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When𝐴 ∈ 𝐵(𝐻) and 𝐵 ∈ 𝐵(𝐾) are given, we denote by𝑀
𝐶
the operator acting on the infinite-dimensional separable Hilbert space

𝐻 ⊕ 𝐾 of the form 𝑀
𝐶
= (
𝐴 𝐶

0 𝐵
). In this paper, it is proved that there exists some operator 𝐶 ∈ 𝐵(𝐾,𝐻) such that 𝑀

𝐶
is upper

semi-Browder if and only if there exists some left invertible operator 𝐶 ∈ 𝐵(𝐾,𝐻)such that𝑀
𝐶
is upper semi-Browder. Moreover,

a necessary and sufficient condition for𝑀
𝐶
to be upper semi-Browder for some 𝐶 ∈ 𝐺(𝐾,𝐻) is given, where 𝐺(𝐾,𝐻) denotes the

subset of all of the invertible operators of 𝐵(𝐾,𝐻).

1. Introduction

It is well known that if 𝐻 is a Hilbert space, 𝑇 is a bounded
linear operator defined on 𝐻, and 𝐻

1
is an invariant closed

subspace of 𝑇, then 𝑇 can be represented in the following
form:

𝑇 = (
∗ ∗

0 ∗
) : 𝐻
1
⊕ 𝐻
⊥

1
󳨀→ 𝐻

1
⊕ 𝐻
⊥

1
, (1)

which motivated the interest in 2 × 2 upper-triangular
operator matrices. For recent investigations on this subject,
see references [1–23].

Throughout this paper, let𝐻 and𝐾 be separable infinite-
dimensional complex Hilbert spaces, and let 𝐵(𝐻,𝐾) be the
set of all bounded linear operators from 𝐻 into 𝐾; when
𝐻 = 𝐾, we write 𝐵(𝐻,𝐻) as 𝐵(𝐻). For 𝐴 ∈ 𝐵(𝐻), 𝐵 ∈ 𝐵(𝐾),
and 𝐶 ∈ 𝐵(𝐾,𝐻), we have 𝑀

𝐶
= ( 𝐴 𝐶
0 𝐵

) ∈ 𝐵(𝐻 ⊕ 𝐾). For
𝑇 ∈ 𝐵(𝐻,𝐾), let 𝑅(𝑇) and 𝑁(𝑇) denote the range and the
kernel of 𝑇, respectively, and denote that 𝛼(𝑇) = dim𝑁(𝑇)

and 𝛽(𝑇) = dim𝐾/𝑅(𝑇). If 𝑇 ∈ 𝐵(𝐻), the ascent asc(𝑇) of
𝑇 is defined to be the smallest nonnegative integer 𝑘 which
satisfies and𝑁(𝑇𝑘) = 𝑁(𝑇

𝑘+1
). If such 𝑘 does not exist, then

the ascent of 𝑇 is defined as infinity. Similarly, the descent
des(𝑇) of 𝑇 is defined as the smallest nonnegative integer 𝑘
for which 𝑅(𝑇

𝑘
) = 𝑅(𝑇

𝑘+1
) holds. If such 𝑘 does not exist,

then des(𝑇) is defined as infinity, too. If the ascent and the
descent of 𝑇 are finite, then they are equal (see [6]). For
𝑇 ∈ 𝐵(𝐻), if 𝑅(𝑇) is closed and 𝛼(𝑇) < ∞, then 𝑇 is said
to be an upper semi-Fredholm operator; if 𝛽(𝑇) < ∞, which
implies that 𝑅(𝑇) is closed, then 𝑇 is said to be a lower semi-
Fredholmoperator. If𝑇 ∈ 𝐵(𝐻) is either upper or lower semi-
Fredholm operator, then 𝑇 is said to be a semi-Fredholm
operator. If both 𝛼(𝑇) < ∞ and 𝛽(𝑇) < ∞, then 𝑇 is said
to be a Fredholm operator. For a semi-Fredholm operator 𝑇,
its index ind(𝑇) is defined by ind(𝑇) = 𝛼(𝑇) − 𝛽(𝑇).

For a semi-Fredholm operator 𝑇 ∈ 𝐵(𝐻), its shift Samuel
multiplicity 𝑠 mul(𝑇) and backward shift Samuel multiplicity
𝑏.𝑠. mul(𝑇) are defined, respectively, by the following (see
[24]):

𝑠 mul (𝑇) = lim
𝑘→∞

𝛽 (𝑇
𝑘
)

𝑘
,

𝑏.𝑠. mul (𝑇) = lim
𝑘→∞

𝛼 (𝑇
𝑘
)

𝑘
.

(2)

Moreover, it has been proved that 𝑠 mul(𝑇), 𝑏.𝑠. mul(𝑇) ∈

{0, 1, 2, . . . ,∞} and that ind(𝑇) = 𝑏.𝑠. mul(𝑇) − 𝑠 mul(𝑇).
These two invariants refine the Fredholm index and can be
regarded as the stabilized dimensions of the kernel and the
cokernel (see [24]).
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In this paper, the sets of invertible operators and left
invertible operators from 𝐻 into 𝐾 are denoted by 𝐺(𝐻,𝐾)
and𝐺

𝑙
(𝐻,𝐾), respectively; the sets of all Fredholm operators,

upper semi-Fredholm operators, and lower semi-Fredholm
operators from𝐻 into𝐾 are denoted byΦ(𝐻,𝐾),Φ

+
(𝐻,𝐾),

andΦ
−
(𝐻,𝐾), respectively; the sets of all Browder operators,

upper semi-Browder operators, and lower semi-Browder
operators, on𝐻 are defined, respectively, by the following:

Φ
𝑏 (𝐻) := {𝑇 ∈ Φ (𝐻) : asc (𝑇) = des (𝑇) < ∞} ,

Φ
𝑎𝑏 (𝐻) := {𝑇 ∈ Φ+ (𝐻) : asc (𝑇) < ∞} ,

Φ
𝑠𝑏 (𝐻) := {𝑇 ∈ Φ

− (𝐻) : des (𝑇) < ∞} .

(3)

Moreover, for 𝑇 ∈ 𝐵(𝐻), we introduce its corresponding
spectra as follows.

The spectrum is given as 𝜎(𝑇) = {𝜆 ∈ C : 𝑇 − 𝜆𝐼 ∉

𝐺(𝐻)}.
The left spectrum is given as 𝜎

𝑙
(𝑇) = {𝜆 ∈ C : 𝑇−𝜆𝐼 ∉

𝐺
𝑙
(𝐻)}.

The essential spectrum is defined as 𝜎
𝑒
(𝑇) = {𝜆 ∈ C :

𝑇 − 𝜆𝐼 ∉ Φ(𝐻)}.
The upper semi-Fredholm spectrum is defined as
𝜎
𝑆𝐹+

(𝑇) = {𝜆 ∈ C : 𝑇 − 𝜆𝐼 ∉ Φ
+
(𝑋)}.

The lower semi-Fredholm spectrum is presented as
𝜎𝑆𝐹−(𝑇) = {𝜆 ∈ C : 𝑇 − 𝜆𝐼 ∉ Φ−(𝑋)}.
The Browder spectrum is presented as 𝜎𝑏(𝑇) = {𝜆 ∈

C : 𝑇 − 𝜆𝐼 ∉ Φ𝑏(𝐻)}.
The upper semi-Browder spectrum is defined as
𝜎𝑎𝑏(𝑇) = {𝜆 ∈ C : 𝑇 − 𝜆𝐼 ∉ Φ𝑎𝑏(𝑋)}.
The lower semi-Browder spectrum is presented as
𝜎
𝑠𝑏
(𝑇) = {𝜆 ∈ C : 𝑇 − 𝜆𝐼 ∉ Φ

𝑠𝑏
(𝑋)}.

Using the Samuel multiplicities, Zhang andWu (see [20])
gave a necessary and sufficient condition for which 𝑀

𝐶
∈

Φ
𝑎𝑏
(𝐻 ⊕ 𝐾) for some 𝐶 ∈ 𝐵(𝐾,𝐻) and characterized

the set of ∩
𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
). In this paper, our main goal

is to characterize the intersection of ∩
𝐶∈𝐺𝑙(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
) and

∩
𝐶∈𝐺(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
). This paper is organized as follows. In

Section 2, we give a necessary and sufficient condition for
which𝑀𝐶 ∈ Φ𝑎𝑏(𝐻 ⊕ 𝐾) for some 𝐶 ∈ 𝐺𝑙(𝐾,𝐻) and get

⋂

𝐶∈𝐺𝑙(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
) = ⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
) . (4)

In Section 3, we give a necessary and sufficient condition for
which𝑀

𝐶
∈ Φ
𝑎𝑏
(𝐻 ⊕ 𝐾) for some 𝐶 ∈ 𝐺(𝐾,𝐻) and get

⋂

𝐶∈𝐺(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
) = ⋂

𝐶∈Φ(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
)

= ( ⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
))

∪ {𝜆 ∈ C : 𝐵 − 𝜆 is compact} .

(5)

For the sake of convenience, we now present some lem-
mas which will be used in the sequel.

Lemma 1 (see [20, 24]). An operator 𝑇 ∈ 𝐵(𝐻) is semi-
Fredholm if and only if 𝑇 can be decomposed into the following
form with respect to some orthogonal decomposition𝐻 = 𝐻

1
⊕

𝐻
2
⊕ 𝐻
3
:

𝑇 = (

𝑇
1
𝑇
12

𝑇
13

0 𝑇
2

𝑇
23

0 0 𝑇
3

) : 𝐻
1
⊕ 𝐻
2
⊕ 𝐻
3

󳨀→ 𝐻1 ⊕ 𝐻2 ⊕ 𝐻3,

(6)

where dim (𝐻
3
) < ∞, 𝑇

1
is a right invertible operator, 𝑇

3

is a finite nilpotent operator, 𝑇
2
is a left invertible operator,

and min{ind (𝑇
1
), − ind (𝑇

2
)} < ∞. Moreover, ind (𝑇

1
) =

𝛼(𝑇
1
) = 𝑏.𝑠. mul (𝑇), ind (𝑇

2
) = −𝛽(𝑇

2
) = −𝑠 mul (T), and

ind (𝑇) = 𝛼(𝑇
1
) − 𝛽(𝑇

2
).

Lemma 2 (see [18]). Let 𝐴 ∈ 𝐵(𝐻), 𝐵 ∈ 𝐵(𝐾), and 𝐶 ∈

𝐵(𝐾,𝐻).

(1) If 𝐴 ∈ Φ
𝑏
(𝐻), then 𝐵 ∈ Φ

𝑎𝑏
(𝐾) if𝑀

𝐶
∈ Φ
𝑎𝑏
(𝐻 ⊕ 𝐾)

for some 𝐶 ∈ 𝐵(𝐾,𝐻).
(2) If𝑀

𝐶
∈ Φ
𝑎𝑏
(𝐻 ⊕ 𝐾) for some 𝐶 ∈ 𝐵(𝐾,𝐻), then 𝐴 ∈

Φ
𝑎𝑏
(𝐻).

(3) If 𝐴 ∈ Φ
𝑎𝑏
(𝐻) and 𝐵 ∈ Φ

𝑎𝑏
(𝐾), then𝑀

𝐶
∈ Φ
𝑎𝑏
(𝐻 ⊕

𝐾) for any 𝐶 ∈ 𝐵(𝐾,𝐻).
(4) If𝐵 ∈ Φ

𝑏
(𝐾), then𝐴 ∈ Φ

𝑎𝑏
(𝐻) if𝑀

𝐶
∈ Φ
𝑎𝑏
(𝐻⊕𝐾) for

some 𝐶 ∈ 𝐵(𝐾,𝐻); 𝐴 ∈ Φ
𝑠𝑏
(𝐻) if𝑀

𝐶
∈ Φ
𝑠𝑏
(𝐻 ⊕ 𝐾)

for some 𝐶 ∈ 𝐵(𝐾,𝐻).
(5) If𝑀

𝐶
∈ Φ
𝑏
(𝐻 ⊕ 𝐾) for some 𝐶 ∈ 𝐵(𝐾,𝐻), then 𝐴 ∈

Φ
𝑎𝑏
(𝐻) and 𝐵 ∈ Φ

𝑠𝑏
(𝐾).

(6) If two of𝐴, 𝐵, and𝑀
𝐶
are Browder, then so is the third.

Lemma 3 (see [20]). Let 𝑇 ∈ 𝐵(𝐻). Then, 𝑇 is upper semi-
Browder if 𝑇 can be decomposed into the following form with
respect to some orthogonal decomposition𝐻 = 𝐻

1
⊕ 𝐻
2
:

𝑇 = (
𝑇
1
𝑇
12

0 𝑇
2

) , (7)

where dim(𝐻
1) < ∞, 𝑇1 is nilpotent, 𝑇2 is left invertible, and

𝛽(𝑇2) = 𝑠 mul(𝑇) = −ind(T).

Lemma 4 (see [20]). Let 𝑇 ∈ 𝐵(𝐻). Then, 𝑇 is lower semi-
Browder if 𝑇 can be decomposed into the following form with
respect to some orthogonal decomposition𝐻 = 𝐻1 ⊕ 𝐻2:

𝑇 = (
𝑇1 𝑇12

0 𝑇2
) , (8)

where dim(𝐻
2
) < ∞, 𝑇

1
is right invertible, 𝑇

2
is nilpotent, and

𝛼(𝑇
1
) = 𝑏.𝑠. mul (𝑇) = ind (𝑇).

Lemma 5 (see [20]). For any given 𝐴 ∈ 𝐵(𝐻) and 𝐵 ∈ 𝐵(𝐾),
𝑀
𝐶
∈ Φ
𝑎𝑏
(𝐻 ⊕ 𝐾) for some 𝐶 ∈ 𝐵(𝐾,𝐻) if 𝐴 ∈ Φ

𝑎𝑏
(𝐻) and

𝑠 mul (𝐴) = ∞ 𝑖𝑓 𝐵 ∉ Φ
+ (𝐾) ,

𝑏.𝑠. mul (𝐵) ≤ 𝑠 mul (𝐴) 𝑖𝑓 𝐵 ∈ Φ
+ (𝐾) .

(9)
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Lemma 6 (see [9]). For any given 𝐴 ∈ 𝐵(𝐻) and 𝐵 ∈ 𝐵(𝐾),
𝑀
𝐶
is left invertible for some 𝐶 ∈ 𝐵(𝐾,𝐻) if𝐴 is left invertible

and

𝑎 (𝐵) ≤ 𝛽 (𝐴) 𝑖𝑓 𝑅 (𝐵) 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑,

𝛽 (𝐴) = ∞ 𝑖𝑓 𝑅 (𝐵) 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑙𝑜𝑠𝑒𝑑.

(10)

Lemma 7 (see [25]). Let 𝑉 be a linear subspace of 𝐻. Then,
the following statements are equivalent.

(1) Any bounded operator 𝐴 ∈ 𝐵(𝐻) with 𝑅(𝐴) ⊆ 𝑉 is
compact.

(2) 𝑉 contains no closed infinite-dimensional subspace.

2. ⋂
𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
) and ⋂

𝐶∈𝐺𝑙(𝐾,𝐻)
𝜎
𝑎𝑏
(𝑀
𝐶
)

In [1, 20], the authors have proved that

⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑏
(𝑀
𝐶
)

= 𝜎
𝑎𝑏 (𝐴) ∪ 𝜎𝑠𝑏 (𝐵) ∪ {𝜆 ∈ C : 𝛼 (𝐴 − 𝜆)

+ 𝛼 (𝐵 − 𝜆) ̸= 𝛽 (𝐴 − 𝜆)

+ 𝛽 (𝐵 − 𝜆)} .

(11)

They, moreover, proved that

⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎𝑎𝑏 (𝑀𝐶)

= 𝜎
𝑎𝑏 (𝐴) ∪ {𝜆 ∈ C : 𝜆 ∈ 𝜎

𝑆𝐹+ (𝐵) ,

𝑠 mul (𝐴 − 𝜆) < ∞}

∪ {𝜆 ∈ Φ (𝐴) ∩ Φ+ (𝐵) : 𝑏.𝑠. mul (𝐵 − 𝜆)

> 𝑠 mul (𝐴 − 𝜆)} .

(12)

Comparing the above two kinds of spectra with the upper
semi-Weyl spectrumandWeyl spectrum, onemay expect that
the following equality holds:

⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
)

= 𝜎
𝑎𝑏 (𝐴) ∪ {𝜆 ∈ C : 𝜆 ∈ 𝜎

𝑆𝐹+ (𝐵) , 𝛽 (𝐴 − 𝜆) < ∞}

∪ {𝜆 ∈ C : 𝛼 (𝐴 − 𝜆) + 𝛼 (𝐵 − 𝜆)

> 𝛽 (𝐴 − 𝜆) + 𝛽 (𝐵 − 𝜆)} .

(13)

However, it is not that case, as the following example shows.

Example 8. Let 𝐴 be the unilateral shift on ℓ2, that is,

𝑉 : ℓ
2
󳨀→ ℓ
2
, {𝑧
1
, 𝑧
2
, . . .} 󳨃󳨀→ {0, 𝑧

1
, 𝑧
2
, . . .} , (14)

and let the operators 𝐴 and 𝐵 be defined by

𝐴 = 𝑉, 𝐵 = (
(𝑉
∗
)
2

0

0 𝑉
5
) : ℓ
2
⊕ ℓ
2
󳨀→ ℓ
2
⊕ ℓ
2
. (15)

Then, we have 𝑏.𝑠. mul(𝐵) = 2 > 𝑠 mul(𝐴) = 1, while
𝛼(𝐴) + 𝛼(𝐵) = 2 < 𝛽(𝐴) + 𝛽(𝐵) = 6. Moreover, 0 ∈

⋂
𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
), while 0 ∉ 𝜎

𝑎𝑏
(𝐴) ∪ {𝜆 ∈ C : 𝜆 ∈ 𝜎

𝑆𝐹+
(𝐵)

and 𝛽(𝐴 − 𝜆) < ∞} ∪ {𝜆 ∈ C : 𝛼(𝐴 − 𝜆) + 𝛼(𝐵 − 𝜆) >

𝛽(𝐴 − 𝜆) + 𝛽(𝐵 − 𝜆)}. Thus, (13) does not hold.

In spite of the above counter example, we have the follow-
ing.

Proposition 9. For any given 𝐴 ∈ 𝐵(𝐻) and 𝐵 ∈ 𝐵(𝐾), one
has

⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
) ⊇ 𝜎
𝑎𝑏 (𝐴)

∪ {𝜆 ∈ C : 𝜆 ∈ 𝜎
𝑆𝐹+ (𝐵) , 𝛽 (𝐴 − 𝜆) < ∞}

∪ {𝜆 ∈ C : 𝛼 (𝐴 − 𝜆) + 𝛼 (𝐵 − 𝜆)

> 𝛽 (𝐴 − 𝜆) + 𝛽 (𝐵 − 𝜆)} .

(16)

Proof. From the proof of Theorem 2.3 in [20], we know that
when 𝐴 ∈ Φ𝑎𝑏(𝐻), 𝑠 mul(𝐴) < ∞ if and only if 𝛽(𝐴) < ∞.
Combining this fact with Corollary 2.5 of [20], it is easy to see
that

⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎𝑎𝑏 (𝑀𝐶) ⊇ 𝜎𝑎𝑏 (𝐴) ∪ {𝜆 ∈ C : 𝜆 ∈ 𝜎
𝑆𝐹+ (𝐵) ,

𝛽 (𝐴 − 𝜆) < ∞} .

(17)

Noting that 𝛽(𝐵 − 𝜆) < ∞ implies that 𝑅(𝐵 − 𝜆) is closed, it
follows from corollary 2.5 of [2] that

⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎𝑎𝑏 (𝑀𝐶) ⊇ ⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎𝑎𝑤 (𝑀𝐶)

⊇ {𝜆 ∈ C : 𝛼 (𝐴 − 𝜆) + 𝛼 (𝐵 − 𝜆)

> 𝛽 (𝐴 − 𝜆) + 𝛽 (𝐵 − 𝜆)} ,

(18)

where 𝜎
𝑎𝑤(𝑀𝐶) = {𝜆 ∈ C : 𝑀𝐶 − 𝜆 is not uppersemi-

Fredholm operator with index less than or equal to 0}.

Now, we are ready to present the main result of this
section.

Theorem 10. For any given 𝐴 ∈ 𝐵(𝐻) and 𝐵 ∈ 𝐵(𝐾), one has

⋂

𝐶∈𝐺𝑙(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
) = ⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
) . (19)

Proof. Since ⋂
𝐶∈𝐺𝑙(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
) ⊇ ⋂

𝐶∈𝐵(𝐾,𝐻)
𝜎
𝑎𝑏
(𝑀
𝐶
) is

obvious, it is sufficient to prove that if 𝑀
𝐶
∈ Φ
𝑎𝑏
(𝐻 ⊕ 𝐾),

then there exists some left invertible operator 𝑄 ∈ 𝐵(𝐾,𝐻)

such that𝑀𝑄 ∈ Φ𝑎𝑏(𝐻 ⊕ 𝐾).
Suppose that𝑀𝐶 ∈ Φ𝑎𝑏(𝐻⊕𝐾). It follows from Lemma 5

that 𝐴 ∈ Φ𝑎𝑏(𝐻) and

𝑠 mul (𝐴) = ∞ if 𝐵 ∉ Φ
+ (𝐾) ,

𝑏.𝑠. mul (𝐵) ≤ 𝑠 mul (𝐴) if 𝐵 ∈ Φ
+ (𝐾) .

(20)

There are two cases to consider.



4 Abstract and Applied Analysis

Case 1. Assume that 𝐴 ∈ Φ
𝑎𝑏
(𝐻), 𝑠 mul(𝐴) = ∞, and

𝐵 ∉ Φ
+
(𝐾). Then, it follows from Lemma 3 that 𝐴 can be

decomposed into the following form:

𝐴 = (
𝐴
1
𝐴
12

0 𝐴
2

) : 𝐻
1
⊕ 𝐻
2
󳨀→ 𝐻

1
⊕ 𝐻
2
, (21)

where dim(𝐻
1
) < ∞, 𝐴

1
is nilpotent, 𝐴

2
is a left invertible

operator, and 𝛽(𝐴
2
) = 𝑠 mul(𝐴) = ∞. So, we can let

𝑄 = (

0

0

𝑉

) : 𝐾 󳨀→ 𝐻1 ⊕ 𝑅 (𝐴2) ⊕ (𝐻2 ⊖ 𝑅 (𝐴2)) , (22)

where 𝑉 ∈ 𝐵(𝐾, (𝐻
2 ⊖ 𝑅(𝐴2))) is unitary. Obviously, 𝑄 is left

invertible. Now,𝑀𝑄 can be rewritten as

𝑀
𝑄

= (

𝐴
1
𝐴
12

0

0 𝐴
2

0

0 0 𝑉

0 0 𝐵

) : 𝐻
1
⊕ 𝐻
2
⊕ 𝐾

󳨀→ 𝐻
1
⊕ 𝑅 (𝐴

2
) ⊕ (𝐻

2
⊖ 𝑅 (𝐴

2
)) ⊕ 𝐾.

(23)

Since 𝐴
2 is left invertible and 𝑉 is invertible, then there exist

unique 𝐴󸀠
2
and 𝑉󸀠 such that 𝐴󸀠

2
𝐴2 = 𝐼𝐻2

and 𝑉󸀠𝑉 = 𝐼𝐾, and

(
𝐴
󸀠

2
0 0

0 𝑉
󸀠
0
)(

𝐴
2
0

0 𝑉

0 𝐵

) = 𝐼𝐻2
⊕ 𝐼
𝐾
. (24)

This implies that (
𝐴2 0

0 𝑉

0 𝐵

) is left invertible. And, hence,
Lemma 2 leads to𝑀

𝑄
∈ Φ
𝑎𝑏
(𝐻 ⊕ 𝐾).

Case 2. Assume that 𝐴 ∈ Φ
𝑎𝑏(𝐻), 𝑏.𝑠. mul(𝐵) ≤ 𝑠 mul(𝐴),

and 𝐵 ∈ Φ
+
(𝐾). Then, it follows from Lemma 3 that𝐴 can be

decomposed into the following form:

𝐴 = (
𝐴1 𝐴12

0 𝐴
2

) : 𝐻
1
⊕ 𝐻
2
󳨀→ 𝐻

1
⊕ 𝐻
2
, (25)

where dim(𝐻
1
) < ∞, 𝐴

1
is nilpotent, 𝐴

2
is a left invertible

operator, and 𝛽(𝐴
2
) = 𝑠 mul(𝐴). By the assumption that

𝐵 ∈ Φ+(𝐾) and Lemma 1, we know that𝐵 can be decomposed
into the following form with respect to some orthogonal
decomposition𝐾 = 𝐾1 ⊕ 𝐾2 ⊕ 𝐾3 :

𝐵 = (

𝐵
1
∗ ∗

0 𝐵
2
∗

0 0 𝐵
3

) , (26)

where dim (𝐾
3) < ∞, 𝐵1 is a right invertible operator, 𝐵2 is

a left invertible operator, 𝐵3 is a finite nilpotent operator, and
the parts marked by ∗ can be any operators. Moreover,∞ >

𝛼(𝐵1) = 𝑏.𝑠. mul(𝐵). Thus, 𝛽(𝐴2) ≥ 𝛼(𝐵1), and then there
exists some left invertible𝐶1 ∈ 𝐵(𝑁(𝐵1), 𝐻2⊖𝑅(𝐴2)). Noting
that dim((𝐾1⊖𝑁(𝐵1))⊕𝐾2⊕𝐾3) = dim(𝐻1⊕𝑅(𝐴2)) = ∞, we
can let 𝐶

2
∈ 𝐺((𝐾

1
⊖𝑁(𝐵

1
)) ⊕𝐾

2
⊕𝐾
3
, 𝐻
1
⊕𝑅(𝐴)). Consider

𝑄 = (
𝐶
1

0

0 𝐶
2

) : 𝑁 (𝐵
1
) ⊕ [𝐾

1
⊖ 𝑁 (𝐵

1
) ⊕ 𝐾
2
⊕ 𝐾
3
]

󳨀→ (𝐻
2
⊖ 𝑅 (𝐴

2
)) ⊕ [𝐻

1
⊕ 𝑅 (𝐴

2
)] .

(27)

Obviously,𝑄 is left invertible, and𝑀
𝑄
can be rewritten as

𝑀
𝑄

=(

(

𝐴
1
𝐴
12

𝐶
11

0 𝐶
12

𝐶
13

0 𝐴
21

𝐶
21

0 𝐶
22

𝐶
23

0 0 0 𝐶
1

0 0

0 0 𝐵
11

0 ∗ ∗

0 0 0 0 𝐵
2

∗

0 0 0 0 0 𝐵
3

)

)

: 𝐻1 ⊕ 𝐻2

⊕ (𝐾
1
⊖ 𝑁 (𝐵

1
) ⊕ 𝑁 (𝐵

1
))

⊕ 𝐾
2
⊕ 𝐾
3

󳨀→ 𝐻
1
⊕ 𝑅 (𝐴

2
) ⊕ (𝐻

2
⊖ 𝑑𝑅 (𝐴

2
)) ⊕ 𝐾

1

⊕ 𝐾
2
⊕ 𝐾
3
,

(28)

where 𝐴21 and 𝐵11 are invertible and 𝐶1 and 𝐵2 are left
invertible. Similar to the proof of Case 1, through direct

calculation we can show that (
𝐴21 𝐶21 0

0 0 𝐶1

0 𝐵11 0

) is left invertible.
Also since dim(𝐻

1
) < ∞ and dim(𝐾

3
) < ∞, we have 𝐴

1
∈

Φ
𝑏
(𝐻
1
) and 𝐵

3
∈ Φ
𝑏
(𝐾
3
).Thus, it follows from Lemma 2 that

𝑀
𝐶
∈ Φ
𝑎𝑏
(𝐻 ⊕ 𝐾).

By duality, we have the following.

Theorem 11. For any given 𝐴 ∈ 𝐵(𝐻) and 𝐵 ∈ 𝐵(𝐾), one has

⋂

𝐶∈𝐺𝑟(𝐾,𝐻)

𝜎
𝑠𝑏
(𝑀
𝐶
) = ⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑠𝑏
(𝑀
𝐶
) . (29)

3. ⋂
𝐶∈𝐺(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
) and ⋂

𝐶∈Φ(𝐾,𝐻)
𝜎
𝑎𝑏
(𝑀
𝐶
)

In this section, we give the characterization of invertible and
Fredholmperturbations of upper semi-Browder spectra of 2×
2 upper-triangular matrices. We begin with some lemmas.

Lemma 12 (see [19]). For a given pair (𝐴, 𝐵) ∈ 𝐵(𝐻)×𝐵(𝐾), if
either𝐴 or𝐵 is a compact operator, then, for each𝐶 ∈ Φ(𝐾,𝐻),
𝑀
𝐶
is not a semi-Fredholm operator.
In particular, if 𝐵 is not compact, then 𝑀

𝐶
is not semi-

Browder for any invertible operator 𝐶.

Lemma 13. The following statements are equivalent.

(i) 𝐵 is not compact.
(ii) For each given 𝐴 ∈ Φ

𝑎𝑏
(𝐻), if 𝛽(𝐴) = ∞, then there

exists an operator 𝐶 ∈ 𝐺(𝐾,𝐻) such that 𝑀
𝐶
is an

upper semi-Browder operator.
(iii) For each given 𝐴 ∈ Φ

𝑎𝑏
(𝐻), if 𝛽(𝐴) = ∞, then there

exists an operator 𝐶 ∈ Φ(𝐾,𝐻) such that 𝑀
𝐶
is an

upper semi-Browder operator.

Proof. Obviously, we only need to prove the implications (i)
⇒ (ii) and (iii)⇒ (i).

(iii) ⇒ (i). If 𝐵 is compact, then it follows from
Lemma 12 that 𝑀

𝐶
is not a semi-Fredholm operator

for each 𝐶 ∈ Φ(𝐾,𝐻), which contradicts with (iii).
Thus, 𝐵 is not compact.
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(i) ⇒ (ii). Suppose that 𝐵 is not compact. Then, we
consider the following two cases.

Case 1. Assume that 𝑅(𝐵) is closed. It follows from Lemma 3
that 𝐴 can be decomposed into the following form with
respect to some orthogonal decomposition𝐻 = 𝐻

1
⊕ 𝐻
2
:

𝐴 = (
𝐴
1
𝐴
12

0 𝐴
2

) : 𝐻
1
⊕ 𝐻
2
󳨀→ 𝐻

1
⊕ 𝐻
2
, (30)

where dim(𝐻
1
) < ∞, 𝐴

1
is nilpotent, and 𝐴

2
is a left

invertible operator. Noting that 𝛽(𝐴) = ∞, we have 𝛽(𝐴2) =
∞. Since the assumption that 𝐵 is not compact, we have that
dim 𝑁(𝐵)

⊥
= ∞. Also since 𝛽(𝐴2) = ∞, let 𝑅(𝐴2)

⊥
=

𝐻3 ⊕ 𝐻4 with dim (𝐻3) = dim 𝑁(𝐵) and dim (𝐻4) = ∞.
Define an operator 𝐶 : 𝐾 → 𝐻 by

𝐶 = (
𝐶1 0

0 𝐶2
) : 𝑁 (𝐵) ⊕ 𝑁(𝐵)

⊥

󳨀→ 𝐻
3
⊕ (𝐻
1
⊕ 𝑅 (𝐴

2
) ⊕ 𝐻
4
) ,

(31)

where𝐶
1
∈ 𝐵(𝑁(𝐵),𝐻

3
) and𝐶

2
∈ 𝐵(𝑁(𝐵)

⊥
, 𝐻
1
⊕𝑅(𝐴

2
)⊕𝐻
4
)

are invertible operators. Obviously,𝐶 ∈ 𝐵(𝐾,𝐻) is invertible.
Next, we claim that𝑀

𝐶
is an upper semi-Browder operator.

To see this,𝑀
𝐶
can be rewritten as

𝑀
𝐶
=(

𝐴
1
𝐴
12

𝐶
11

0

0 𝐴
22

𝐶
21

0

0 0 0 𝐶
1

0 0 𝐶
41

0

0 0 𝐵1 0

) : 𝐻
1
⊕ 𝐻
2

⊕ 𝑁(𝐵)
⊥
⊕ 𝑁 (𝐵)

󳨀→ 𝐻
1
⊕ 𝑅 (𝐴

2
) ⊕ 𝐻
3
⊕ 𝐻
4
⊕ 𝐾,

(32)

where 𝐴
22

∈ 𝐵(𝐻
2
, 𝑅(𝐴
2
)) is invertible and 𝐵

1
∈

𝐵(𝑁(𝐵)
⊥
, 𝑅(𝐵)) is left invertible. By Lemma 2 and the fact

that 𝐴
1
∈ Φ
𝑏
(𝐻
1
), it is sufficient to prove that

𝑀
1
=: (

𝐴
22

𝐶
21

0

0 0 𝐶
1

0 𝐶
41

0

0 𝐵
1

0

) (33)

is semi-Browder. For this, we only need to show that 𝑀
1 is

left invertible. In fact, since 𝐴
22

is invertible and 𝐵
1
and 𝐶

1

are left invertible, we can set 𝐴󸀠
22
, 𝐵󸀠
1
, and 𝐶󸀠

1
such that

𝐴
󸀠

22
𝐴
22
= 𝐼
𝐻2
, 𝐵

󸀠

1
𝐵
1
= 𝐼
𝑁(𝐵)
⊥ , 𝐶

󸀠

1
𝐶
1
= 𝐼
𝑁(𝐵)

. (34)

Direct calculation shows that

(

𝐴
󸀠

22
0 0 −𝐴

󸀠

22
𝐶
21
𝐵
󸀠

1

0 0 0 𝐵
󸀠

1

0 𝐶
󸀠

1
0 0

)(

𝐴
22 𝐶21 0

0 0 𝐶1

0 𝐶41 0

0 𝐵1 0

)

= (

𝐼
𝐻2

0 0

0 𝐼
𝑁(𝐵)
⊥ 0

0 0 𝐼
𝑁(𝐵)

) ,

(35)

which implies that 𝑀
1
is left invertible. Noting that 𝐴

1
∈

Φ(𝐻
1
), by Lemma 2 we have that𝑀

𝐶
is upper semi-Browder.

Case 2. Assume that 𝑅(𝐵) is not closed. If 𝐵 is not com-
pact, then by Lemma 7, 𝑅(𝐵) contains a closed infinite-
dimensional subspace. Without loss of generality, suppose
that 𝐾

1
is a closed subspace of 𝑅(𝐵) with dim 𝐾

1
= ∞

and dim 𝐾1

⊥

= ∞. Let 𝐾1 = {𝑥 ∈ 𝑁(𝐵)
⊥
: 𝐵𝑥 ∈ 𝐾1}.

Thus, 𝐾1 is a closed subspace of𝑁(𝐵)⊥, and dim (𝐾1) = ∞.
Denote 𝐾2 = 𝑁(𝐵)

⊥
⊖ 𝐾1. Without loss of generality, we

may assume that dim (𝐾2) = ∞ (otherwise, suppose that
{𝑒𝑛}
∞

𝑛=1
is an orthonormal basis of 𝐾

1
. Denote 𝐾󸀠

1
= span{𝑒

𝑛
:

𝑛 = 2, 4, 6, . . .} and ̃
𝐾
󸀠

1
= {𝐵𝑥 : 𝑥 ∈ 𝐾

󸀠

1
}, then 𝐾1 and 𝐾1

can be replaced by 𝐾
󸀠

1
and ̃

𝐾
󸀠

1
, resp.). Since 𝛽(𝐴2) = ∞,

let 𝑅(𝐴
2
)
⊥

= 𝐻
3
⊕ 𝐻
4
with dim (𝐻

3
) = dim𝑁(𝐵) and

dim𝐻
4
= ∞. Define an operator 𝐶 : 𝐾 → 𝐻 by

𝐶 = (

𝐶
1

0 0

0 𝐶
2

0

0 0 𝐶
3

) : 𝐾1 ⊕ 𝐾2 ⊕ 𝑁 (𝐵)

󳨀→ (𝐻1 ⊕ 𝑅 (𝐴2)) ⊕ 𝐻4 ⊕ 𝐻3,

(36)

where 𝐶
1, 𝐶2, and 𝐶3 are unitary operators. Obviously, 𝐶 is

invertible.𝑀𝐶 can be rewritten as

𝑀
𝐶
=(

(

𝐴
1 𝐴12 𝐶11 0 0

0 𝐴22 𝐶
21

0 0

0 0 0 0 𝐶3

0 0 0 𝐶2 0

0 0 𝐵11 𝐵12 0

0 0 0 𝐵
22

0

)

)

: 𝐻
1
⊕ 𝐻
2

⊕ 𝐾
1
⊕ 𝐾
2
⊕ 𝑁 (𝐵)

󳨀→ 𝐻
1
⊕ 𝑅 (𝐴

2
) ⊕ 𝐻
3
⊕ 𝐻
4
⊕ 𝐾
1
⊕ 𝐾
1

⊥

,

(37)

where 𝐴
22
and 𝐵

11
are invertible and 𝐶

1
= (
𝐶11

𝐶21
).

Next, we prove that 𝑀
𝐶

∈ Φ
𝑎𝑏
(𝐻 ⊕ 𝐾). Noting that

dim (𝐻
1
) < ∞, then, by Lemma 2, it is sufficient to prove

that

𝑀
1
=: (

𝐴22 𝐶21 0 0

0 0 0 𝐶3

0 0 𝐶2 0

0 𝐵11 𝐵12 0

0 0 𝐵22 0

) (38)

is left invertible. For this, let𝐴󸀠
22
, 𝐵󸀠
11
,𝐶󸀠
1
, and𝐶󸀠

2
be operators

satisfying

𝐴
󸀠

22
𝐴22 = 𝐼𝐻2

, 𝐵
󸀠

11
𝐵11 = 𝐼𝐾1

,

𝐶
󸀠

2
𝐶
2
= 𝐼
𝐾2
, 𝐶

󸀠

3
𝐶
3
= 𝐼
𝑁(𝐵)

.

(39)
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Direct calculation shows that

(

𝐴
󸀠

22
0 𝐴
󸀠

22
𝐶
21
𝐵
󸀠

11
𝐵
12
𝐶
󸀠

2
−𝐴
󸀠

22
𝐶
21
𝐵
󸀠

11
0

0 0 𝐵
󸀠

11
𝐵
12
𝐶
󸀠

2
𝐵
󸀠

11
0

0 0 𝐶
󸀠

2
0 0

0 𝐶
󸀠

3
0 0

)

×(

𝐴22 𝐶21 0 0

0 0 0 𝐶3

0 0 𝐶2 0

0 𝐵11 𝐵12 0

0 0 𝐵22 0

)

= (

𝐼𝐻2
0 0 0

0 𝐼𝐾1
0 0

0 0 𝐼𝐾2
0

0 0 0 𝐼𝑁(𝐵)

),

(40)

which implies that𝑀
1 is left invertible.

Combining Case 1 with Case 2, the lemma is proved.

Similarly, we have the following.

Lemma 14. The following statements are equivalent:

(i) 𝐴 is not compact.
(ii) For each given 𝐵 ∈ Φ

𝑠𝑏(𝐻), if 𝛼(𝐵) = ∞, then there
exists an operator𝐶 ∈ 𝐺(𝐾,𝐻) such that𝑀𝐶 is a lower
semi-Browder operator.

(iii) For each given 𝐵 ∈ Φ
𝑠𝑏
(𝐻), if 𝛼(𝐵) = ∞, then there

exists an operator𝐶 ∈ Φ(𝐾,H) such that𝑀
𝐶
is a lower

semi-Browder operator.

One is now ready to prove the main result of this section.

Theorem 15. For a given pair (𝐴, 𝐵) ∈ 𝐵(𝐻) × 𝐵(𝐾), one has

⋂

𝐶∈𝐺(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
) = ⋂

𝐶∈Φ(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
)

= ( ⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
))

∪ {𝜆 ∈ C : 𝐵 − 𝜆 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡} .

(41)

Proof. According to Lemma 12, it is clear that

⋂

𝐶∈𝐺(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
) ⊇ ⋂

𝐶∈Φ(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
)

⊇ ( ⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
))

∪ {𝜆 ∈ C : 𝐵 − 𝜆 is compact} .

(42)

For the conversion, without loss of generality, suppose that

0 ∉ ( ⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎𝑎𝑏 (𝑀𝐶)) ∪ {𝜆 ∈ C : 𝐵 − 𝜆 is compact} .

(43)

Then, 𝐵 is not compact, and there exists some 𝐶 ∈

𝐵(𝐾,𝐻) such that𝑀
𝐶
∈ Φ
𝑎𝑏
(𝐻⊕𝐾), and, hence,𝐴 ∈ Φ

𝑎𝑏
(𝐻).

Case 1. 𝛽(𝐴) = ∞. It follows from Lemma 13 that there exists
some 𝐶 ∈ 𝐺(𝐾,𝐻) such that 𝑀

𝐶
is an upper semi-Browder

operator. This implies that 𝜆 ∉ ⋂
𝐶∈𝐺(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
). In this

case, we have proved. Consider that

⋂

𝐶∈𝐺(𝐾,𝐻)

𝜎𝑎𝑏 (𝑀𝐶) ⊆ ( ⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎𝑎𝑏 (𝑀𝐶))

∪ {𝜆 ∈ C : 𝐵 − 𝜆 is compact} .

(44)

Case 2. Consider 𝛽(𝐴) < ∞. This implies that 𝐴 ∈ Φ(𝐻),
and, thus, 𝐵 ∈ Φ+(𝐾) since 𝑀𝐶 ∈ Φ𝑎𝑏(𝐻 ⊕ 𝐾). It follows
from Lemma 5 that 𝑏.𝑠. mul(𝐵) ≤ 𝑠 mul(𝐴). Moreover, using
Lemmas 1 and 3, we have

𝐴 = (
𝐴
1
𝐴
12

0 𝐴
2

) : 𝐻1 ⊕ 𝐻2 󳨃󳨀→ 𝐻1 ⊕ 𝐻2,

𝐵 = (

𝐵
1 ∗ ∗

0 𝐵2 ∗

0 0 𝐵3

) : 𝐾
1
⊕ 𝐾
2
⊕ 𝐾
3
󳨃󳨀→ 𝐾

1
⊕ 𝐾
2
⊕ 𝐾
3
,

(45)

where dim(𝐻
1
) < ∞, 𝐴

1
is nilpotent, 𝐴

2
is a left invertible

operator, dim (𝐾
3
) < ∞, 𝐵

1
is a right invertible operator, 𝐵

2

is a left invertible operator, 𝐵3 is a finite nilpotent operator,
and the parts marked by ∗ can be any operators. Moreover,
𝛽(𝐴2) = 𝑠 mul(𝐴), and 𝛼(𝐵

1
) = 𝑏.𝑠. mul(𝐵). Hence, 𝛼(𝐵

1
) ≤

𝛽(𝐴2). Now, put 𝐻2 = 𝑅(𝐴2) ⊕ 𝐻3 ⊕ 𝐻4, where dim (𝐻3) =

𝛼(𝐵1) < ∞. Noting that dim 𝐻1 ⊕ 𝑅(𝐴2) ⊕ 𝐻4 = 𝑁(𝐵1)
⊥
⊕

𝐾2 ⊕ 𝐾3 = ∞, there exist unitaries 𝐶33 ∈ 𝐵(𝑁(𝐵1),𝐻3) and
𝐶
󸀠
∈ 𝐵(𝐻

1
⊕𝑅(𝐴

2
)⊕𝐻
4
, 𝑁(𝐵
1
)
⊥
⊕𝐾
2
⊕𝐾
3
). Let𝐶 = (

𝐶33 0

0 𝐶
󸀠 ).

Obviously, 𝐶 = (
𝐶33 0

0 𝐶
󸀠 ) ∈ 𝐺(𝐻 ⊕ 𝐾).

Consider that operator

𝑀𝐶

= (
𝐴 𝐶

0 𝐵
) : 𝐻 ⊕ 𝐾 → 𝐻 ⊕ 𝐾

=
(
(
(

(

𝐴
1
𝐴
12

𝐶
11

0 𝐶
13

𝐶
14

0 𝐴
2

𝐶
21

0 𝐶
23

𝐶
24

0 0 0 𝐶
33

0 0

0 0 𝐶
41

0 𝐶
43

𝐶
44

0 0 𝐵
11

0 ∗ ∗

0 0 0 0 𝐵
2

∗

0 0 0 0 0 𝐵
3

)
)
)

)

: 𝐻
1
⊕ 𝐻
2

⊕ 𝑁(𝐵
1
)
⊥
⊕ 𝑁 (𝐵

1
) ⊕ 𝐾
2
⊕ 𝐾
3

󳨀→ 𝐻
1
⊕ 𝑅 (𝐴

2
) ⊕ 𝐻
3
⊕ 𝐻
4
⊕ 𝐾
1
⊕ 𝐾
2
⊕ 𝐾
3
,

(46)

where

𝐶
󸀠
= (

𝐶
11

𝐶
13

𝐶
14

𝐶21 𝐶23 𝐶24

𝐶41 𝐶43 𝐶44

) : 𝐻
1
⊕ 𝐻
2
⊕ 𝑁(𝐵

1
)
⊥

󳨀→ 𝐻
1
⊕ 𝑅 (𝐴

2
) ⊕ 𝐻
4
, 𝐵
1
= (

𝐵
11

0
) .

(47)
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We claim that𝑀
𝐶
∈ Φ
𝑎𝑏
(𝐻⊕𝐾). In fact, since𝐴

1
and 𝐵

3
are

Browder operators, then, by Lemma 2, it is sufficient to show
that

𝑀 =: (

𝐴
2
𝐶
21

0 𝐶
23

0 0 𝐶
33

0

0 𝐶
41

0 𝐶
43

0 𝐵
11

0 ∗

0 0 0 𝐵
2

) : 𝐻2 ⊕ 𝑁(𝐵1)
⊥

⊕ 𝑁 (𝐵
1
) ⊕ 𝐾
2

󳨀→ 𝑅 (𝐴
2
) ⊕ 𝐻
3
⊕ 𝐻
4
⊕ 𝐾
1
⊕ 𝐾
2

(48)

is upper semi-Browder. Observe that 𝐴
2
and 𝐵

2
are left

invertible;𝐶
33
and𝐵

11
are invertible. Direct calculation shows

that 𝑀 is injective. Since 𝐴 ∈ Φ(𝐻) and 𝐵 ∈ Φ
+
(𝐾), we

have 𝑀
𝐶
∈ Φ
𝑎𝑏
(𝐻 ⊕ 𝐾), and, hence, 𝑀 is an upper semi-

Fredholm operator.Thus,𝑀 is left invertible. Combining this
with Lemma 2 yields 𝑀

𝐶
∈ Φ
𝑎𝑏
(𝐻 ⊕ 𝐾), which means that

𝜆 ∉ ⋂
𝐶∈𝐺(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
). Thus,

⋂

𝐶∈𝐺(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
) ⊆ ⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
)

∪ {𝜆 ∈ C : 𝐵 − 𝜆 is compact} .
(49)

Combining Case 1 with Case 2 leads to

⋂

𝐶∈𝐺(𝐾,𝐻)

𝜎𝑎𝑏 (𝑀𝐶) = ⋂

𝐶∈𝜙(𝐾,𝐻)

𝜎𝑎𝑏 (𝑀𝐶)

= ( ⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑎𝑏
(𝑀
𝐶
))

∪ {𝜆 ∈ C : 𝐵 − 𝜆 is compact} .

(50)

This completes the proof.

By duality, we have

Theorem 16. For a given pair (𝐴, 𝐵) ∈ 𝐵(𝐻) × 𝐵(𝐾), one has

⋂

𝐶∈𝐺(𝐾,𝐻)

𝜎
𝑠𝑏
(𝑀
𝐶
) = ⋂

𝐶∈Φ(𝐾,𝐻)

𝜎
𝑠𝑏
(𝑀
𝐶
)

= ( ⋂

𝐶∈𝐵(𝐾,𝐻)

𝜎
𝑠𝑏
(𝑀
𝐶
))

∪ {𝜆 ∈ C : 𝐴 − 𝜆 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡} .

(51)
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