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This paper focuses on the time delay estimation of the system described in the form of discrete-time state equation with multiple
input delays. To estimate the input delays, a new evolutionary computation called the artificial bee colony (ABC) algorithm is
utilized. This algorithm is originally motivated from the social behaviors of honeybee organization, and it has been proven to be
a powerful means for solving the optimized problem. Based on the proposed algorithm, the unknown system input delays can be
further solved by minimizing a quadratic cost function of the system. Two illustrative examples are provided to verify the potential
of the presented method in the time delay estimation. Some simulations containing different initial condition examinations and
appearance of noises are further given. Numerical results show that the proposed method can do well in the multiple inputs delay
estimation of discrete-time state equations.

1. Introduction

Among numerous evolutionary computations developed in
recent years, artificial bee colony (ABC) algorithm has
attracted many researchers’ considerable attentions and also
been applied in a variety of engineering optimization prob-
lems. It was initially developed by Karaboga and spread out
by his research teams [1–4], and it is a population-based opti-
mization algorithm like other evolutionary computations.
Thus, this algorithm is in parallel to seek for the global or
near global solution of the optimized problem, not a single
direction search such as the gradient descent method. The
ABC algorithm is motivated from the physical bee swarm
behavior and possesses a powerful searching capacity on opti-
mizations. In the real honeybee colony, there are three differ-
ent types of foragers which are the employed bees, onlookers,
and scouts [1]. The employed bee is a bee that is going to
the food source visited by itself previously, the onlooker is a
bee that is waiting on the dance area for making decision to
select some food source, and the scout bee means that a bee
is carrying out random search for food sources. Furthermore,
each employed bee goes to one food source, and, therefore,
this implies that the number of employed bees is identical
with the number of food sources. An employed bee will

become a scout when her food source is exhausted by herself
and onlooker bees.

In [1], Karaboga and Basturk have shown that the pro-
posed algorithm is superior to some evolutionary algorithms,
for example, genetic algorithm, particle swarm optimization,
particle swarm inspired evolutionary algorithm, and so on. A
large number of engineering applications combined with the
ABC algorithm have been developed in recent years [5–11].
In [5], a nonlinear chemical CSTR process system was con-
trolled by using proportional-integral-derivative (PID) con-
troller from the stable equilibrium point to unstable equi-
librium point. The design method for tuning PID control
gains is the ABC algorithm. In [7], the authors proposed an
optimal design method for the reactive power flow in which
the active power loss was minimized by the ABC approach.
In machining operations, selection of cutting parameters is
an essential task for reducing the cost of products. Yildiz
developed an optimization approach by using artificial bee
colony algorithm for optimal selection of cutting parameters
in multipass turning operations. Simulation results revealed
that the ABC algorithm outperforms other optimization
techniques [8]. Besides, Huang and Liu presented the ABC
algorithm to enhance the fault section estimation perfor-
mance in power systems [9]. The proposed method can
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reduce the possibility of inaccurate diagnosis and find the
accurate fault section among voluminous alarms.

Another issue considered in this paper is concerned with
the time delay estimation. Time delay problem often occurs
in many physical situations such as sensor array, sonar, med-
ical imaging, and communications because of the inherent
system dynamics and instrumentations. Especially for the
control engineering and system identification, the time delay
information is of importance. It is attractive and practical
to directly estimate these delays according to the measured
data rather than making an attempt to obtain them from a
physical understanding of systems [12]. To cope with time
delay estimation, many techniques were developed in the
literature [12–17]. In [14], the authors proposed a novel time
delay estimation approach by sliding discrete Fourier trans-
form, and the maximum magnitude of the spectrum and its
corresponding phase offset were utilized. It was shown that
the proposed method outperforms the standard correlation-
based method. Shaltaf then developed a Neurofuzzy-based
approach combined with discrete cosine transform (DCT)
coefficients for time delay estimation problem [15]. However,
a design method for system time delay estimations based on
using ABC optimization algorithm seems not to be reported
to date. Thus, this paper will focus on the issue of multiple
time delays estimation and develop an ABC-based approach
to solve such a delay estimation problem. It is requested
to define a quadratic cost function of the system at the
beginning; the developedABCalgorithm thenminimizes this
function bymeans of certainmechanisms, and the actual time
delays can be estimated correctly. Besides, the effect of initial
condition of the algorithm on the estimation performance is
also considered.The rest of this paper is organized as follows.
In Section 2, the system formulation for multiple input time
delays of discrete-time state equations is addressed. The con-
cept and evolutionary computation of the ABC algorithm is
firstly introduced in Section 3, and the design steps combined
with ABC for such a time delay estimation is proposed. In
Section 4, two illustrative examples are given to confirm the
potential of the developed method, and some examinations
including different independent runs and appearance of
noises are further performed. Finally, Section 5 gives some
simple conclusions.

2. System Formulations

In this section, the following system that is expressed by
the discrete-time state equation with multiple input delays is
considered [16]:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) +

𝑝

∑

𝑖=1

𝐵𝑖𝑢𝑖 (𝑘 − 𝜏𝑖) , (1)

where 𝑥(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘), . . . , 𝑥𝑛(𝑘)] ∈ 𝑅
𝑛 is the state

variable vector of the system at time 𝑘, 𝑢𝑖(𝑘) ∈ 𝑅, for 𝑖 =
1, 2, . . . , 𝑝, represents the 𝑖th system input, 𝐴 ∈ 𝑅

𝑛×𝑛 is the
coefficient matrix of the system and it is here assumed to be
known, 𝐵𝑖 ∈ 𝑅

𝑛, for 𝑖 = 1, 2, . . . , 𝑝, is also a known coefficient
vector, and 𝜏1, 𝜏2, . . . , 𝜏𝑝 denote the unknown integer time
delays which will be estimated. Moreover, it is assumed that

the 𝑛 system state variables in (1) are observed at each time
𝑘. In order to estimate these input delays accurately, the
following mathematical model for (1) is given:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) +

𝑝

∑

𝑖=1

𝐵𝑖𝑢𝑖 (𝑘 − 𝜏𝑖) , (2)

where 𝑥(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘), . . . , 𝑥𝑛(𝑘)] ∈ 𝑅
𝑛 is the state vari-

able vector of this estimated model at time 𝑘, 𝑢𝑖(𝑘) ∈ 𝑅 is
the same as one of (1), 𝜏1, 𝜏2, . . . , 𝜏𝑝 represent the estimates of
actual input delays 𝜏1, 𝜏2, ⋅ ⋅ ⋅ , 𝜏𝑝, and they should be integer
constants as well. The ABC algorithm is utilized such that
the estimated values can approximate the actual ones. Before
solving the estimation problem, a proper cost function of the
system needs to be defined. In this study, a sum of squared
error of system states is used over a given time frame as
follows

𝐽 (𝜏1, 𝜏2, . . . , 𝜏𝑝) =

𝑁−1

∑

𝑘=0

[𝑥 (𝑘) − 𝑥 (𝑘)] [𝑥 (𝑘) − 𝑥 (𝑘)]
𝑇

=

𝑁−1

∑

𝑘=0

𝑒 (𝑘) ⋅ 𝑒
𝑇
(𝑘)

=

𝑁−1

∑

𝑘=0

𝑝

∑

𝑖=1

𝑒
2

𝑖
(𝑘) ,

(3)

where 𝑒(𝑘) = 𝑥(𝑘) − 𝑥(𝑘) = [𝑒1(𝑘), 𝑒2(𝑘), . . . , 𝑒𝑛(𝑘)] ∈ 𝑅
𝑛

is the error vector of the system between 𝑥(𝑘) and 𝑥(𝑘) and
𝑁 is the sampling number. It can be seen that better estima-
tion results are obtained by minimizing (3). For simplicity,
these estimates of input time delays are collected to form a
parameter vector as

Θ = [𝜃1, 𝜃2, . . . , 𝜃𝑝] = [𝜏1, 𝜏2, . . . , 𝜏𝑝] . (4)

In the viewpoint of ABC algorithm, the cost function of
(3) and the parameter vector of (4) are referred to as the
nectar amount and the food source, respectively. Moreover,
a food source represents a possible solution of the optimized
problem and a large number of food sources then forms the
so-called population. From (3), it is clearly seen that the food
sources greatly affect the cost function value. Our purpose is
to evolve these food sources successively according to some
mechanisms of ABC algorithm such that the best food source
(i.e., this food source is with the lowest cost function value)
is obtained. Next section further introduces the detailed ABC
algorithm and its designing steps on time delay estimation.

3. ABC Algorithm and Its Application to
Time Delay Estimation

In recent years, Karaboga and his teams have developed a
large number of literatures regarding the ABC algorithm and
its application to diverse engineering fields such as cluster [3],
parameter optimization [18], and symbolic regression [19].
They already showed that the ABC algorithm is an efficient
means for solving the optimization problems and is superior
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to other evolutionary computations like GA, PSO, and DE
algorithms. The foragers of honeybee society consist of the
following behavior models [1, 5]. Firstly, a set of food source
positions are chosen at random by bees, and the nectar
amount related to each food source is calculated. These
honeybees then come back to the hive to share the nectar
information of sources with other bees that are waiting on
the dance area. Secondly, each of employed bees, after sharing
the information, still goes to the neighborhood of the original
food source which was visited by herself previously and then
selects a new food source by visual information. Thirdly,
the onlooker prefers a food source area depending on the
nectar information shared by employed bees on the dance
area. While the nectar amount of a food source increases, the
probability of choosing such a food source by an onlooker
increases as well. The onlooker bee then flies to arrive at the
selected area and seeks for a new food source around this
area. Visual information is based on the comparison of food
source positions. Lastly, a scout bee will randomly find out a
new food source to take the place of the previous one when its
nectar is abandoned by the honeybee.The artificial bee colony
is developed by mimicking such model of foraging bees.

Following the above descriptions, some central compo-
nents of the ABC algorithm need to be explained in detail
[1, 5].

3.1. Food Source. In the ABC algorithm, the notation for the
𝑖th food source is denoted by Θ𝑖. Each of food sources repre-
sents a possible candidate solution to the optimized problem,
and note that the number of food sources is the same with
that of employed bees. As can be seen from (4), for time
delay estimation problem, the 𝑖th food source can be further
expressed by Θ𝑖 = [𝜃𝑖1, 𝜃𝑖2, . . . , 𝜃𝑖𝑝] consisting of 𝑝 elements.

3.2. Population Size. A population is composed of numerous
food sources, and here it is assumed that the size of popu-
lation is 𝐻. Thus, for each food source position, it can be
denoted by 𝜃𝑖𝑗 for 𝑖 = 1, 2, . . . , 𝐻 and 𝑗 = 1, 2, . . . , 𝑝.

3.3. Probability Related to Food Source. In theABCalgorithm,
a probability value needs to be evaluated for each of food
sources. This probability is concerned with its cost function
as defined in (3) and determines whether an onlooker bee
chooses a new food source or not. The probability related to
the 𝑖th food source Θ𝑖 is defined by

𝑃𝑟 (Θ𝑖) =

𝐽 (Θ𝑖)

∑
𝐻

𝑘=1
𝐽 (Θ𝑘)

, for 𝑖 = 1, 2, . . . , 𝐻, (5)

where 𝐽(Θ𝑖) is the cost function evaluated by Θ𝑖 (the nectar
amount of the ith food source). From (5), it can be realized
that such a probability value is proportional to the cost
function of every food source.

3.4. New Food Source Position. A new food source position
can be generated around the present one 𝜃𝑖𝑗 in accordance
with the following equation:

𝜃
new
𝑖𝑗

← 𝜃𝑖𝑗 + 𝜙𝑖𝑗 (𝜃𝑖𝑗 − 𝜃𝑚𝑗) ,

for 𝑖 = 1, 2, . . . , 𝐻, 𝑗 = 1, 2, . . . , 𝑝, 𝑚 ̸= 𝑖,

(6)

where 𝜃new
𝑖𝑗

is the new position after updating, 𝜙𝑖𝑗 ∈ [−2, 2]

is a uniformly random number, which greatly dominates
the making of a new food source position around 𝜃𝑖𝑗, and
𝑚 ∈ {1, 2, . . . , 𝐻} is a random integer constant as well but
𝑚 ̸= 𝑖. Equation (6) represents a comparison of neighbor
food positions visually by foraging honeybees, and the ABC
algorithm uses (6) to achieve the optimization for a given
problem. Moreover, it should be noticed for time delay
estimation problem that the estimates 𝜏1, 𝜏2, . . . , 𝜏𝑝 of the
mathematical model equation (2) are requested to be integer
constants; therefore, it is necessary to take the integer part
of every food source position to evaluate the mathematical
model and the cost function of each food source after
executing (6) and for initial positions.

3.5. Abandoned Food Source. In the real-world situation, the
food source may be further replaced by a new food source
when its nectar has been abandoned by honeybees. In the
ABC algorithm, therefore, if the cost function derived from
some food source cannot be improved through an assigned
number of generations (here called limit), such a food source
is abandoned. After that, a new food source instead of the
abandoned one will be produced from the original interval.

3.6. Termination Condition. This algorithm stops if the num-
ber of generations achieves the maximum allowable number
𝐺 which is assigned by the designer.

Designing steps for solving the time delay estimation
problem based on ABC algorithm can be summarized in the
following.

Data. A discrete-time state equation with some unknown
input delays described by (1), a mathematical model of (2)
for modeling (1), control input 𝑢𝑖(𝑘) ∈ 𝑅 for 𝑖 = 1, 2, . . . , 𝑝,
the sampling number𝑁, population size𝐻, parameter limit,
and number of generations 𝐺.

Goal. Accurately estimate the real input delays 𝜏1, 𝜏2, . . . , 𝜏𝑝
of (1) by using the proposed ABC algorithm to minimize the
cost function defined in (3).

Step 1. In the beginning, a population consisting of 𝐻 food
sources is randomly established from the interval [0, 1].

Step 2. If an assigned number of generations 𝐺 is achieved,
then the algorithm stops.

Step 3. Calculate the cost function 𝐽(Θ𝑖) of every food source
Θ𝑖 by using (3).

Step 4. Evaluate every probability 𝑃𝑟(Θ𝑖) of Θ𝑖 by using (5).

Step 5. Generate a random number from [0, 1], and if the
probability 𝑃𝑟(Θ𝑖) is less than this generated number, then a
new food source Θnew

𝑖
= [𝜃

new
𝑖1
, 𝜃

new
𝑖2
, . . . , 𝜃

new
𝑖𝑝
] is derived by

means of (6).

Step 6. Further calculate 𝐽(Θnew
𝑖
), and let this new food

source Θnew
𝑖

replace the original Θ𝑖 if 𝐽(Θ
new
𝑖
) < 𝐽(Θ𝑖);
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otherwise, the present food source Θ𝑖 still remains, and the
new one is discarded.

Step 7. When the number of generations is equal to the
number, limit, check everyΘ𝑖 whether its positions have been
modified or not. If not yet, this food source is removed, and
correspondingly a new food source is generated from the
initial interval [0, 1].

Step 8. Go back to Step 2.

4. Illustrative Examples

This section will show the applicability of the ABC-based
approach to the time delay estimation by using two illustra-
tive examples. For all the following simulations, the related
parameter setting for the ABC algorithm is given by the
population size 𝐻 = 40, limit = 20, number of generations
𝐺 = 100, and sampling number𝑁 = 200 in (3).

Example 1. Let us consider the first example which is a dis-
crete-time state equation with three state variables and two
system inputs described by [16]

[

[

𝑥1 (𝑘 + 1)

𝑥2 (𝑘 + 1)

𝑥3 (𝑘 + 1)

]

]

=
[

[

0.05 1 0

−0.25 0.05 0

0.025 0.025 1

]

]

[

[

𝑥1 (𝑘)

𝑥2 (𝑘)

𝑥3 (𝑘)

]

]

+
[

[

0.5

1

0.5

]

]

𝑢1 (𝑘 − 6) +
[

[

1

0.25

0.5

]

]

𝑢2 (𝑘 − 4) ,

(7)

where 𝜏1 = 6 and 𝜏2 = 4 are the real input time delays andwill
be estimated. Correspondingly, a mathematical model for (7)
is constructed by

[

[

𝑥1 (𝑘 + 1)

𝑥2 (𝑘 + 1)

𝑥3 (𝑘 + 1)

]

]

=
[

[

0.05 1 0

−0.25 0.05 0

0.025 0.025 1

]

]

[

[

𝑥1 (𝑘)

𝑥2 (𝑘)

𝑥3 (𝑘)

]

]

+
[

[

0.5

1

0.5

]

]

𝑢1 (𝑘 − 𝜏1) +
[

[

1

0.25

0.5

]

]

𝑢2 (𝑘 − 𝜏2) ,

(8)

where 𝜏1 and 𝜏2 denote the estimates of 𝜏1and 𝜏2, respectively.
It is assumed that the initial values are given by 𝑥1(0) = 0,
𝑥2(0) = 0, and𝑥3(0) = 0 for the system and𝑥1(0) = 0,𝑥2(0) =
0, and 𝑥3(0) = 0 for the model. In addition, system inputs
𝑢1and 𝑢2 are two uniformly random numbers generated
from the interval [−1, 1]. After executing the proposed ABC
algorithm with these data, simulation results are listed in
Table 1 and displayed in Figure 1, respectively. In Table 1, it
is clearly shown that the estimates 𝜏1 and 𝜏2 are all exactly the
same with 𝜏1 = 6 and 𝜏2 = 4 from ten runs with different
initial conditions of the algorithm. Convergence trajectories
of 𝜏1 and 𝜏2 with respect to number of generations is shown in
Figure 1 only for Run 1. After performing about 25 iterations,
the actual time delays can be correctly estimated.

Table 1: Estimation results for Example 1.

𝜏1 𝜏2

Run 1 6 4
Run 2 6 4
Run 3 6 4
Run 4 6 4
Run 5 6 4
Run 6 6 4
Run 7 6 4
Run 8 6 4
Run 9 6 4
Run 10 6 4
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Figure 1: Estimates of 𝜏1 and 𝜏2 for Run 1 of Example 1.

Example 2. In the second example, a discrete-time state equa-
tion with two state variables and three system inputs is con-
sidered and can be expressed by

[

𝑥1 (𝑘 + 1)

𝑥2 (𝑘 + 1)
] = [

−0.1 −0.01

0.05 −0.2
] [

𝑥1 (𝑘)

𝑥2 (𝑘)
] + [

1

−2
] 𝑢1 (𝑘 − 3)

+ [

0.5

−0.5
] 𝑢2 (𝑘 − 4) + [

−2

1
] 𝑢3 (𝑘 − 1) ,

(9)

where three input delays 𝜏1 = 3, 𝜏2 = 4, and 𝜏3 =

1 are given, respectively. As the same as Example 1, three
system inputs are all generated from [−1, 1] randomly to
excite the responses, and all initial values are assumed to
be zero. However, in this case the effect of measurement
noises on estimation performance is involved. It is assumed
that two Gaussian signals𝑁1(0, 0.1) and𝑁2(0, 0.1) shown in
Figure 2 are incorporated into the system states 𝑥1 and 𝑥2,
respectively, as measurement noises. Also, ten different runs
are illustrated for examining the robustness of the developed
algorithm. Table 2 lists the estimation results for Example 2,
and all simulation results from any independent run reveal
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Figure 2: Gaussian noises𝑁1(0, 0.1) and𝑁2(0, 0.1) for Example 2.
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Figure 3: Estimates of 𝜏1, 𝜏2, and 𝜏3 for Run 1 of Example 2.

that the input time delays can be correctly estimated even
though measured noises appear. Figure 3 then displays the
convergence of time delay estimations for Run 1. As can be
seen from the figure, the estimates all approach the actual
values after some generations.

5. Conclusions

This paper has successfully developed an estimation approach
for the discrete-time state equation with multiple input time
delays. The estimation method is based on the artificial bee
colony algorithmwhich is one of new evolutionary computa-
tions. By mimicking the social behaviors of honeybees, such
an algorithm can be used to solve the system optimization
problem. In this paper, the detailed descriptions for ABC
algorithm have been presented, and the design steps com-
bined with the proposed ABC algorithm have also been given
formultiple input time delay estimations. It is concluded form

Table 2: Estimation results for Example 2.

𝜏1 𝜏2 𝜏3

Run 1 3 4 1
Run 2 3 4 1
Run 3 3 4 1
Run 4 3 4 1
Run 5 3 4 1
Run 6 3 4 1
Run 7 3 4 1
Run 8 3 4 1
Run 9 3 4 1
Run 10 3 4 1

two illustrative examples that the ABC-based approach has
a satisfactory outcome for solving the time delay estimation
problem.
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