenner and L. R. Scott,TheMathematicalTheory of Finite
Element Methods, Springer, New York, NY, USA, 1994.

[19] A. Quarteroni and A. Valli,Numerical Approximation of Partial
Differential Equations, Springer, Berlin, Germany, 1994.


