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We propose a hybrid algorithm based on estimation of distribution algorithm (EDA) and Nelder-Mead simplex method (NM)
to solve a class of nonlinear bilevel programming problems where the follower’s problem is linear with respect to the lower level
variable. The bilevel programming is an NP-hard optimization problem, for which EDA-NM is applied as a new tool aiming at
obtaining global optimal solutions of such a problem. In fact, EDA-NM is very easy to be implemented since it does not require
gradients information. Moreover, the hybrid algorithm intends to produce faster and more accurate convergence. In the proposed
approach, for fixed upper level variable, we make use of the optimality conditions of linear programming to deal with the follower’s
problem and obtain its optimal solution. Further, the leader’s objective function is taken as the fitness function. Based on these
schemes, the hybrid algorithm is designed by combining EDA with NM. To verify the performance of EDA-NM, simulations on
some test problems aremade, and the results demonstrate that the proposed algorithm has a better performance than the compared
algorithms. Finally, the proposed approach is used to solve a practical example about pollution charges problem.

1. Introduction

The bilevel programming problem (BLP) is a nested opti-
mization problem with two levels (viz., the upper and lower
levels) in a hierarchy. The upper level decision maker (the
leader) and the lower level decisionmaker (the follower) con-
trol their own sets of decision variables, respectively, and have
their own objective functions and constraints. The leader
makes a decision first, and thereafter the follower chooses
his/her strategy according to the leader’s action. Anticipating
the reaction of the follower, the leader selects the parameters
so as to optimize his/her own objective function. The leader
can influence, but cannot control, the decision of the follower.
As optimization problems with hierarchical structure, the
bilevel programming problem can be widely used in such
areas as resource allocation, decentralized control, network
design, and so forth [1]. Over the past decades, the bilevel
programming problem has been increasingly addressed in

the literature including some useful reviews [1, 2], surveys
[3, 4], and good textbooks [5, 6].

However, it is extremely difficult to solve the bilevel
programming problem due to its nonconvexity and non-
continuity, especially the nonlinear bilevel programming
problem. For this context, many researchers have devoted
themselves into developing efficient algorithms for solving
the problem over the years. To date, there already have been
some traditional approaches for solving such a problem, such
as vertex enumerationmethod, approach based on the Kuhn-
Tucker condition, descent approach, and penalty function
approach. Most of these algorithms can accurately work out
the optimal solution, but they are computationally costly
even when solving small sized problems. As the scale of the
problem increases, these exact algorithms could no longer
afford the computation efficiently within reasonable time
duration.
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To overcome the above shortcomings, intelligent algo-
rithms (such as evolutionary algorithm, genetic algorithm,
tuba search approach, and simulated annealing) have been
widely used to solve different problems in optimal areas
and have been extended to deal with the bilevel program-
ming for their good characteristics. For the linear bilevel
programming problem, Mathieu et al. [7] firstly proposed
a genetic algorithm for solving the problem. Subsequently,
other kinds of intelligent algorithms [8–11] have been appear-
ing for the same problem. For the nonlinear case, Wang
et al. [12] presented an evolutionary algorithm for solving
nonlinear bilevel programming problems with nonconvex
objective functions. Deb and Sinha [13] designed a hybrid
evolutionary-cum-local-search-based algorithm for dealing
with bilevel multiobjective programming problems. In addi-
tion, a novel particle swarm optimization based on CHKS
smoothing function was proposed in [14]. By using duality
conditions, an evolutionary algorithm was developed to cope
with a class of bilevel programming with a linear lower level
problem [15]. Wan et al. [16] addressed a hybrid intelligent
algorithm by combining the particle swarm optimization
with chaos searching technique for solving nonlinear bilevel
programming problems.

In recent years, an increasing interest has been concen-
trated on a class of probabilistic and graphical model based
evolutionary computational methods, commonly called as
the estimation of distribution algorithm (EDA) [17, 18].
Compared with other evolutionary algorithms, the EDA do
not use crossover or mutation. Instead, it selects the best
solutions from the current population and explicitly extracts
global statistical information from the selected solutions.The
EDA has some advantages to solve complex optimization
problems, especially a high convergent reliability and low
time consumption, and has been used widely in many real
world problems. Nevertheless, to the best of our knowledge,
there is no research work about the EDA for solving the
bilevel programming problem. To enhance the performance
of the EDA in our work, a local search algorithm, the Nelder-
Mead simplex method, is integrated with the EDA to solve
the bilevel programming.

In this paper, we consider a class of nonlinear bilevel
programming problems where the follower’s problem is
linear only with respect to the lower level variable. To deal
with such problems, based on the optimality results of linear
programming, a hybrid algorithm is proposed by combing
the EDA with a local simplex search technique. As a mater
of fact, it can effectively integrate the characteristic of global
search in the EDA and the capability of local search in
simplex search technique to avoid converging ahead of time
and to raise the accuracy of problem solving, as well as to
make the search converge faster than pure EDA. Numerical
simulations on some test problems are carried out, and the
results demonstrate that the proposed algorithm has a better
performance than the compared algorithms.

The remainder of the paper is organized as follows.
Section 2 describes the formulation of the nonlinear bilevel
programming problemand introduces the related definitions.
Section 3 proposes a hybrid algorithm by combining the
estimation of distribution algorithm and the Nelder-Mead

simplex method for solving nonlinear bilevel programming
problems. We conduct the simulations on the proposed algo-
rithm and compare the results with some other algorithms for
some test problems in Section 4. Finally, a conclusion is given
in Section 5.

2. A Class of Nonlinear Bilevel
Programming Problems

In this paper, we restrict our attention to the following
nonlinear bilevel programming problem (NBLP):

min
𝑥∈𝑋

𝐹 (𝑥, 𝑦) , where 𝑦 solves,

min
𝑦∈𝑌

𝑓 (𝑥, 𝑦) = 𝑎(𝑥)
𝑇

𝑦 + 𝑏 (𝑥) ,

s.t. 𝐶 (𝑥) 𝑦 ≤ 𝑑 (𝑥) , 𝑦 ≥ 0,

(1)

where 𝑥 ∈ 𝑋 ⊂ 𝑅
𝑛, 𝑦 ∈ 𝑌 ⊂ 𝑅

𝑚 are the decision variables
under the control of the upper and lower level problems,
respectively; the sets 𝑋 and 𝑌 represent box sets of vectors
𝑥 and 𝑦; 𝐹(𝑥, 𝑦), 𝑓(𝑥, 𝑦) are objective functions of the upper
and lower level problems, respectively. 𝑎 : 𝑅

𝑛

→ 𝑅
𝑚, 𝑏 :

𝑅
𝑛

→ 𝑅, 𝑑 : 𝑅
𝑛

→ 𝑅
𝑝, and 𝐶 : 𝑅

𝑛

→ 𝑅
𝑝×𝑚 whose rank is

𝑝.
Next we give the following definitions of the nonlinear

bilevel programming problem:

(1) constraint region:

𝑆 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 | 𝐶 (𝑥) 𝑦 ≤ 𝑑 (𝑥) , 𝑦 ≥ 0} ; (2)

(2) for fixed 𝑥, the feasible region of the lower level
problem:

𝑆 (𝑥) = {𝑦 ∈ 𝑌 | 𝐶 (𝑥) 𝑦 ≤ 𝑑 (𝑥) , 𝑦 ≥ 0} ; (3)

(3) projection of 𝑆 onto the upper level’s decision space:

𝑆
1

= {𝑥 ∈ 𝑋 | there exists 𝑦 such that (𝑥, 𝑦) ∈ 𝑆} ; (4)

(4) for each fixed 𝑥 ∈ 𝑆
1
, the rational reaction set of the

lower level problem:

𝑀 (𝑥) = {𝑦 ∈ 𝑌 | 𝑦 ∈ argmin {𝑓 (𝑥, V) , V ∈ 𝑆 (𝑥)}} ; (5)

(5) inducible region:

IR = {(𝑥, 𝑦) ∈ 𝑆 | 𝑦 ∈ 𝑀 (𝑥
1
)} . (6)

In order to ensure that the nonlinear bilevel programming
problem is well posed, assume that in our work the constraint
region 𝑆 is nonempty and compact, and the lower level
decision maker has some room to respond for all decisions
taken by the upper level decision maker; that is 𝑀(𝑥) ̸= 0.

It is worth mentioning that the solution set 𝑀(𝑥) of the
lower level problem is not always a singleton for a given
𝑥 ∈ 𝑆

1
. In this case, the upper level problem is not a

well-defined optimization problem. To overcome such an
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unpleasant situation, there are some strategies available for
the leader, such as the optimistic approach and the pessimistic
approach [6]. In this paper we will avoid this unpleasant
situation by assuming that there is a unique solution to the
lower level problem for each fixed 𝑥 ∈ 𝑆

1
.

Observing that the follower’s problem is linear with
respect to the lower level variable. For fixed 𝑥, it is obvious
that the follower’s problem is a linear programming problem.
Now the optimality conditions for the follower’s problem
are discussed according to the optimality conditions for the
standard linear programming problem. For fixed 𝑥, the term
𝑏(𝑥) is constant in the follower’s problem, and we can ignore
and delete it. As a result, the follower’s problem can be written
as the following problem by adding slack variables:

min
𝑧

𝑓 (𝑥, 𝑧) = 𝑎(𝑥)
𝑇

𝑧,

s.t. 𝐶 (𝑥) 𝑧 = 𝑑 (𝑥) , 𝑧 ≥ 0,

(7)

where 𝐶(𝑥) = (𝐶(𝑥), 𝐼), 𝑧 = (𝑦, 𝑦
0
) ∈ 𝑅

𝑚+𝑝, 𝑎(𝑥) =

(𝑎(𝑥), 0), and 𝑦
0
is a slack vector.

For given 𝑥, the term 𝐶(𝑥) is an 𝑝 × (𝑚 + 𝑝) constant
matrix, and its rank is 𝑝. Assume that 𝑑(𝑥) ≥ 0. Given a set of
indices𝐵 ⊂ {1, . . . , (𝑚+𝑝)}, let𝐵be a basis of problem (7), and
let 𝑁 = {1, . . . , (𝑚 + 𝑝)} − 𝐵 be a nonbasis. A variable 𝑧

𝑖
with

index 𝑖 is called basic if 𝑖 ∈ 𝐵, nonbasic otherwise. Then we
split𝐶(𝑥), 𝑎(𝑥), and 𝑧 into basis and nonbasis parts bymeans
of 𝐵 and 𝑁 as index sets. Denoted by 𝐶(𝑥) = (𝐶(𝑥)

𝐵
, 𝐶(𝑥)

𝑁
),

𝑎(𝑥)
𝑇

= (𝑎(𝑥)
𝑇

𝐵
, 𝑎(𝑥)
𝑇

𝑁
), and 𝑧 = (𝑧

𝐵
, 𝑧
𝑁

). According to the
theory of the simplex method, an optimal basis of problem
(7) is characterized by the following inequalities:

𝐶(𝑥)
−1

𝐵
𝑑 (𝑥) ≥ 0,

𝑎(𝑥)
𝑇

− 𝑎
𝐵
(𝑥)
𝑇

𝐶(𝑥)
−1

𝐵
𝐶 (𝑥) ≥ 0.

(8)

As a matter of fact, the inequalities (8) can be considered
as the optimality conditions for the follower’s problem. If
the inequalities hold, then an optimal solution 𝑧(𝑥) =

(𝑦(𝑥), 𝑦
0
(𝑥)) is provided to the follower’s problem; that is

to say, the basic variable values of the solution are taken as
𝐶(𝑥)
−1

𝐵
𝑑(𝑥), while the values of nonbasic variables are 0. In

essence, the presence of such a basis guarantees that there
exists an optimal solution to the follower’s problem.

3. Hybrid EDA-NM for Solving Nonlinear
Bilevel Programming Problems

3.1. Overview of Estimation of Distribution Algorithm. The
estimation of distribution algorithm (EDA), first proposed
by Mühlenbein and Paaß [27] and later developed by Pelikan
[18], is a new class of evolutionary optimization techniques.
Essentially, the EDA is also population-based algorithms
similar to other evolutionary algorithms.Themain difference
between the EDA and other evolutionary algorithms is the
way in which new offspring is generated in each generation.
There is neither crossover nor mutation operator in the EDA,
while the algorithm selects the most promising individuals

from the current population, constructs a probability model
based on statistical information from the selected individuals,
and then generates new offspring through sampling from the
constructed probability model.

The EDA works generally as follows.

Step 1. Randomly generate initial population.

Step 2. Select population of promising individuals from the
current population and build the probability model of the
selected individuals.

Step 3. Sample new offspring from the probability model.

Step 4. Replace some or all of the individuals in the previous
population by the new offspring.

Step 5. If the stopping condition is met, stop. Otherwise, go
to Step 2.

The EDA is able to overcome some drawbacks exhibited
by traditional evolutionary algorithms. One of the biggest
advantages of the EDA over other evolutionary algorithms
is its ability to adapt their operators to the structure of the
problem. Furthermore, this important difference allows the
EDA to solve some problems for which other algorithms
scale poorly. Nevertheless, the EDA pays more attention
to global exploration, while its exploitation capability is
relatively limited. So, an effective EDA should balance the
exploration and the exploitation abilities. A very natural way
to improve the performance of the EDA is to hybridize local
search with the EDA.

3.2. Overview of Nelder-Mead Simplex Search Method. The
Nelder-Mead simplex search method (NM) [28] is a local
search method developed for nonlinear and deterministic
optimization without the need for gradient information. The
NM algorithm can be implemented based on four basic
procedures: reflection, expansion, contraction, and shrinkage
depending on the values at the vertices and center of the
simplex. To be more specific, an 𝑁-dimensional simplex is
defined as the convex hull of𝑁+1 vertices. If any vertex of an
nondegenerate simplex is taken as the origin, then the rest 𝑁

vertices define vector directions that span the𝑁-dimensional
vector space.The extreme point of the simplex with the worst
function value is moved, and the reflected point is generated.
On one hand, if the reflected point is better than the best
point, the expansion of the simplex is performed in one or
another direction to take larger steps. On the other hand, a
contraction step will be taken when the reflected point is the
worst point in the new simplex, restricting the search on a
smaller region. If the earlier worst point is better than the
contracted one, the shrinkage step is performed. Through
these operations, the simplex can improve itself and come
closer and closer to a local optimumpoint sequentially. In the
following, the above fundamental operations are given:
reflection: 𝑋refl = (1 + 𝛼)𝑋cent − 𝛼𝑋high,
expansion: 𝑋exp = 𝛾𝑋refl − (1 − 𝛾)𝑋cent,
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contraction: 𝑋cont = 𝛽𝑋high − (1 − 𝛽)𝑋cent,
shrink: 𝑋

𝑖
= 𝛿𝑋
𝑖
− (1 − 𝛿)𝑋low,

where 𝛼, 𝛽, 𝛾, and 𝛿 are constants, 𝑋high is the worst vector
corresponding to the maximum function value, and 𝑋cent is
the center of the simplex excluding𝑋high in the minimization
case.

In essence,TheNMcan be regarded as a direct line-search
method of steepest descent kind. Therefore, it is extremely
flexible and very useful for exploring difficult problems.
Moreover, the NM usually offers less computational costs
when compared with evolutionary computational methods.
However, the convergence properties of theNMare in general
poor.

3.3. The Proposed Algorithm. As is stated in previous section,
the estimation of distribution algorithm is one of the global
search algorithms.The algorithm is less likely to be entrapped
in local optima but requires much computational effort.
While the Nelder-Mead simplex method is a very efficient
local search procedure, its convergence is extremely sensitive
to the selected starting point. Therefore, the main idea of
integrating the estimation of distribution algorithm with the
Nelder-Mead simplex method in our work is to combine
their advantages and avoid disadvantages. Furthermore, an
effective algorithm should balance the exploration and the
exploitation abilities. Consequently, to enhance the perfor-
mance of the estimation of distribution algorithm, we use the
Nelder-Mead simplex method as the local search mechanism
to improve the efficiency of the search in exploitation.

3.3.1. The Structure of the Proposed Algorithm. As far as
the performance of evolutionary algorithms is concerned, a
good initialization method is very important for improving
the convergence speed and the quality of the final solution.
For this purpose, uniform design, proposed by Fang [29]
and Wang and Fang [30], is applied to design starting
experiments, so that initial points could be scattered over the
feasible region as uniformly as possible and the number of
uniformdesign points should be required as small as possible.
For more details on uniform design please refer to [31].

The initial population consists of𝑁 individuals associated
with the upper level variable. To generate the initial pop-
ulation, uniform design is first used to generate 𝑁 points
𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑁 from the search space of the upper level

variable. To solve the follower’s problem for given 𝑥
𝑖, 𝑖 =

1, 2, . . . , 𝑁, the inequalities (8) are checked for feasibility.
If it is feasible, the initial point can be put into the initial
population. If it is not feasible, the initial point can be
discarded. Then, a new sampled point from the search space
of the upper level variable is randomly generated, and we
repeat the procedure until the inequalities (8) are satisfied,
then select this sampled point to join the initial population. It
is worthmentioning that the initial population is constructed
by 𝑁 different individuals to guarantee the initial population
with certain quality and enough diversity.

In our work, the fitness function of the individual is
defined as the leader’s objective function. A total of 𝑁

individuals are sorted according to the fitness function.
Taking into account the balance between global exploration
and local exploitation, the current population is divided into
two parts, and population size is set 𝑁 = 𝑀 + (𝑛 + 1),
where the top 𝑀 individuals are updated by the estimation
of distribution algorithm and the last 𝑛 + 1 individuals are
adjusted by the Nelder-Mead simplex method.

In the process of the EDA, a subset of the promising
individuals from the top 𝑀 individuals is selected with a
selection method based on the fitness function. As a matter
of fact, any selection method biased towards better fitness
can be used, and in this paper, the traditional roulette-
wheel selection is applied to select 𝑚 (𝑚 < 𝑀) individuals
from the current 𝑀 individuals. It is worth mentioning
that the EDA produces offspring by sampling according
to a probability model rather than crossover and mutation
operators like other evolutionary algorithms. Therefore, it is
crucial to choose a good probabilistic model in the EDA.
Here we employ a Gaussian model as a probabilistic model
with very low computational cost. To be more specific,
based on the statistical information extracted from these 𝑚

selected individuals, a Gaussian model is constructed, and
new individuals are generated according to the model. Then
the inequalities (8) are checked for feasibility for each new
individual, and the set of feasible individuals is formed. By
this means, 𝑀 new individuals are generated. The searching
procedure is presented as follows.

Step 1. From ranked population, and select the top 𝑀 indi-
viduals.

Step 2. Use roulette wheel to select a set of the promising 𝑚

individuals from the current 𝑀 individuals.

Step 3. Build a Gaussian model based on the statistical in-
formation extracted from these 𝑚 selected individuals, and
generate new individuals.

Step 4. For each new individual, check the inequalities (8).

At the local exploitation part, the algorithm works like
the basic NM stated in previous section. In order to start up
the NM, one has to define the initial simplex, in principle
composed of 𝑛 + 1 distinct vectors. For this purpose, the last
𝑛 + 1 individuals from the current population based on rank-
based fitness form the initial simplex thus avoiding extra
function evaluations. Meanwhile the best point, the worst
point and the second worst point are determined, and the
center of the simplex excluding the worst point is computed.
Then the operations of this method are to rescale the simplex
based on the local behavior of the function by using four
basic procedures: reflection, expansion, contraction, and
shrinkage. For newly generated points at each step in these
procedures, it is noted that the follower’s problem is solved
to get its optimal solution, so that we can compute its fitness
value and continue the next process. To this end, we test the
inequalities (8) for feasibility for each new individual. If the
inequalities (8) are feasible, we continue the next process;
otherwise, the new individual is replaced by the old individual
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and go to the next process. Through these procedures, the
simplex is updated and replaced by the new simplex. In this
way, we generate 𝑛 + 1 new individuals.

The search process is outlined below.

Step 1. From ranked population, select the last 𝑛 + 1 individ-
uals to form a simplex.

Step 2. Apply four basic operators: reflection, expansion,
contraction, and shrinkage. In each operator, the inequalities
(8) are tested for feasibility for each new individual.

Step 3. Update the simplex.

The result is sorted in preparation for repeating the entire
run. To guarantee the global convergence, we select the best𝑁
individuals from the current population and all the offspring
generated by EDA and NM. These 𝑁 individuals constitute
the next population. If the algorithm is executed to the
maximal number of generations and the best solution in the
population has not been improved in successive generations,
then stop. The best solution found in the last population is
then taken as the approximate global optimal solution.

3.3.2. Steps of the Proposed Algorithm. Based on the above
procedure, the steps of the proposed algorithm are listed in
details as follows.

Step 1 (initialization). Generate 𝑁 individuals with respect
to the upper level variable by means of the uniform design
technique. Check the inequalities (8) for feasibility for each
individual. Generate the initial population pop(0) by 𝑁

individuals satisfying the inequalities (8). Set 𝑘 = 0.

Step 2 (evaluation and ranking). Evaluate the fitness of each
individual in current population and rank them based on the
fitness results.

Step 3 (update). The first 𝑀 individuals are updated by the
estimation of distribution algorithm, and the 𝑛+1 individuals
in the end of the list are updated by the Nelder-Mead simplex
method.

Step 4 (selection). Select the best 𝑁 individuals among the
current population and all the offspring. These selected
individuals form the next population pop(𝑘 + 1).

Step 5 (termination). An algorithm terminates when it satis-
fies a stopping criterion; otherwise, set 𝑘 = 𝑘 + 1 and go to
Step 2.

4. Numerical Simulations

To illustrate the feasibility and efficiency of the proposed
algorithm, a series of test problems are selected from the
literature [11, 12, 15, 19–26]. These problems are composed of
different classes of bilevel programming problems, namely,
the leader’s problems involving linear, quadratic, fractional,
nondifferentiable, and nonconvex objective functions. The

variety of dimension and functional forms makes it possible
to fairly assess the robustness of the proposed approach
within tolerably computational time. In the simulation, the
proposed EDA-NM is executed to solve all the test problems
on MATLAB (R2011b) platform on Inter(R) Core (TM) i7
CPU 870 at 2.93GHz having 8G of RAM under Windows
XP.

4.1. Comparison of the Proposed EDA-NM with the Existing
Algorithms. In this section, a comparison is made between
the proposed EDA-NM with the existing algorithms. These
approaches consist of hybrid of genetic algorithm and par-
ticle swarm optimization (HGAPSO) of Kuo and Han [11],
evolutionary algorithm (EA) ofWang et al. [12], evolutionary
algorithm (EA) based on duality conditions of Li and Fang
[15], the monotonic approach of Tuy et al. [19], penalty func-
tion approach of Calvete and Galé [21], dual-relax penalty
function approach of Wan et al. [22], and so forth. It is worth
mentioning that some of these algorithms are stochastic,
whereas others are deterministic. The algorithm proposed in
our work is stochastic. To fairly measure the efficiency and
stability of a stochastic algorithm, it is usually required to
execute the algorithm in many runs and to compare the best
and worst solutions found in these runs.

In our work, the proposed algorithm is executed for 50
independent runs on each of the test problems and record the
following data: the best solution and the worst solution found
in 50 independent runs, the values of the leader’s and the
follower’s objective functions in the best and worst solutions,
and average value (Avg.) and standard deviation (Std.) of the
leader’s objective function values in 50 independent runs.The
parameters are set as follows: for 𝑛-dimensional problem, the
population size is 𝑁 = 50, the value of 𝑀 is from range of
(𝑁 − 𝑛)/5 to 2(𝑁 − 𝑛)/5, reflection coefficient, expansion
coefficient, contraction coefficient, and shrinkage coefficient
are set 1.0, 2.0, 0.5, and 0.5, and the maximum number of
iterations is 𝑇 = 50. The algorithm stops when the maximum
number of iterations is achieved and the best results are
unchanged in 10 successive generations.

The results are listed in Table 1. In Table 1, (𝑥∗, 𝑦∗), (𝑥, 𝑦)

represent the best and worst solutions found by an algorithm,
respectively, and “Reference” stands for the algorithm in the
corresponding references. The problems with star “∗” are
maximized models, whereas others are minimized BLPP.
It can be seen from Table 1 that the best results found by
EDA-NM are better than or equal to those by the compared
algorithms in the references for all test problems except for
problems 6, 10, and 14. For problems 4 and 9, the solutions
found by EDA-NM are much better than those by the
compared algorithms, which indicates that the compared
algorithms cannot find the global solutions of the problems.
Especially, for problem 9, the algorithm in Wan et al. [22]
finds a local solution (0, 0.75, 0, 0.5, and 0) with the objective
value of 10.625, while in our algorithm, all results found by
EDA-NM in 50 runs are better than the results given by
the compared algorithm in the references. Although the best
results found by EDA-NM for problems 6, 10, and 14 are a
little bit worse than the compared algorithms for these test
problems, the precision of solutions found by our algorithm
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Table 1: The results found by EDA-NM and compared algorithms in the corresponding references.

Number 𝐹(𝑥, 𝑦) 𝑓(𝑥, 𝑦) Reference
𝐹(𝑥
∗

, 𝑦
∗

) 𝐹(𝑥, 𝑦) Avg. Std. 𝑓(𝑥
∗

, 𝑦
∗

) 𝑓(𝑥, 𝑦) 𝐹(𝑥
∗

, 𝑦
∗

) 𝑓(𝑥
∗

, 𝑦
∗

)

1
∗ [11] 85.090909 85.090908 85.090909 2.6𝑒 − 7 −50.181818 −50.181818 85.0909 −50.1818

2
∗ [11] 11.0 10.999999 11.000000 2.7𝑒 − 7 −10.999999 −11.0 11 −11

3
∗ [11] 16.0 15.999999 16.000000 3.1𝑒 − 7 −4.000000 −4.000000 16 −4

4
∗ [11] 26.0 25.999999 25.999999 2.1𝑒 − 7 −3.2 −3.199999 25.9827 −3.1932

5 [19] 22.5 22.500001 22.500000 3.1𝑒 − 7 −4.499981 −1.500850 22.500610 −1.523438
6
∗ [20] 469.142857 469.142856 469.142857 1.8𝑒 − 7 8.857162 8.857344 469.14286 8.85714

7 [15] 0.000000 0.000001 0.000000 2.0𝑒 − 7 −54.999690 −54.997967 0 5
8 [21] 252.0 252.000001 252.000001 2.5𝑒 − 7 −8.000000 −7.999999 252 −8
9 [22] 7.500000 7.500001 7.500001 2.6𝑒 − 7 0.000000 0.000000 10.625 −0.5
10
∗ [23] 32.468750 32.468748 32.468749 3.2𝑒 − 7 63.0 62.999998 32.4688 63

11 [24] 0.000000 0.000000 0.000000 6.6𝑒 − 7 0.142411 1.967259 0 1.0440
12 [24] 0.000000 0.000000 0.000000 3.7𝑒 − 7 0.142409 2.002728 0 1.0573
13 [25] −469.142857 −469.142856 −469.142857 1.7𝑒 − 7 −0.794858 −0.794922 −469.14 −0.795332
14 [26] −1.688887 −1.688148 −1.688716 1.8𝑒 − 6 4.333333 4.333328 −1.6889 4.3333

Table 2: The results found by EDA with EDA-NM.

Number 𝐹(𝑥, 𝑦) 𝑓(𝑥, 𝑦) EDA-NM
𝐹(𝑥
∗

, 𝑦
∗

) 𝐹(𝑥, 𝑦) Avg. Std. 𝑓(𝑥
∗

, 𝑦
∗

) 𝑓(𝑥, 𝑦) 𝐹(𝑥
∗

, 𝑦
∗

) 𝐹(𝑥, 𝑦)

1
∗ 85.090908 85.071393 85.088957 6.2𝑒 − 3 −50.181818 −50.175008 85.090909 85.090908

2
∗ 11.0 10.956557 10.956557 3.4𝑒 − 5 −10.999999 −10.999268 11.0 10.999999

3
∗ 15.999999 15.915111 15.199612 2.8𝑒 − 5 −4.0 −3.999974 16.0 15.999999

4
∗ 25.999997 25.999126 25.999458 2.1𝑒 − 7 −3.199999 −3.198546 26.0 25.999999
5 22.5 22.500000 22.500001 2.8𝑒 − 7 −4.500064 −4.499873 22.5 22.500001
6
∗ 469.142857 469.142856 469.142857 2.1𝑒 − 7 8.856955 8.857432 469.142857 469.142856
7 0.000000 0.000001 0.000000 2.0𝑒 − 7 −54.999969 −54.998378 0.000000 0.000001
8 251.999999 252.000001 251.998745 4.5𝑒 − 7 −8.0 −8.0 252.0 252.000001
9 7.500000 7.571070 7.500001 2.2𝑒 − 2 −0.000000 −0.000032 7.500000 7.500001
10
∗ 32.468750 32.393623 32.150867 1.9𝑒 − 2 62.999976 62.999996 32.468750 32.468748

11 0.000000 0.000000 0.000000 2.8𝑒 − 7 0.791998 1.008143 0.000000 0.000000
12 0.000000 0.000000 0.000000 3.4𝑒 − 7 0.851285 1.119564 0.000000 0.000000
13 −469.142857 −469.142846 −469.142857 2.1𝑒 − 6 −0.794871 −0.795079 −469.142857 −469.142856
14 −1.688889 −1.688847 −1.687668 3.4𝑒 − 5 4.333312 4.325765 −1.688887 −1.688148

is higher than that provided by the compared algorithm. In
addition, Table 1 shows that all of the worst solutions found
by EDA-NM in 50 independent runs for all test problems are
the same as or very close to the global optimal solutions.This
means that the proposed algorithm is stable.

4.2. Comparison of EDA-NM with EDA. In the previous
section we have compared EDA-NM with the existing
algorithms. In this section, we would compare EDA-NM
with EDA. To conduct fair comparisons, we execute both
algorithms for 50 independent runs on each of the test
problems. The parameters of EDA are the same as those of
EDA-NM. All the results are presented in Tables 2 to 3, in
whichTable 2 provides the comparison of the results found by
EDA-NM and EDA for test problems in 50 runs, and Table 3
shows the best solutions found by EDA and EDA-NM in

50 runs and presented in the related references for all test
problems.

It can be seen from Table 2 that the best solutions found
by EDA-NM are better than those found by EDA, and the
worst solutions found by EDA-NM are as good as or are
very close to the best solutions found by EDA. This means
that our algorithm can find high-quality approximate global
solutions for test problems. Tables 1-2 indicate that EDA-NM
has smaller standard deviation, which means that EDA-NM
is a stabler method.

In the analysis of the convergence reliability, we focus on
the best solutions obtained by EDA-NM and EDA to achieve
predefined convergence results. The convergence property of
EDA-NM and EDA for different types of test problems is
shown in Figures 1, 2, 3, 4, 5, and 6 in which the superiority
of EDA-NM over EDA is evident. Figures 1–6 illustrate the
performances of EDA-NM and EDA for the test problems
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Table 3: The best solution found by EDA-NM, EDA, and compared algorithms in the corresponding references.

Number EDA-NM EDA Reference
1
∗ (17.454545, 10.909091) (17.454545, 10.909091) (17.4545, 10.9091)

2
∗ (16.0, 11.0) (15.999999, 11.0) (16, 11)

3
∗ (4.0, 4.000000) (3.999999, 4.000000) (4, 4)

4
∗ (0, 0.9, 0, 0.6, 0.4) (0, 0.899999, 0, 0.599999, 0.4) (0, 0.8992, 0, 0.5994, 0.3978)
5 (4.499992, 1.500025) (1.500021, 4.499981) (4.492188, 1.523438)
6
∗ (11.142856, 8.857143) (11.142642, 8.857358) (11.14286, 8.85714)

7 (25.000177, 29.999830, 5.999823,
9.999915)

(24.999974, 30.000326, 6.000026,
10.000163) (25, 30, 5, 10)

8 (4.000000, 8.000000) (4.000000, 7.999999) (4, 8)

9 (0.500000, 0.500000, 0.000000, 0,
0.000000)

(0.500000, 0.500000, 0.0000000, 0,
0.000000)

(0, 0.75, 0, 0.5, 0)
(0, 0.75, 0, 0.5, 0)

10
∗ (0.000081, 0.625000, 0.375000, 0.000192,

10.0, 5.0, 0, 10.0, 0, 0, 5.000000, 3.0)
(0.006095, 0.625000, 0.375000,

0.000223, 10.0, 5.0, 0, 10.0, 0, 0, 5.0, 3.0)
(0, 0.625, 0.375, 0, 10, 5, 0,

10, 0, 0, 5, 3)
11 (0.402746, 0.211323, 0, 0, 0) (0.340452, 0.335910, 0, 0, 0) (0.3298, 0.3571, 0, 0, 0)
12 (0.429411, 0.157992, 0, 0, 0) (0.322653, 0.371508, 0, 0, 0) (0.3255, 0.3659, 0, 0, 0)
13 (11.142768, 8.857233) (11.14286, 8.857140) (11.14, 8.86)
14 (8.666667, 4.333333) (8.666656, 4.333312) (8.6667, 4.3333)
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Figure 1: Convergence figure on test problem 1.

1, 2, 4, 5, 8, and 14 to find the global optimum by plotting
the best fitness versus the number of iterations for a single
run. From these figures, we can see that our hybrid EDA-
NM algorithm converges more quickly and less likely to be
trapped in local optima than EDA. Furthermore, EDA-NM
method’s fitness drops quickly in maximized models and is
raised rapidly inminimized BLPP at the evolution process. As
a result, EDA-NMperforms better thanEDA from the aspects
of computation efficiency.
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Figure 2: Convergence figure on test problem 2.

From the above discussions, it is obvious that our algo-
rithm is effective, is stable, and performs better than the
compared algorithms.

4.3. Practical Application: Pollution Charges Problem. In this
section, pollution charges decision-making problembased on
bilevel programming is used to test the feasibility of the pro-
posed algorithm. Pollution charges problem can be divided
into two levels including the pollution tax collected by the
government development and the pollutant discharge fees
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Figure 3: Convergence figure on test problem 4.
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Figure 4: Convergence figure on test problem 5.

paid by the sewage enterprise, and each of them has its own
objective function and decision variable. The government
development first establishes pollution charges policy, and
thereafter the sewage enterprise chooses its strategy accord-
ing to the decisionmade by the government development. It is
worth mentioning that the government development and the
sewage enterprise independently seek their own interest, but
influence each other. Therefore, pollution charges problem
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Figure 5: Convergence figure on test problem 8.

0 5 10 15 20 25 30 35 40 45 50

Test function 14

Evolution generation 

O
bj

ec
tiv

e f
un

ct
io

n 
va

lu
e

1.6

1.8

2

2.2

2.4

2.6

2.8

3

EDA
EDA-NM

Figure 6: Convergence figure on test problem 14.

fits Stackelberg game model and can be solved by the bilevel
programming model.

Assume that the sewage enterprise produces 𝑛 kinds
of pollutant substance during the manufacturing process.
The following notions will be used henceforth. 𝑥 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑥 ≥ 0: cost prices of pollutant substances

set by the government development; 𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
),

𝑦 ≥ 0: the pollutant discharge from the sewage enterprise;
𝑎 = (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
): the tax collected by the government
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development according to the ratio of the severity of the
effects of the pollutant discharge in the environment; 𝑏 =

(𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
): the tax collected by the government develop-

ment according to a certain percentage of the amount of the
pollutant discharge from the sewage enterprise. Therefore,
the total tax of the government department is 𝑎

𝑇

𝑥+𝑏
𝑇

𝑦. Sub-
sequently, the sewage enterprise pays for pollutant discharge
fees, that is, 𝑥𝑇𝑦. In addition, assume that the variable 𝑥 and
the variable 𝑦 have a certain constraint: 𝐴𝑥 + 𝐵𝑦 ≤ 𝑟, where
𝐴 and 𝐵 are 𝑚 × 𝑛 matrix, 𝑟 ∈ 𝑅

𝑚, and 𝑟 is the shadow
price caused by pollutants. To satisfy needs ofmaximizing the
pollution tax collected by the government development and
the cost of pollutant discharge of the sewage enterprise, the
nonlinear bilevel programming is formulated as follows:

max
𝑥

𝐹 (𝑥, 𝑦) = 𝑎
𝑇

𝑥 + 𝑏
𝑇

𝑦, where 𝑦 solves,

max
𝑦

𝑓 (𝑥, 𝑦) = 𝑥
𝑇

𝑦,

s.t. 𝐴𝑥 + 𝐵𝑦 ≤ 𝑟,

𝑥 ≥ 0, 𝑦 ≥ 0.

(9)

In the following, the numerical values of the parameters
in above nonlinear bilevel problem are offered:

max
𝑥

𝐹 (𝑥, 𝑦) = 𝑥
1

+ 2𝑥
2

+ 𝑦
1

− 𝑦
2
, where 𝑦 solves,

max
𝑦

𝑓 (𝑥, 𝑦) = 𝑥
1
𝑦
1

+ 𝑥
2
𝑦
2
,

s.t. 𝑥
1

+ 𝑥
2

+ 𝑦
1

+ 𝑦
2

≤ 6,

𝑥
1

+ 𝑦
1

≤ 3,

𝑥
2

− 𝑦
1

− 𝑦
2

≤ −1,

𝑥 ≥ 0, 𝑦 ≥ 0.

(10)

We use EDA-NM to deal with the bilevel programming
problem. The parameters are selected as Section 4.1. We
execute the algorithm in 20 independent runs and record the
best solutions and the upper objective value as well as the
lower objective value. The best optimal solution obtained by
the algorithm is (𝑥

1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) = (5/3, 5/3, 4/3, 4/3), and the

optimal value is 𝑓
∗

1
= 5, 𝑓

∗

2
= 40/9.

5. Conclusions

In this paper, a hybrid estimation of distribution algorithm
and Nelder-Mead simplex method is proposed to solve a
class of nonlinear bilevel programming problems. EDA-NM
is very easy to be implemented since it does not require gra-
dients information. Moreover, the hybrid algorithm intends
to produce faster and more accurate convergence. The per-
formance of the proposed algorithm is tested on a series
of test problems, and the results obtained are compared
with those reported in the related references. The compar-
isons demonstrate that the proposed algorithm has a better
performance than the compared algorithms. Moreover, the

proposed approach is used to solve a practical example about
pollution charges problem. Future work would involve the
improvement on the probabilistic model of the EDA operator
and the further refinement of the algorithm.
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