
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 381286, 8 pages
http://dx.doi.org/10.1155/2013/381286

Research Article
Extinction of Disease Pathogenesis in Infected Population and
Its Subsequent Recovery: A Stochastic Approach

Priti Kumar Roy,1 Jayanta Mondal,2 Rupa Bhattacharyya,3

Sabyasachi Bhattacharya,4 and Tamas Szabados5

1 Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, West Bengal 700032, India
2Department of Mathematics, Barasat College, Kolkata 700126, India
3 Department of Chemistry, Narula Institute of Technology, Kolkata 700109, India
4Agricultural and Ecological Research Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
5 Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Budapest 1521, Hungary

Correspondence should be addressed to Priti Kumar Roy; pritiju@gmail.com

Received 5 February 2013; Accepted 21 May 2013

Academic Editor: Xinyu Song

Copyright © 2013 Priti Kumar Roy et al.This is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A stochastic mathematical model of host-pathogen interaction has been developed to estimate the time to extinction of infected
population. It has been assumed in the model that the infected host does not grow or reproduce but can recover from pathogenic
infection and move to add to the susceptible host population using various drugs or vaccination. Extinction of infected population
in host-pathogen interaction depends significantly upon the total population. Here, we consider an extension of our previous work
with the stochastic approach to predict the time to extinction of disease pathogenesis. The optimal control approach helped in
designing an innovative, safe therapeutic regimen where the susceptible host population enhanced with simultaneous decrease
in the infected population. By means of an optimal control theory paradigm, it has also been shown in our preceding research
paper that the cost-effective combination of treatment may depend on the population size. In this research paper, we have studied
an approximation which is derived in favor of quasi-stationary distribution along with the expected time to extinction for the
model of host-pathogen interactions. The complete study has been roofed through the stochastic approach in context that disease
pathogenesis is to be extinct and infected population are going to be recovered. Numerical simulation is also done to confirm the
analysis.

1. Introduction

The modeling of epidemic diseases is an age-old problem [1]
andmakes a sincere effort in understanding the development
of mathematical models for epidemics from the 18th century
to the present day. These models are shown to be of used in
predicting and controlling the spread of infection. But in the
recent context of epidemiological research, microbial patho-
genesis reflects the interaction between two entities, host
and pathogen, which is somewhat related to the predator-
prey model [2, 3]. These classes of models are also relevant
for host-parasite type of models. Host-pathogen models are
mathematical prototypes pertaining to epidemiology, and
are of immense importance in view of the emergence and

reemergence of epidemiological diseases in the present day
global scenario [4, 5].

Application of mathematical concepts and techniques
to analyze host-pathogen interactions was done by various
researchers [6–8]. A very recent study throws light on the
antiviral drug treatment along with immune activator IL-2
and optimal control in disease pathogenesis by deterministic
model formulation [9]. In this research paper, a conventional
host-pathogen model has been considered including the
recovery of the infected individuals to the healthy susceptible
organisms. In this case, the host population is divided
into two classes: susceptible (𝑆), that is, healthy organisms,
and infected individuals (𝐼). Pathogens (𝑉) cause infection
to host population by transforming 𝑆 to 𝐼. Over the last
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several years, many researchers focused their attention on
the mathematical and biological aspects of host-pathogen
interactions. Beltrami and Carroll [10] as well as Venturino,
worked on the role of viral disease considering a three-species
model of susceptible and infected phytoplankton as well as
their predator [4].Hethcote andDriessche [11] formulated SIS
epidemiological models where delay has been incorporated
corresponding to the infectious period and disease-related
deaths. Another pioneering work was reported by [12] where
the transport of coevolved host-pathogen systems into new
environment leads to the evolution of altered levels of
pathogen aggressiveness, if transmission rates are different in
the new environment.With the growing research in the prey-
predator and other prototypical systems, it is apparent that
the pathogen or viral growth through replication influences
the model dynamics. This has been emphasized by Bairagi
et al. in a subsequent communication [13]. In another pio-
neering communication in recent years, Bairagi et al. carried
a comparative study of the prey-predator model with several
response functions [14].

Epidemiological modeling uses both deterministic and
stochastic approaches in host-pathogen interactions [15].
Both model types have their respective advantages and
weaknesses. Deterministic models may be considered as
an approximation of a corresponding stochastic model. An
important difference between the two is that the stochastic
model deals with a finite population size, while the determin-
isticmodel deals only with proportion [16].The deterministic
version of the model can be derived as an approximation
of the stochastic version using the state variables which are
susceptible host (𝑆), infected host (𝐼), and pathogen (𝑉)

where the total population comprising the susceptible and
infected host is 𝑁. Recurrence can be explained by the
combined influence of epidemic and demographic forces. In
stochastic models, infection will eventually become extinct,
and time to extinction is an important measure of the
persistence of the infection [17].

This paper specifies a stochastic approach of our earlier
work [18] designed for some widespread infection in closed
population. It is a well-known fact that beyond a threshold
value, that is, basic reproduction ratio, which is determined
by the parameters of the model, the deterministic model
predicts that the proportion of infected individuals will
approach a positive endemic level as time approaches infinity.
However, the stochastic model predicts that the infection
will become extinct. Generally, stochastic version of the
model is compared with prey-predator interaction or more
precisely the host-pathogen interaction, and thus the concept
of the quasi-stationary state is an important aspect of this
model [19]. It should be mentioned here that the stochastic
logistic model can be interpreted as SIS model and that SIS
model is used for infection that gives no immunity. In this
case, it is assumed that an individual who recovers from an
infection remains susceptible to further infection. The time
to extinction from quasi-stationary distribution is a measure
of the persistence of the infection.The stationary distribution
is to be an additional importance since the expected time to
extinction from quasi-stationary can be expressed in terms of
this distribution. Amajor goal of the analysis of the stochastic

model is therefore to derive an approximation of the quasi-
stationary distribution.This derivation is based on a diffusion
approximation of the stochastic discrete state model.

Themodel is analyzed in two different avenues, analytical
and numerical. In our research paper, we have found an
approximation for the marginal distribution of the infected
population in quasi-stationary condition and its time to
extinction. The time to extinction of the infected population
depends on the total population, and the study has been
carried out through stochastic approach so that infected
population is to be extinct and increase the susceptible
population. However, being an extension of our previous
work [18], where deterministic model was used and optimal
control theory applied to predict the decrease of infected pop-
ulation along with cost-effective combination of treatment,
our present work emphasizes on the time to extinction of the
infected host population or the disease by stochastic model
formulation and its subsequent analysis and evaluation.

2. The Deterministic Model

We consider the three components of the basic three-
dimensional deterministic host pathogen model [18] consist-
ing of a host population, whose concentration is denoted by
𝑁 ([𝑁]=number of host per designated area) and a pathogen
population inflicting infection in the host population whose
concentration is denoted by 𝑉 ([𝑉] = number of pathogens
per designated area). The following differential equations are
formed at initial dynamics on the change of host pathogen
interaction with time 𝑡:

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆 + 𝐼

𝐾
) − 𝜆𝑆𝐼 −

𝛾𝑆𝑉

ℎ𝛾 + 𝑆
+ 𝛿𝐼,

𝑑𝐼

𝑑𝑡
= 𝜆𝑆𝐼 +

𝛾𝑆𝑉

ℎ𝛾 + 𝑆
− 𝑑𝐼𝐼 − 𝛿𝐼,

𝑑𝑉

𝑑𝑡
= −

𝛾𝑆𝑉

ℎ𝛾 + 𝑆
+ 𝜂𝑑𝐼𝐼 − 𝜇𝑉.

(1)

Here in the presence of pathogenic infection, the host
population is divided into two disjoint classes, susceptible
host 𝑆 and infected host 𝐼. In the ideal case of no pathogen,
the growth of susceptible host population follows the logistic
law [19] implying that this growth is entirely controlled by
an intrinsic birth rate constant 𝑟(∈ 𝑅+) with a carrying
capacity 𝐾(∈ 𝑅+). 𝛾(∈ 𝑅+) is the force of infection through
contact with pathogens, and pathogens maximally infect 𝛾
susceptible hosts per day. This infection rate is half maximal
at susceptible host population density of ℎ𝛾 host. 𝜆(∈ 𝑅+) is
the intensity of infection by infected host, and 𝑑𝐼(∈ 𝑅+) is
the death rate constant of 𝐼. Rate of cell lysis (replication of
pathogens) is 𝜂(∈ 𝑅+), and the natural death rate of pathogens
is denoted as 𝜇(∈ 𝑅+). We assume that the infected hosts do
not grow or reproduce, but they can recover from pathogenic
infection and move to the susceptible host population. Such
recovery would stem out from immunization or vaccination.
We consider a recovery rate of infected host (𝐼) to be denoted
by 𝛿(∈ 𝑅+).
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In spirit of Bonhoefer et al., we employed a simplified
systemwith two components, the susceptible and the infected
host. It is assumed that at equilibrium point 𝑉̇ = 0, so 𝑉 can
be eliminated by putting 𝑉 = 𝜂𝑑𝐼(ℎ𝛾 + 𝑆)𝐼/(𝜇(ℎ𝛾 + 𝑆) + 𝛾𝑆).
With this choice of 𝑉model, (1) reduces to

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆 + 𝐼

𝐾
) − 𝜆𝑆𝐼 − 𝛼

𝑆𝐼

𝛽 + 𝑆
+ 𝛿𝐼,

𝑑𝐼

𝑑𝑡
= 𝜆𝑆𝐼 + 𝛼

𝑆𝐼

𝛽 + 𝑆
− 𝑑𝐼𝐼 − 𝛿𝐼,

(2)

where 𝛾𝜂𝑑𝐼/(𝛾 + 𝜇) = 𝛼 and ℎ𝛾𝜇/(𝛾 + 𝜇) = 𝛽.
An alternative deterministic formulation of the reduced

model (2), one assumes birth and death rate functions 𝐵(𝑆)
and𝐷(𝑆), respectively, of

𝐵 (𝑆) = 𝑏1𝑆 − 𝑏2 (𝑆 + 𝐼) 𝑆, 𝐷 (𝑆) = 𝑑1𝑆 + 𝑑2 (𝑆 + 𝐼) 𝑆,

(3)

where 𝑏1, 𝑏2 and 𝑑1, 𝑑2 > 0. Here, 𝑏1 and 𝑑1 are intrinsic rate,
𝑏2 and 𝑑2 are crowding coefficient [20], and thus intrinsic
growth rate (𝑟) and carrying capacity (𝐾) are defined as
follows: 𝑟 = 𝑏1 − 𝑑1 and𝐾 = (𝑏1 − 𝑑1)/(𝑏2 + 𝑑2) [20],

𝑑𝑆

𝑑𝑡
= (𝐵 (𝑆) − 𝐷 (𝑆)) − 𝜆𝑆𝐼 − 𝛼

𝑆𝐼

𝛽 + 𝑆
+ 𝛿𝐼,

𝑑𝐼

𝑑𝑡
= 𝜆𝑆𝐼 + 𝛼

𝑆𝐼

𝛽 + 𝑆
− (𝑑𝐼 + 𝛿) 𝐼.

(4)

3. The Stochastic Model Formulation

There are two state variables, namely, the number of suscepti-
ble hosts 𝑆(𝑡) and the number of infected hosts 𝐼(𝑡) at time 𝑡.
They jointly take values in the state space 𝑆𝑝 = {(𝑚, 𝑛) : 𝑚 =

0, 1, 2, . . . ; 𝑛 = 0, 1, 2, . . . }. The joint distribution of 𝑆(𝑡) and
𝐼(𝑡) at time 𝑡 is denoted by

𝑝𝑚𝑛 (𝑡) = 𝑃 {𝑆 (𝑡) = 𝑚, 𝐼 (𝑡) = 𝑛} . (5)

We use this notation even when 𝑚 and/or 𝑛 are negative,
with the convention that 𝑝𝑚𝑛(𝑡) is equal to zero. The model
is based on the following four basic events, that is, birth of a
susceptible host, death of a susceptible host, infection of an
uninfected host, and death or recovery of an infected host.
The transition rates of the model are shown in Table 1.

4. Description of the Transition States

The total number of population 𝑁 is increased by unity, if
there is a birth of susceptible host (𝑆) for a small time interval
Δ𝑡. But to make the population to be the same, we should
assume that there must be a natural death of susceptible host
(𝑆). These phenomena are captured through the first two
rows of the transition matrix. On the other hand, if there
is an infection in the susceptible host it can be balanced by
an increase of an infected host, (𝐼). The susceptible class is
infected either by direct infection with the pathogen or by
replication of viral generated within the infected population.

This occurs one at a time, and so the increases of the infected
class are reflected by the rise of unity in the transition state. If
there is an infected host, the natural death should be reflected
through a natural birth of susceptible host. At the end,
naturally, the recovery of infected host must be reinstated to
the susceptible host.

5. Formulation of Kolmogorov’s
Forward Equation

We are supposing that in a time interval of infinitesimally
little length (Δ𝑡), the probability of precisely one birth (or
one death) is birth rate (or death rate) × (Δ𝑡) + intuitively
more than one occasion (birth and/or death) in 𝑜(Δ𝑡). We
as well believe the prospect 𝑝𝑚𝑛(𝑡 + Δ𝑡), where Δ𝑡 ↓ 0. The
Kolmogorov’s forward equations for the representation can
be written as

𝑝𝑚,𝑛 (𝑡 + Δ𝑡) = 𝜆1 (𝑚 − 1, 𝑛) 𝑝𝑚−1,𝑛 (𝑡) Δ𝑡

+ 𝜇
1
(𝑚 + 1, 𝑛) 𝑝𝑚+1,𝑛 (𝑡) Δ𝑡

+ 𝜇
2
(𝑚, 𝑛 + 1) 𝑝𝑚,𝑛+1 (𝑡) Δ𝑡

+ 𝛾
2
(𝑚 + 1, 𝑛 − 1) 𝑝𝑚+1,𝑛−1 (𝑡) Δ𝑡

+ (1 − 𝜅 (𝑚, 𝑛) Δ𝑡) 𝑝𝑚𝑛 (𝑡) + 𝑜 (Δ𝑡) ,

(6)

where

𝜅 (𝑚, 𝑛) = 𝜆1 (𝑚, 𝑛) + 𝜇1 (𝑚, 𝑛) + 𝜇2 (𝑚, 𝑛) + 𝛾2 (𝑚, 𝑛) . (7)

Note that all proceedings consisting of more than one
birth or more than one death are incorporated in the 𝑜(Δ𝑡)
expression

∴ 𝑝
󸀠

𝑚,𝑛
(𝑡) = lim
Δ𝑡→0

𝑝𝑚,𝑛 (𝑡 + Δ𝑡) − 𝑝𝑚,𝑛 (𝑡)

Δ𝑡

= 𝜆1 (𝑚 − 1, 𝑛) 𝑝𝑚−1,𝑛 (𝑡)

+ 𝜇
1
(𝑚 + 1, 𝑛) 𝑝𝑚+1,𝑛 (𝑡)

+ 𝜇
2
(𝑚, 𝑛 + 1) 𝑝𝑚,𝑛+1 (𝑡)

+ 𝛾
2
(𝑚 + 1, 𝑛 − 1) 𝑝𝑚+1,𝑛−1 (𝑡)

− 𝜅 (𝑚, 𝑛) 𝑝𝑚𝑛 (𝑡) .

(8)

6. The Quasi-Stationary Distribution

We obtain primarily a deferential equation that will be used
afterward in this subsection and in the discussion of time
to extinction in the subsequent subsection. Place 𝑛 = 0 in
Kolmogorov’s Forward equations (8), and put in the explicit
expressions for the evolution rates given above. In addition,
commence

𝑝.1 (𝑡) =

∞

∑
𝑚=0

𝑝𝑚𝑛 = 𝑃 {𝐼 (𝑡) = 𝑛} (9)
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Table 1: Hypothesized transition rates for the stochastic version.

Event Transition Transition rates
Birth of a susceptible host (𝑚, 𝑛) → (𝑚 + 1, 𝑛) 𝜆

1
(𝑚, 𝑛) = 𝑏

1
𝑚 − 𝑏

2
(𝑚 + 𝑛)𝑚 + 𝛿𝑛

Death of a susceptible host (𝑚, 𝑛) → (𝑚 − 1, 𝑛) 𝜇
1
(𝑚, 𝑛) = 𝑑

1
𝑚 + 𝑑

2
(𝑚 + 𝑛)𝑚

Infection of an uninfected host (𝑚, 𝑛) → (𝑚 − 1, 𝑛 + 1) 𝛾
2
(𝑚, 𝑛) = (𝜆 + (𝛼/ (𝛽 + 𝑚)))𝑚𝑛

Death or recovery of an infected host (𝑚, 𝑛) → (𝑚, 𝑛 − 1) 𝜇
2
(𝑚, 𝑛) = (𝑑

𝐼
+ 𝛿)𝑛

to indicate the subsidiary allocation of the number of infected
individuals at time 𝑡. By summing the forward equations
intended for 𝑛 = 0 over all𝑚-values, we acquire

𝑝
󸀠

.0
(𝑡) = (𝛿 + 𝑑𝐼) 𝑝.1 (𝑡) . (10)

After that, we develop an organization of equations for
the quasi-stationary distribution. The state possibility condi-
tioned onnot being engrossed is signified 𝑞𝑚𝑛(𝑡) and specified
by

𝑞𝑚𝑛 (𝑡) = 𝑃 {𝑆 (𝑡) = 𝑚, 𝐼 (𝑡) = 𝑛 | 𝐼 (𝑡) ̸= 0}

=
𝑝𝑚𝑛 (𝑡)

1 − 𝑝.0 (𝑡)
, 𝑚 = 0, 1, 2, . . . , 𝑛 = 1, 2, . . . .

(11)

We initiate 𝑞.𝑛(𝑡) = ∑
∞

𝑚=0
𝑝𝑚𝑛(𝑡) to stand for the marginal

distribution for the number of infected individuals at time
𝑡, habituated on not having attained any condition in the
engrossing position. By differentiating the expression for
𝑞𝑚𝑛(𝑡) in (11) and relating (10), we get hold of

𝑞
󸀠

𝑚𝑛
(𝑡) =

𝑝
󸀠

𝑚𝑛
(𝑡)

1 − 𝑝.0 (𝑡)
+ (𝛿 + 𝑑𝐼) 𝑞.1 (𝑡)

𝑝𝑚𝑛 (𝑡)

1 − 𝑝.0 (𝑡)
. (12)

By pertaining the forward equations for 𝑞𝑚𝑛(𝑡) in (8), we
achieve the following scheme of differential equations for the
conditional state probabilities 𝑞𝑚𝑛(𝑡):

∴ 𝑞
󸀠

𝑚𝑛
(𝑡) = 𝜆1 (𝑚 − 1, 𝑛) 𝑞𝑚−1,𝑛 (𝑡)

+ 𝜇
1
(𝑚 + 1, 𝑛) 𝑞𝑚+1,𝑛 (𝑡)

+ 𝜇
2
(𝑚, 𝑛 + 1) 𝑞𝑚,𝑛+1 (𝑡)

+ 𝛾
2
(𝑚 + 1, 𝑛 − 1) 𝑞𝑚+1,𝑛−1 (𝑡)

− 𝜅 (𝑚, 𝑛) 𝑞𝑚𝑛 (𝑡) + (𝛿 + 𝑑𝐼) 𝑞.1 (𝑡) 𝑞𝑚𝑛 (𝑡) ,

𝑚 = 0, 1, 2, . . . , 𝑛 = 1, 2, . . . .

(13)

The quasi-stationary distribution 𝑞𝑚𝑛(𝑡) is the stationary
solution of this system of equations.

7. The Distribution of the Time to Extinction

Two initial distributions are principally fascinating. One is
the quasi-stationary distribution, and another communicates
to one infected individual. The distribution of the time
to extinction 𝜏 can be unwavering if we can resolve the
Kolmogorov forward equations (8) for 𝑝𝑚𝑛(𝑡). The reason is
that the happening that 𝜏 surpasses 𝑡 is equal to the event that

the number of infected individuals at time 𝑡 is positive. By
allowing for the balancing events we attain

𝑃 {𝜏 ≤ 𝑡} = 𝑃 {𝐼 (𝑡) = 0} = 𝑝.0 (𝑡) . (14)

Therefore, the cumulative distribution function of the time
to extinction at time 𝑡 equals the marginal possibility in
which the number of infected individuals at time 𝑡 equals
0. The distribution of the time to extinction is particularly
straightforward when the opening distribution is equal to
the quasi-stationary distribution. Let us indicate the time
to extinction from quasi-stationarity by 𝜏𝑄 explicitly. We
demonstrate that 𝜏𝑄 has an exponential distribution and that
its predictable value is equal to

𝐸 (𝜏𝑄) =
1

𝛿 + 𝑑𝐼
𝑞.1 (𝑡) . (15)

To gain this consequence, we put 𝑞󸀠
𝑚𝑛
(𝑡) = 0 in (12).Thus,

we are guided to the initial value problems

𝑝
󸀠

𝑚𝑛
= − (𝛿 + 𝑑𝐼) 𝑞.1𝑝𝑚𝑛, 𝑝𝑚𝑛 (0) = 𝑞𝑚𝑛,

𝑚 = 0, 1, 2 . . . , 𝑛 = 1, 2, 3 . . .
(16)

with solutions

𝑝𝑚𝑛 = 𝑞𝑚𝑛 exp (− (𝛿 + 𝑑𝐼) 𝑞.1𝑡) ,

𝑚 = 0, 1, 2 . . . , 𝑛 = 1, 2, 3 . . . .
(17)

By adding these expressions of 𝑝𝑚𝑛(𝑡) over all𝑚, we obtain

𝑝.𝑛 = 𝑞.𝑛 exp (− (𝛿 + 𝑑𝐼) 𝑞.1𝑡) , 𝑛 = 1, 2, 3 . . . . (18)

The differential equation for 𝑝.0(𝑡) in (10) can now be
answered since the right-hand side of this equation is known
from above. Remembering that we have the initial value
𝑝.0(0) = 0, we acquire 𝑝.0(𝑡) = 1 − exp (−(𝛿 + 𝑑𝐼)𝑞.1𝑡). This
institutes the claim that 𝜏𝑄 has an exponential distribution
with expected value agreed by (15).

8. Diffusion Approximation
and the Approximation of
Quasi-Stationary Distribution

In this section, we have derived the diffusion approxima-
tion for the process formulated in Section 2. In order to
approximate the quasi-stationary distribution, we consider
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Table 2: Possible changes in the two-population system (4) with the
probabilities.

Change Probability
Δ𝑥
1
= [1, 0]

𝑇
𝑝
1
= ((𝑏
1
− 𝑏
2
(𝑆 + 𝐼))𝑆 + 𝛿𝐼)Δ𝑡

Δ𝑥
2
= [−1, 0]

𝑇
𝑝
2
= (𝑑
1
+ 𝑑
2
(𝑆 + 𝐼))𝑆Δ𝑡

Δ𝑥
3
= [−1, 1]

𝑇
𝑝
3
= (𝜆 + 𝛼/ (𝛽 + 𝑆)) 𝑆𝐼Δ𝑡

Δ𝑥
4
= [0, −1]

𝑇
𝑝
4
= (𝑑
𝐼
+ 𝛿)𝐼Δ𝑡

the two-dimensional process which is represented by the set
of differential equation (4)

𝑑𝑆

𝑑𝑡
= (𝐵 (𝑆) − 𝐷 (𝑆)) − 𝜆𝑆𝐼 − 𝛼

𝑆𝐼

𝛽 + 𝑆
+ 𝛿𝐼,

𝑑𝐼

𝑑𝑡
= 𝜆𝑆𝐼 + 𝛼

𝑆𝐼

𝛽 + 𝑆
− 𝑑𝐼𝐼 − 𝛿𝐼.

(19)

Themain result is the quasi-stationary distribution is approx-
imated by a bivariate normal distribution, if𝑁 is sufficiently
large.

The critical point of the rescaled deterministic model that
corresponds to a pathogenic infection is denoted by 𝑥 =

(𝑆, 𝐼), where

𝑆=
(𝑑𝐼 + 𝛿 − 𝛼 − 𝜆𝛽) + √(𝑑𝐼 + 𝛿 − 𝛼 − 𝜆𝛽)

2
+ 4𝛽𝜆 (𝛿 + 𝑑𝐼)

2𝜆
,

(20)

𝐼 =
𝑟𝑆 (𝐾 − 𝑆)

𝑟𝑆 + 𝑑𝐼𝐾
. (21)

The changes in the scaled state variables 𝑆 and 𝐼 during the
time interval from 𝑡 to 𝑡 + Δ𝑡 are denoted by Δ𝑆 and Δ𝐼 using
Table 2: Δ𝑆 = 𝑆(𝑡 + Δ𝑡) − 𝑆(𝑡) and Δ𝐼 = 𝐼(𝑡 + Δ𝑡) − 𝐼(𝑡).
From the hypotheses of the original process, we determine
the mean and the covariance of the vector with components
Δ𝑆 and Δ𝐼. We begin with the mean

𝐸(
Δ𝑆

Δ𝐼
) = (

𝑟𝑆 (1 −
𝑆 + 𝐼

𝐾
) − 𝜆𝑆𝐼 − 𝛼

𝑆𝐼

𝛽 + 𝑆
+ 𝛿𝐼

𝜆𝑆𝐼 + 𝛼
𝑆𝐼

𝛽 + 𝑆
− 𝑑𝐼𝐼 − 𝛿𝐼

)Δ𝑡

+ 𝑜 (Δ𝑡) = 𝑏 (𝑥) Δ𝑡 + 𝑜 (Δ𝑡) .

(22)

The Jacobian matrix of the vector 𝑏(𝑥) with respect to 𝑥 is
denoted by 𝐵(𝑥)

𝐵 (𝑥) =
𝛿𝑏 (𝑥)

𝛿𝑥
= (

𝐴1 𝐴2
𝐴3 0

) , (23)

where𝐴1 = 𝑟− (2𝑟𝑆/𝐾)− (𝑟𝐼/𝐾)−𝜆𝐼− (𝛼𝛽𝐼/(𝑆+𝛽)
2
), 𝐴2 =

−(𝑟𝑆/𝐾) − 𝑑𝐼, and 𝐴3 = 𝐼(𝜆 + (𝛼𝛽/(𝛽 + 𝑆)
2
)).

Next, we determine the covariancematrix of the vector of
changes in the state variables during the time interval (𝑡, 𝑡 +
Δ𝑡)

Cov(Δ𝑆
Δ𝐼
) = (

2 [𝑏1𝑆 − 𝑏2 (𝑆 + 𝐼) 𝑆 + 𝛿𝐼] − (𝛿 + 𝑑𝐼) 𝐼

− (𝛿 + 𝑑𝐼) 𝐼 2 (𝛿 + 𝑑𝐼) 𝐼
)Δ𝑡

+ 𝑜 (Δ𝑡)

= 𝑀 (𝑥) Δ𝑡 + 𝑜 (Δ𝑡) .

(24)

The matrix 𝑀(𝑥) is approximated by evaluating it at the
critical point (𝑆, 𝐼) corresponding to the pathogenic infection
level

𝑀(𝑥) = (
𝐴4 𝐴5
𝐴5 −2𝐴5

) , (25)

where 𝐴4 = 2[𝑏1𝑆 − 𝑏2(𝑆 + 𝐼)𝑆 + 𝛿𝐼] and 𝐴5 = −(𝛿 + 𝑑𝐼)𝐼.
For large 𝑁, the process 𝑁1/2(𝑥 − 𝑥) is approximated

by a stable bivariate Ornstein-Uhlenbeck process, with local
driftmatrix𝐵(𝑥) and local covariancematrix𝑀(𝑥).Then, the
stationary distribution of the Ornstein-Uhlenbeck process is
bivariate normal with mean 0 and variance ∑ = (

𝜎
1
𝜎
2

𝜎
2
𝜎
3
)

through the relationship

𝐵 (𝑥)∑+∑𝐵
𝑇
(𝑥) = −𝑀 (𝑥) , (26)

where the superscript𝑇 is used to denote the transpose. After
solving the above equation, we get

𝜎1 =
𝐴3𝐴4 + 2𝐴2𝐴5

2𝐴1𝐴3
,

𝜎2 =
2𝐴2𝐴5 + 𝐴4𝐴3 − 2𝐴1𝐴3 − 2𝐴

2

1
𝐴5

2𝐴1𝐴2𝐴3
,

𝜎3 =
𝐴5

𝐴3
.

(27)

Note that the parameter should also satisfy 𝜎1 > 0, 𝜎3 >
0. Thus, the diffusion approximation led to the conclusion
that the marginal distribution of the infected population
size in quasi-stationarity is approximately 𝑞.𝑛. To achieve
consistency with the fact 𝐼 ≥ 0, the approximating normal
distribution is modified by truncation at 1/2. Hence, we have
the following approximation

𝑞.𝑛 ≈
1

√𝜎3/𝑁

𝜙 ((𝑛 − 𝐼) /√𝜎3/𝑁)

Φ ((𝐼 − 0.5) /√𝜎3/𝑁)
, (28)

where Φ and 𝜙 are, respectively, the standard normal c.d.f.
and the standard normal p.d.f.
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8.1. The Expected Time to Extinction. We find the expected
time to extinction (𝐸(𝜏𝑄)) fromquasi-stationary distribution.
The expected time to extinction is given by

𝐸 (𝜏𝑄) =
1

(𝑑𝐼 + 𝛿) 𝑞.1

=
√𝜎3/𝑁

(𝑑𝐼 + 𝛿)

Φ ((𝐼 − 0.5) /√𝜎3/𝑁)

𝜙 ((1 − 𝐼) /√𝜎3/𝑁)
.

(29)

We see that the expected time to extinction is a function of
population size 𝑁, which is a function when the population
size is increasing (Figure 2).

9. Model Modification under Immune Host

In model (4), we consider the recovery class to be joined
with the susceptible host, and it may increase the population
size of uninfected host. It is to be noted that sometimes
for a specific disease, the recovery from infected host may
not come back to the susceptible class. For such a case,
after the recovery from infected host, this specific recovery
class becomes immunized and can be classified into a new
category. Under this assumption the modified model can
be written from model (4) by just ignoring the term 𝛿𝐼,
in the growth equation of susceptible host. The algebraic
manipulations for obtaining the quasi-stationary distribution
and time to extinction for revised model are pretty similar
with that of model (4).

10. Numerical Illustration

In the present study, a stochastic approach has been adopted
to eradicate the infected population from a system and
add on to the susceptible population. This is achieved
by immunization or vaccination, and infected population
recovers to susceptible population using the recovery rate 𝛿.
The stochastic model in this case predicts the extinction of
infection, and the time to extinction is the importantmeasure
of the persistence of infection.

Figure 1 represents the normalized simulated marginal
distribution profile of the infected host (𝐼) in quasi-stationary
state for 𝑁 = 100, 𝑁 = 200, and 𝑁 = 300. It is
observed that when the population size is 𝑁 = 100, the
quasi-stationary distribution is truncated and skewed, while
when 𝑁 is increased to 𝑁 = 200 and subsequently to 𝑁 =

300, the distribution displays higher kurtosis and enhanced
symmetry. The population distribution of the infected class
thus becomes much narrower for higher total strength of the
susceptible and infected individuals. From Figure 2, we get
the expected time to extinction of the infected host from
quasi-stationary state when the total population (𝑁) varies
from𝑁 = 100 to𝑁 = 500. In this case, it is observed that the
expected time to extinction increases with the increase in the
total population𝑁. When𝑁 is small, the number of infected
population is also expected to be small, and at that time,
the natural immune system can decelerate the rapid growth
of the infected cells and add it to the susceptible class. This
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Figure 1: The quasi-stationary distribution for different values of𝑁
and other parameters are as in Table 3.

50 100 150 200

100

200

300

400

N

E
Q

Figure 2: Figure depicts the expected time to extinction as a
function of𝑁 (10 to 200) where other parameters are as in Table 2.

results in the lesser time to extinction at the initial stages of𝑁.
But when the population size is high, the number of infected
class is also expected to rise, and the immune system cannot
control the rapid growth of the infected host population, and
this leads to the high extinction time as observed. Thus, it is
evident from the numerical analysis that at the onset of the
time to extinction, the infected individuals get transformed
and move to the susceptible population.

11. Discussion and Conclusion

In this paper, we have presented a basic mathematical model
of host-pathogen interaction using the stochastic approach
based on the concept of quasi-stationary and the diffu-
sion approximation result. The time to extinction has been
predicted as a function of the total population size (𝑁).
The numerical simulation reveals that as the total popula-
tion increases, the quasi-stationary distribution inclines to
reduced skewness and narrower distribution of the infected
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Table 3: Values of parameters used in model dynamics.

Parameter Definition Default value
(day−1)

𝑟 Maximal growth rate of susceptible host 0.2 [18]
𝐾 Carrying capacity 20 [18]
𝑏
1 Intrinsic rate 0.3 [21]
𝑑
1 Crowding coefficient 0.02 [21]
ℎ
𝛾 Half-maximal at a target cell density 9 [18]

𝜆
Force of infection through contact with
infected host 0.2 [18]

𝛾
Force of infection through contact with
pathogens 0.04 [18]

𝑑
𝐼 Lysis death rate of infected host 2.5 liter [18]
𝜂 Pathogens replication factor 115 [18]
𝜇 Mortality rate of pathogen 2.2 [18]
𝛿 Recovery rate of infected host 4 [18]

class under consideration. The time to extinction of the
infected class and its transformation to the susceptible class
also vary with the total population size (𝑁) and are found to
exhibit a gradual rise with increasing value of the total popu-
lation. Since the deterministic version is an approximation of
the stochastic model, the estimation of the time to extinction
is unlikely to be feasible with the deterministic version. So, we
are inclined to conclude that the deterministic version of the
model gives an approximation to the stochastic model.

The diffusion approximation led to the conclusion that
the marginal distribution of the infected host population
size in quasi-stationarity is approximately 𝑁(𝐼,√𝜎3/𝑁). To
achieve consistency with the fact that 𝐼 ≥ 0, the approximat-
ing normal distribution is modified by truncating at 1/2. We
conclude from the above result that as the total population
size of the system becomes large (𝑁 → ∞), the marginal
distribution of 𝑆(𝑡) is approximately 𝑁(𝑆,√𝜎1/𝑁), and the
marginal distribution of 𝐼(𝑡) is approximately 𝑁(𝐼,√𝜎3/𝑁).
Further, the covariance is approximated by 𝜎3.The numerical
simulation confirms the analysis which is relevant in Figures
1 and 2. Further, the numerical simulation reveals that as the
total population increases, the quasi-stationary distribution
changes from positively skewed to symmetrical nature along
with increases in the time to extinction.

The entire study has been carried out in a different angle
to focus on the time to extinction of disease pathogenesis,
and this reflects an advancement of our earlier reported work
based on the decreasing infected population by deterministic
modeling. Thus, we can conclude that stochastic modeling
provides a more accurate prediction in finding out the
expected time to extinction of infected population and hence
disease pathogenesis.
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