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This paper is concerned with stochastic differential equations (SDEs) with multi-Markovian switching. The existence and
uniqueness of solution are investigated, and the pth moment of the solution is estimated. The classical theory of SDEs with single
Markovian switching is extended.

1. Introduction

Stochastic modeling has played an important role in many
branches of industry and science. SDEs with single continu-
ous-time Markovian chain have been used to model many
practical systems where they may experience abrupt changes
in their parameters and structure caused by phenomena
such as abrupt environment disturbances. SDEs with single
Markovian switching can be denoted by

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡, 𝛾 (𝑡)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑡, 𝛾 (𝑡)) 𝑑𝐵 (𝑡) , 𝑡
0
≤ 𝑡 ≤ 𝑇

(1)

with initial conditions 𝑥(𝑡
0
) = 𝑥

0
∈ 𝐿
2

F
𝑡0

and 𝛾(𝑡
0
) = 𝛾

0
,

where 𝛾(𝑡) is a right-continuous homogenous Markovian
chain on the probability space taking values in a finite state
space S = {1, 2, . . . , 𝑁} and is F

𝑡
-adapted but independent

of the Brownian motion 𝐵(𝑡), and

𝑓 : R
𝑛
× R
+
× S → R

𝑛
,

𝑔 : R
𝑛
× R
+
× S → R

𝑛+𝑚
.

(2)

Owing to their theoretical and practical significance, (1)
has received great attention and has been recently studied
extensively, andwe heremention Skorokhod [1] andMao and
Yuan [2] among many others.

However, in the real world, the condition that coefficients
𝑓 and 𝑔 in (1) are perturbed by the same Markovian chain
is too restrictive. For example, in the classical Black-Scholes
model, the asset price is given by a geometric Brownian
motion

𝑑𝑋 (𝑡) = 𝜇𝑋 (𝑡) 𝑑𝑡 + ]𝑋(𝑡) 𝑑𝐵 (𝑡) , (3)

where 𝜇 is the rate of the return of the underlying assert, ]
is the volatility, and 𝐵(𝑡) is a scalar Brownian motion. Since
there is strong evidence to indicate that 𝜇 is not a constant but
is a Markovian jump process (see, e.g., [3, 4]), many authors
proposed the following model:

𝑑𝑋 (𝑡) = 𝜇 (𝛾 (𝑡))𝑋 (𝑡) 𝑑𝑡 + ] (𝛾 (𝑡))𝑋 (𝑡) 𝑑𝐵 (𝑡) . (4)

However, many stochastic factors that affect 𝜇 are different
from those that affect ]. Then the following model is more
appropriate than model (105) to describe this problem:

𝑑𝑋 (𝑡) = 𝜇 (𝛾
1
(𝑡))𝑋 (𝑡) 𝑑𝑡 + ] (𝛾

2
(𝑡))𝑋 (𝑡) 𝑑𝐵 (𝑡) , (5)

where 𝛾
𝑖
(𝑡) is a right-continuous homogenous Markovian

chain taking values in a finite state space, 𝑖 = 1, 2. Another
example is the stochastic Lotka-Volterra model with single
Markovian switching which has received great attention
and has been studied extensively recently (see, e.g., [5–12]).
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For the sake of convenience, we take the following two-
dimensional competitive model as an example:

𝑑𝑥
1
= 𝑥
1
[𝑟
10

(𝛾 (𝑡)) − 𝑎
11

(𝛾 (𝑡)) 𝑥1 − 𝑎
12

(𝛾 (𝑡)) 𝑥2] 𝑑𝑡

+ 𝛼
1
(𝛾 (𝑡)) 𝑥

1
𝑑𝐵
1
(𝑡) ,

𝑑𝑥
2
= 𝑥
2
[𝑟
20

(𝛾 (𝑡)) − 𝑎
21

(𝛾 (𝑡)) 𝑥
1
− 𝑎
22

(𝛾 (𝑡)) 𝑥
2
] 𝑑𝑡

+ 𝛼
2
(𝛾 (𝑡)) 𝑥2𝑑𝐵2 (𝑡) ,

(6)

where 𝑥
𝑖
is the size of 𝑖th species at time 𝑡, 𝑟

𝑖0
(𝑗) represents

the growth rate of 𝑖th species in regime 𝑗 for 𝑖 = 1, 2,
𝑗 ∈ S, and 𝐵

1
and 𝐵

2
are independent standard Brownian

motions. However, there are many stochastic factors that
affect some coefficients intensely but have little impact on
other coefficients in (6). For example, suppose that the
stochastic factor is rain falls and 𝑥

1
is able to endure a damp

weather while 𝑥
2
is fond of a dry environment, then the rain

falls will affect 𝑥
2
intensely but have little impact on 𝑥

1
. Thus,

a more appropriate model is governed by

𝑑𝑥
1
= 𝑥
1
[𝑟
10

(𝛾
10

(𝑡)) − 𝑎
11

(𝛾
11

(𝑡)) 𝑥
1
− 𝑎
12

(𝛾
12

(𝑡)) 𝑥
2
] 𝑑𝑡

+ 𝛼
1
(𝛾
1 (𝑡)) 𝑥1𝑑𝐵1 (𝑡) ,

𝑑𝑥
2
= 𝑥
2
[𝑟
20

(𝛾
20

(𝑡)) − 𝑎
21

(𝛾
21

(𝑡)) 𝑥
1
− 𝑎
22

(𝛾
22

(𝑡)) 𝑥
2
] 𝑑𝑡

+ 𝛼
2
(𝛾
2 (𝑡)) 𝑥2𝑑𝐵2 (𝑡) ,

(7)

where 𝛾
𝑖𝑗
(𝑡) and 𝛾

𝑘
(𝑡) are right-continuous homogenous

Markovian chains taking values in finite state spaces S
𝑖𝑗
for

𝑖 = 1, 2, 𝑗 = 0, 1, 2, and S
𝑘
for 𝑘 = 1, 2, respectively.

Thus the above examples show that the study of the
following SDEs with multi-Markovian switchings is essential
and is of great importance fromboth theoretical and practical
points:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡, 𝛾
1
(𝑡)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑡, 𝛾2 (𝑡)) 𝑑𝐵 (𝑡) , 𝑡
0
≤ 𝑡 ≤ 𝑇

(8)

with initial conditions 𝑥(𝑡
0
) = 𝑥

0
∈ 𝐿
2

F
0

and 𝛾
𝑖
(𝑡
0
), where

𝛾
𝑖
(𝑡) is a right-continuous homogenous Markovian chain

on the probality space taking values in a finite state space
S
𝑖
= {1, 2, . . . , 𝑁

𝑖
} and isF

𝑡
-adapted but independent of the

Brownian motion 𝐵
𝑖
(𝑡), 𝑖 = 1, 2, and

𝑓 : R
𝑛
× R
+
× S
1
→ R

𝑛
,

𝑔 : R
𝑛
× R
+
× S
2
→ R

𝑛+𝑚
.

(9)

Equation (8) can be regarded as the result of the 𝑁
1
× 𝑁
2

equations

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡, 𝑖) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑡, 𝑗) 𝑑𝐵 (𝑡) , 𝑖 ∈ S
1
, 𝑗 ∈ S

2

(10)

switching among each other according to the movement of
the Markovian chains. It is important for us to discover the

properties of the system (8) and to find out whether the
presence of two Markovian switchings affects some known
results. The first step and the foundation of those studies are
to establish the theorems for the existence and uniqueness of
the solution to system (8). So in this paper, we will give some
theorems for the existence and uniqueness of the solution to
system (8) and study some properties of this solution. The
theory developed in this paper is the foundation for further
study and can be applied in many different and complicated
situations, and hence the importance of the results in this
paper is clear.

It should be pointed out that the theory developed in this
paper can be generalized to cope with the more general SDEs
with more Markovian chains

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡, 𝛾1 (𝑡) , . . . , 𝛾𝑛 (𝑡)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑡, 𝛾
𝑛+1

(𝑡) , . . . , 𝛾
𝑛+𝑚

(𝑡)) 𝑑𝐵 (𝑡) .

(11)

The reason we concentrate on (8) rather than (11) is to avoid
the notations becoming too complicated. Once the theory
developed in this paper is established, the reader should be
able to cope with the more general (11) without any difficulty.

The remaining part of this paper is as follows. In Section 2,
the sufficient criteria for existence anduniqueness of solution,
local solution, andmaximal local solution will be established,
respectively. In Section 3, the 𝐿

𝑃-estimates of the solution
will be given. In Section 4, we will introduce an example to
illustrate our main result. Finally, we will close the paper with
conclusions in Section 5.

2. SDEs with Markovian Chains

Throughout this paper, let (Ω,F, {F
𝑡
}
𝑡∈𝑅
+

,P) be a complete
probability space. Let 𝐵(𝑡) = (𝐵

1
(𝑡), . . . , 𝐵

𝑚
(𝑡))
𝑇 be an 𝑚-

dimensional Brownian motion defined on the probability
space.

In this section, we will consider (8). Let 𝛾(𝑡) = (𝛾
1
(𝑡),

𝛾
2
(𝑡)). We impose a hypothesis.
(H1): 𝛾

1
(𝑡) is independent of 𝛾

2
(𝑡).

Then 𝛾(𝑡) is a homogenous vector Markovian chain with
transition probabilities

𝑃 {𝛾 (𝑠 + 𝑡) = (𝑗
1
, 𝑗
2
) | 𝛾 (𝑠) = (𝑖

1
, 𝑖
2
)}

= 𝑃 {𝛾 (𝑡) = (𝑗
1
, 𝑗
2
) | 𝛾 (0) = (𝑖

1
, 𝑖
2
)}

=: 𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑡) ,

(12)

where (𝑖
1
, 𝑖
2
), (𝑗
1
, 𝑗
2
) ∈ S = {(1, 1), (1, 2), . . . , (1,𝑁

2
), (2, 1),

. . . , (𝑁
1
, 𝑁
2
)}.

Now, we will prepare some lemmas which are important
for further study.

Lemma 1. 𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑡) has the following properties:

(i) 𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑡) ≥ 0 for (𝑖
1
, 𝑖
2
), (𝑗
1
, 𝑗
2
) ∈ S;

(ii) ∑
(𝑗
1
,𝑗
2
)∈S 𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑡) = 1 for (𝑖
1
, 𝑖
2
) ∈ S;

(iii) 𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(0) = 𝛿
𝑖
1
𝑗
1

⋅ 𝛿
𝑖
2
𝑗
2

, where 𝛿
𝑖
𝑘
𝑗
𝑘

= 1 if 𝑖
𝑘

= 𝑗
𝑘
,

otherwise 𝛿
𝑖
𝑘
𝑗
𝑘

= 0, 𝑘 = 1, 2;
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(iv) (Chapman-Kolmogorov equation) For 𝑠, 𝑡 ≥ 0 and
(𝑖
1
, 𝑖
2
), (𝑗
1
, 𝑗
2
) ∈ S,

𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑠 + 𝑡)

= ∑

(𝑘1 ,𝑘2)∈S

𝑃
𝑖
1
𝑖
2
;𝑘
1
𝑘
2

(𝑡) 𝑃𝑘
1
𝑘
2
;𝑗
1
𝑗
2

(𝑠) .
(13)

Proof. The proofs of (i), (ii), and (iii) are obvious. Now, let us
prove (iv):

𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑠 + 𝑡)

= 𝑃 {𝛾 (𝑠 + 𝑡) = (𝑗
1
, 𝑗
2
) | 𝛾 (0) = (𝑖

1
, 𝑖
2
)}

= ∑

(𝑘
1
,𝑘
2
)∈S

𝑃 {𝛾 (𝑠 + 𝑡) = (𝑗
1
, 𝑗
2
) ,

𝛾 (𝑡) = (𝑘
1
, 𝑘
2
) | 𝛾 (0) = (𝑖

1
, 𝑖
2
)}

= ∑

(𝑘
1
,𝑘
2
)∈S

(𝑃 {𝛾 (𝑠 + 𝑡) = (𝑗
1
, 𝑗
2
) ,

𝛾 (𝑡) = (𝑘
1
, 𝑘
2
) , 𝛾 (0) = (𝑖

1
, 𝑖
2
)}

×(𝑃 {𝛾 (𝑡) = (𝑘
1
, 𝑘
2
) , 𝛾 (0) = (𝑖

1
, 𝑖
2
)})
−1

)

×
𝑃 {𝛾 (𝑡) = (𝑘

1
, 𝑘
2
) , 𝛾 (0) = (𝑖

1
, 𝑖
2
)}

𝑃 {𝛾 (0) = (𝑖
1
, 𝑖
2
)}

= ∑

(𝑘
1
,𝑘
2
)∈S

𝑃 {𝛾 (𝑠 + 𝑡) = (𝑗
1
, 𝑗
2
) | 𝛾 (𝑡) = (𝑘

1
, 𝑘
2
) ,

𝛾 (0) = (𝑖
1
, 𝑖
2
)}

× 𝑃 {𝛾 (𝑡) = (𝑘
1
, 𝑘
2
) | 𝛾 (0) = (𝑖

1
, 𝑖
2
)}

= ∑

(𝑘1 ,𝑘2)∈S

𝑃 {𝛾 (𝑠 + 𝑡) = (𝑗
1
, 𝑗
2
) | 𝛾 (𝑡) = (𝑘

1
, 𝑘
2
)}

× 𝑃 {𝛾 (𝑡) = (𝑘
1
, 𝑘
2
) | 𝛾 (0) = (𝑖

1
, 𝑖
2
)}

= ∑

(𝑘1 ,𝑘2)∈S

𝑃
𝑘
1
𝑘
2
;𝑗
1
𝑗
2

(𝑠) 𝑃
𝑖
1
𝑖
2
;𝑘
1
𝑘
2

(𝑡) .

(14)

This completes the proof.

Now, we impose another hypothesis, which is called
standard condition.

(H2): lim
𝑡→0

𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑡) = 𝛿
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

.

Lemma 2. Under Assumption (H2), for all 𝑡 ≥ 0, (𝑖
1
, 𝑖
2
) ∈ S,

one has 𝑃
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(𝑡) > 0.

Proof. From 𝑃
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(0) > 0 and (H2) we know that, for
arbitrary fixed 𝑡 > 0, we have

𝑃
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(
𝑡

𝑛
) > 0 (15)

for sufficient large 𝑛. Then making use of Chapman-Kolm-
ogorov equation

𝑃
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(𝑠 + 𝑡) = ∑

(𝑘1 ,𝑘2)∈S

𝑃
𝑖
1
𝑖
2
;𝑘
1
1𝑘
2

(𝑡) 𝑃
𝑘
1
𝑘
2
;𝑖
1
𝑖
2

(𝑠)

≥ 𝑃
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(𝑡) 𝑃𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(𝑠)

(16)

gives

𝑃
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(𝑡) ≥ (𝑃
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(
𝑡

𝑛
))

𝑛

> 0, (17)

which is the desired assertion.

Lemma 3. Under Assumption (H2), for all (𝑖
1
, 𝑖
2
) ∈ S,

−𝑞
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

:= lim
𝑡→0

1 − 𝑃
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(𝑡)

𝑡
(18)

exists (but may be ∞).

Proof. Define 𝜙(𝑡) = − ln𝑃
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(𝑡) ≥ 0. Then making use of
(16) gives

𝜙 (𝑠 + 𝑡) ≤ 𝜙 (𝑠) + 𝜙 (𝑡) . (19)

Set −𝑞
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

= sup
𝑡>0

(𝜙(𝑡)/𝑡). It is easy to see that

0 ≤ −𝑞
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

≤ ∞, lim sup
𝑡→0

𝜙 (𝑡)

𝑡
≤ −𝑞
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

. (20)

Now we will assert

lim inf
𝑡→0

𝜙 (𝑡)

𝑡
≥ −𝑞
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

. (21)

In fact, for 0 < ℎ < 𝑡, ∃𝑛, 0 ≤ 𝜀 ≤ ℎ such that 𝑡 = 𝑛ℎ + 𝜀.
Applying (19) yields

𝜙 (𝑡)

𝑡
≥

𝑛ℎ

𝜀

𝜙 (ℎ)

ℎ
+

𝜙 (𝜀)

𝑡
. (22)

Note that 𝜀 → 0, 𝑛ℎ/𝜀 → 1, 𝜙(𝜀) → 0 whenever ℎ → 0
+,

then for all 𝑡 > 0 we have

𝜙 (𝑡)

𝑡
≤ lim inf
ℎ→0

𝜙 (ℎ)

ℎ
. (23)

This implies −𝑞
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

≤ lim inf
𝑡→0

(𝜙(𝑡)/𝑡). Thus

−𝑞
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

= lim
𝑡→0

𝜙 (𝑡)

𝑡
. (24)

Using the definition of 𝜙(𝑡) gives

lim
𝑡→0

1 − 𝑃
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(𝑡)

𝑡
= lim
𝑡→0

1 − exp {𝜙 (𝑡)}

𝜙 (𝑡)

𝜙 (𝑡)

𝑡
= −𝑞
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

,

(25)

which is the required assertion.
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Lemma 4. Under Assumption (H2), for (𝑖
1
, 𝑖
2
), (𝑗
1
, 𝑗
2
) ∈

S, (𝑖
1
, 𝑖
2
) ̸= (𝑗
1
, 𝑗
2
),

𝑞
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

:= 𝑃


𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(0) = lim
𝑡→0

𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑡)

𝑡
(26)

exists and is finite.

Proof. By (H2), we note that for all 0 < 𝜀 < 1/3, ∃0 < 𝛿 < 1,
such that

𝑃
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(𝑡) > 1 − 𝜀, 𝑃
𝑗
1
𝑗
2
;𝑗
1
𝑗
2

(𝑡) > 1 − 𝜀,

𝑃
𝑗
1
𝑗
2
;𝑖
1
𝑖
2

(𝑡) < 𝜀

(27)

provided 0 < 𝑡 ≤ 𝛿.
For ∀0 ≤ ℎ < 𝑡, set 𝑛 = ⟨𝑡/ℎ⟩, where ⟨𝑎⟩ = max

𝑛≤𝑎
{𝑛 ∈

Z}. Let

𝑃
(𝑗
1
𝑗
2
)

𝑖
1
𝑖
2
;𝑘
1
𝑘
2

(ℎ) = 𝑃
𝑖
1
𝑖
2
;𝑘
1
𝑘
2

(ℎ) ,

𝑃
(𝑗
1
𝑗
2
)

𝑖
1
𝑖
2
;𝑘
1
𝑘
2

(𝑚ℎ)

= ∑

(𝑟1,𝑟2) ̸= (𝑗1 ,𝑗2)

𝑃
(𝑗
1
𝑗
2
)

𝑖
1
𝑖
2
;𝑟
1
𝑟
2

((𝑚 − 1) ℎ) 𝑃𝑟
1
𝑟
2
;𝑘
1
𝑘
2

(ℎ) ,

(28)

where 𝑃
(𝑗
1
𝑗
2
)

𝑖
1
𝑖
2
;𝑘
1
𝑘
2

(𝑚ℎ)means that the probability of the 𝛾(𝑡)will
not reach to (𝑗

1
, 𝑗
2
) at times ℎ, 2ℎ, . . . , (𝑚 − 1)ℎ but will reach

to (𝑘
1
, 𝑘
2
) at time 𝑚ℎ. Note that if ℎ ≤ 𝑡 ≤ 𝛿, then

𝜀 > 1 − 𝑃
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(𝑡)

= ∑

(𝑘1 ,𝑘2) ̸= (𝑖1 ,𝑖2)

𝑃
𝑖
1
𝑖
2
;𝑘
1
𝑘
2

(𝑡) ≥ 𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑡)

≥

𝑛

∑

𝑚=1

𝑃
(𝑗
1
𝑗
2
)

𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑚ℎ) 𝑃
𝑗
1
𝑗
2
;𝑗
1
𝑗
2

(𝑡 − 𝑚ℎ)

≥ (1 − 𝜀)

𝑛

∑

𝑚=1

𝑃
(𝑗
1
𝑗
2
)

𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑚ℎ) ,

(29)

which indicates
𝑛

∑

𝑚=1

𝑃
(𝑗
1
𝑗
2
)

𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑚ℎ) ≤
𝜀

1 − 𝜀
. (30)

Then making use of

𝑃
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(𝑚ℎ) = 𝑃
(𝑗
1
𝑗
2
)

𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(𝑚ℎ)

+

𝑚−1

∑

𝑙=1

𝑃
(𝑗
1
𝑗
2
)

𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑙ℎ) 𝑃
𝑗
1
𝑗
2
;𝑖
1
𝑖
2

((𝑚 − 𝑙) ℎ) ,

(31)

we obtain

𝑃
(𝑗
1
𝑗
2
)

𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(𝑚ℎ) ≥ 𝑃
𝑖
1
𝑖
2
;𝑖
1
𝑖
2

(𝑚ℎ) −

𝑚−1

∑

𝑙=1

𝑃
(𝑗
1
𝑗
2
)

𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑙ℎ)

≥ 1 − 𝜀 −
𝜀

1 − 𝜀
.

(32)

Consequently,

𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑡)

>

𝑛

∑

𝑚=1

𝑃
(𝑗
1
𝑗
2
)

𝑖
1
𝑖
2
;𝑖
1
𝑖
2

((𝑚 − 1) ℎ) 𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(ℎ) 𝑃
𝑗
1
𝑗
2
;𝑗
1
𝑗
2

(𝑡 − 𝑚ℎ)

≥ 𝑛 (1 − 𝜀 −
𝜀

1 − 𝜀
)𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(ℎ) (1 − 𝜀)

≥ 𝑛 (1 − 3𝜀) 𝑃𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(ℎ) .

(33)

Dividing both sides of the above inequality by ℎ and noting
𝑛ℎ → 𝑡 whenever ℎ → 0 yield

lim sup
ℎ→0

𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(ℎ)

ℎ
≤

1

1 − 3𝜀

𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑡)

𝑡
< ∞. (34)

Then letting 𝑡 → 0 gives

lim sup
ℎ→0

𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(ℎ)

ℎ
≤

1

1 − 3𝜀
lim inf
𝑡→0

𝑃
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑡)

𝑡
, (35)

and the required assertion follows immediately by letting
𝜀 → 0. This completes the proof.

Set 𝛾(𝑡) = (𝛾
1
(𝑡), 𝛾
2
(𝑡)), then it is easy to see that

almost every sample path of 𝛾(𝑡) is a right continuous step
function. Now letting P(𝑡) = (𝑃

𝑖
1
𝑖
2
;𝑗
1
𝑗
2

(𝑡))
𝑁
1
𝑁
2
×𝑁
1
𝑁
2

, Q =

(𝑞
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

)
𝑁
1
𝑁
2
×𝑁
1
𝑁
2

= P(0). Then by Chapman-Kolmogorov
equation

P (𝑡 + ℎ) = P (𝑡)P (ℎ) = P (ℎ)P (𝑡) , (36)

we have

P (𝑡 + ℎ) − P (𝑡)

ℎ
= P (𝑡) [

P (ℎ) − I
ℎ

] = [
P (ℎ) − I

ℎ
]P (𝑡) .

(37)

Letting ℎ → 0 and taking limits give

P(𝑡) = P (𝑡)Q,

P(𝑡) = QP (𝑡) .

(38)

Note that

P (0) = I. (39)

Then by solving the ordinary differential equations (38) and
(39), we obtain the following lemma.

Lemma 5. For P(𝑡) and Q one has

P (𝑡) = exp {Q𝑡} . (40)

We are now in the position to give the sufficient condi-
tions for the existence and uniqueness of the solution of (8).
For this end, let us first give the definition of the solution.
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Definition 6. An R𝑛-valued stochastic process {𝑥(𝑡)}
𝑡
0
≤𝑡≤𝑇

is
called a solution of (8) if it has the following properties:

(i) {𝑥(𝑡)}
𝑡
0
≤𝑡≤𝑇

is continuous andF
𝑡
-adapted;

(ii) {𝑓(𝑥(𝑡), 𝑡, 𝛾
1
(𝑡))}
𝑡
0
≤𝑡≤𝑇

∈L1([𝑡
0
, 𝑇];R𝑛)while {𝑔(𝑥(𝑡),

𝑡, 𝛾
2
(𝑡))}
𝑡
0
≤𝑡≤𝑇

∈ L2([𝑡
0
, 𝑇];R𝑛×𝑚);

(iii) for any 𝑡 ∈ [𝑡
0
, 𝑇], equation

𝑥 (𝑡) = 𝑥 (𝑡
0
) + ∫

𝑡

𝑡
0

𝑓 (𝑥 (𝑠) , 𝑠, 𝛾
1
(𝑠)) 𝑑𝑠

+ ∫

𝑡

𝑡
0

𝑔 (𝑥 (𝑠) , 𝑠, 𝛾
2
(𝑠)) 𝑑𝐵 (𝑠)

(41)

holds with probability 1.

A solution {𝑥(𝑡)}
𝑡
0
≤𝑡≤𝑇

is said to be unique if any other
solution {�̃�(𝑡)}

𝑡
0
≤𝑡≤𝑇

is indistinguishable from {𝑥(𝑡)}
𝑡
0
≤𝑡≤𝑇

.
Now we can give our main results in this section.

Theorem 7. Assume that there exist two positive constants 𝐾

and 𝐾 such that.
(Lipschitz condition) for all 𝑥, 𝑦 ∈ R𝑛, 𝑡 ∈ [𝑡

0
, 𝑇] and

(𝑖
1
, 𝑖
2
) ∈ S

𝑓 (𝑥, 𝑡, 𝑖
1
) − 𝑓 (𝑦, 𝑡, 𝑖

1
)

2

∨
𝑔 (𝑥, 𝑡, 𝑖

2
) − 𝑔 (𝑦, 𝑡, 𝑖

2
)

2
≤ 𝐾

𝑥 − 𝑦

2
.

(42)

(Linear growth condition) for all (𝑥, 𝑡, (𝑖
1
, 𝑖
2
)) ∈ R𝑛 ×

[𝑡
0
, 𝑇] × S

𝑓 (𝑥, 𝑡, 𝑖
1
)

2
∨

𝑔 (𝑥, 𝑡, 𝑖
2
)

2
≤ 𝐾(1 + |𝑥|)

2
. (43)

Then there exists a unique solution 𝑥(𝑡) to (8) and, moreover,
the solution obeys

𝐸( sup
𝑡
0
≤𝑡≤𝑇

|𝑥 (𝑡)|
2
)

≤ (1 + 3𝐸
𝑥0


2
) exp {3𝐾 (𝑇 − 𝑡

0
) (𝑇 − 𝑡

0
+ 4)} .

(44)

Proof. Recall that almost every sample path of 𝛾(𝑡) =

(𝛾
1
(𝑡), 𝛾
2
(𝑡)) is a right continuous step function with a finite

number of jumps on [𝑡
0
, 𝑇]. Thus there exists a sequence of

stopping times {𝜏
𝑘
}
𝑘≥0

such that

(i) for almost every 𝜔 ∈ Ω there is a finite 𝑘
𝜔
for 𝑡
0

=

𝜏
0
< 𝜏
1
< ⋅ ⋅ ⋅ < 𝜏

𝑘
= 𝑇 and 𝜏

𝑘
= 𝑇 if 𝑘 > 𝑘

𝜔
;

(ii) both 𝛾
1
(⋅) and 𝛾

2
(⋅) in 𝛾(⋅) are constants on interval

[[𝜏
𝑘
, 𝜏
𝑘+1

[[, namely,

𝛾
1 (𝑡) = 𝛾

1
(𝜏
𝑘
) on 𝜏

𝑘
≤ 𝑡 ≤ 𝜏

𝑘+1
∀𝑘 ≥ 0,

𝛾
2
(𝑡) = 𝛾

2
(𝜏
𝑘
) on 𝜏

𝑘
≤ 𝑡 ≤ 𝜏

𝑘+1
∀𝑘 ≥ 0.

(45)

First of all, let us consider (8) on 𝑡 ∈ [[𝜏
0
, 𝜏
1
[[, then (8)

becomes
𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡, 𝛾

1
(𝑡
0
)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑡, 𝛾
2
(𝑡
0
)) 𝑑𝐵 (𝑡)

(46)

with initial conditions 𝑥(𝑡
0
) = 𝑥

0
, 𝛾(𝑡
0
) = (𝛾

1
(𝑡
0
), 𝛾
1
(𝑡
0
)).

Then by the theory of SDEs, we obtain that (46) has a unique
solution which obeys 𝑥(𝜏

1
) ∈ 𝐿
2

F
𝜏1

(Ω;R𝑛). We next consider
(8) on 𝑡 ∈ [[𝜏

1
, 𝜏
2
[[ which becomes

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡, 𝛾1 (𝜏1)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑡, 𝛾
2
(𝜏
1
)) 𝑑𝐵 (𝑡) .

(47)

Again by the theory of SDEs, (47) has a unique solutionwhich
obeys 𝑥(𝜏

1
) ∈ 𝐿

2

F
𝜏2

(Ω;R𝑛). Repeating this procedure, we
conclude that (8) has a unique solution 𝑥(𝑡) on [𝑡

0
, 𝑇].

Now, let us prove (44). For every 𝑘 ≥ 1, define the
stopping time

𝜏
𝑘
= 𝑇 ∧ inf {𝑡 ∈ [𝑡

0
, 𝑇] : |𝑥 (𝑡)| ≥ 𝑘} . (48)

It is obvious that 𝜏
𝑘
↑ 𝑇 a.s. Set 𝑥

𝑘
(𝑡) = 𝑥(𝑡∧𝜏

𝑘
) for 𝑡 ∈ [𝑡

0
, 𝑇].

Then 𝑥
𝑘
(𝑡) obeys the equation

𝑥
𝑘
(𝑡) = 𝑥

0
+ ∫

𝑡

𝑡
0

𝑓 (𝑥
𝑘
(𝑠) , 𝑠, 𝛾

1
(𝑠)) 𝐼
[[𝑡
0
,𝜏
𝑘
]]
(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡
0

𝑔 (𝑥
𝑘
(𝑠) , 𝑠, 𝛾

2
(𝑠)) 𝐼
[[𝑡
0
,𝜏
𝑘
]]
(𝑠) 𝑑𝐵 (𝑠) .

(49)

Making use of the elementary inequality |𝑎+𝑏+𝑐|
2
≤ 3(|𝑎|

2
+

|𝑏|
2
+ |𝑐|
2
), the Hölder inequality, and (43), we can see that

𝑥𝑘 (𝑡)

2
= 3

𝑥0

2
+ 3𝐾 (𝑇 − 𝑡

0
) ∫

𝑡

𝑡
0

(1 +
𝑥𝑘 (𝑠)


2
) 𝑑𝑠

+ 3



∫

𝑡

𝑡
0

𝑔 (𝑥
𝑘
(𝑠) , 𝑠, 𝛾

2
(𝑠)) 𝐼
[[𝑡
0
,𝜏
𝑘
]]
(𝑠) 𝑑𝐵 (𝑠)



2

.

(50)

Thus, applying the Doob martingale inequality and (43), we
can further show that

𝐸( sup
𝑡
0
≤𝑠≤𝑡

𝑥𝑘 (𝑠)

2
)

= 3𝐸
𝑥0


2
+ 3𝐾 (𝑇 − 𝑡

0
) ∫

𝑡

𝑡
0

(1 + 𝐸
𝑥𝑘 (𝑠)


2
) 𝑑𝑠

+ 12𝐸∫

𝑡

𝑡
0

𝑔 (𝑥
𝑘
(𝑠) , 𝑠, 𝛾

2
(𝑠))


2
𝐼
[[𝑡
0
,𝜏
𝑘
]]
(𝑠) 𝑑𝑠

≤ 3𝐸
𝑥0


2
+ 3𝐾 (𝑇 − 𝑡

0
+ 4)∫

𝑡

𝑡
0

(1 + 𝐸
𝑥𝑘 (𝑠)


2
) 𝑑𝑠.

(51)

That is to say,

1 + 𝐸( sup
𝑡
0
≤𝑠≤𝑡

𝑥𝑘 (𝑠)

2
) ≤ 1 + 3𝐸

𝑥0

2
+ 3𝐾 (𝑇 − 𝑡

0
+ 4)

× ∫

𝑡

𝑡
0

[1 + 𝐸 sup
𝑡
0
≤𝑟≤𝑠

𝑥𝑘 (𝑟)

2
]𝑑𝑠.

(52)
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Using the Gronwall inequality leads to

1 + 𝐸( sup
𝑡
0
≤𝑠≤𝑡

𝑥𝑘 (𝑠)

2
)

≤ (1 + 3𝐸
𝑥0


2
) exp {3𝐾 (𝑇 − 𝑡

0
) (𝑇 − 𝑡

0
+ 4)} .

(53)

Consequently,

1 + 𝐸( sup
𝑡
0
≤𝑡≤𝜏
𝑘

|𝑥 (𝑡)|
2
)

≤ (1 + 3𝐸
𝑥0


2
) exp {3𝐾 (𝑇 − 𝑡

0
) (𝑇 − 𝑡

0
+ 4)} .

(54)

Then the required inequality (44) follows immediately by
letting 𝑘 → ∞.

Condition (42) indicates that the coefficients 𝑓(𝑥, 𝑡, 𝑖
1
)

and 𝑔(𝑥, 𝑡, 𝑖
2
) do not change faster than a linear function of

𝑥 as change in 𝑥. This means in particular the continuity of
𝑓(𝑥, 𝑡, 𝑖

1
) and 𝑔(𝑥, 𝑡, 𝑖

2
) in 𝑥 for all 𝑡 ∈ [𝑡

0
, 𝑇]. Then functions

that are discontinuous with respect to 𝑥 are excluded as the
coefficients. Besides, there are many functions that do not
satisfy the Lipschitz condition.These imply that the Lipschitz
condition is too restrictive. To improve this Lipschitz condi-
tion let us introduce the concept of local solution.

Definition 8. Let𝜎
∞
be a stopping time such that 𝑡

0
≤ 𝜎
∞

≤ 𝑇

a.s. An R𝑛-valuedF
𝑡
-adapted continuous stochastic process

{𝑥(𝑡)}
𝑡
0
≤𝑡<𝜎
∞

is called a local solution of (8) if 𝑥(𝑡
0
) = 𝑥
0
and,

moreover, there is a nondecreasing sequence {𝜎
𝑘
}
𝑘≥1

such that
𝑡
0
≤ {𝜎
𝑘
} ↑ 𝜎
∞

a.s. and

𝑥 (𝑡) = 𝑥 (𝑡
0
) + ∫

𝑡∧𝜎
𝑘

𝑡
0

𝑓 (𝑥 (𝑠) , 𝑠, 𝛾
1
(𝑠)) 𝑑𝑠

+ ∫

𝑡∧𝜎
𝑘

𝑡
0

𝑔 (𝑥 (𝑠) , 𝑠, 𝛾
2
(𝑠)) 𝑑𝐵 (𝑠)

(55)

holds for any 𝑡 ∈ [𝑡
0
, 𝑇) and 𝑘 ≥ 1 with probability one. If,

furthermore,

lim sup
𝑡→+𝜎

∞

|𝑥 (𝑡)| = ∞ whenever 𝜎
∞

< 𝑇, (56)

then it is called a maximal local solution and 𝜎
∞
is called the

explosion time. Amaximal local solution {𝑥(𝑡) : 𝑡
0
≤ 𝑡 < 𝜎

∞
}

is said to be unique if any other maximal local solution {𝑥(𝑡) :

𝑡
0
≤ 𝑡 < 𝜎

∞
} is indistinguishable from it, namely, 𝜎

∞
= 𝜎
∞

and 𝑥(𝑡) = 𝑥(𝑡) for 𝑡
0
≤ 𝑡 < 𝜎

∞
with probability one.

Definition 9 (local Lipschitz condition). For every integer
𝑘 ≥ 1, there exists a positive constant ℎ

𝑘
such that, for all

𝑡 ∈ [𝑡
0
, 𝑇], 𝑖 = (𝑖

1
, 𝑖
2
) ∈ S and those 𝑥, 𝑦 ∈ R𝑛 with

|𝑥| ∨ |𝑦| ≤ 𝑘

𝑓 (𝑥, 𝑡, 𝑖
1
) − 𝑓 (𝑦, 𝑡, 𝑖

1
)

2

∨
𝑔 (𝑥, 𝑡, 𝑖

2
) − 𝑔 (𝑦, 𝑡, 𝑖

2
)

2
≤ ℎ
𝑘

𝑥 − 𝑦

2
.

(57)

The following theorem shows the existence of unique
maximal local solution under the local Lipschitz condition
without the linear growth condition.

Theorem 10. Under condition (57), there exists a unique
maximal local solution of (8).

Proof. Define functions

𝑓
𝑘
(𝑥, 𝑡, 𝑖

1
) =

{

{

{

𝑓 (𝑥, 𝑡, 𝑖
1
) , if |𝑥| ≤ 𝑘,

𝑓(
𝑘𝑥

|𝑥|
, 𝑡, 𝑖
1
) , if |𝑥| > 𝑘,

𝑔
𝑘
(𝑥, 𝑡, 𝑖

2
) =

{

{

{

𝑔 (𝑥, 𝑡, 𝑖
2
) , if |𝑥| ≤ 𝑘,

𝑔 (
𝑘𝑥

|𝑥|
, 𝑡, 𝑖
2
) , if |𝑥| > 𝑘.

(58)

Then 𝑓
𝑘
and 𝑔

𝑘
satisfy the Lipschitz condition and the linear

growth condition. Thus by Theorem 7, there is a unique
solution 𝑥

𝑘
(𝑡) of the equation

𝑑𝑥
𝑘
(𝑡) = 𝑓

𝑘
(𝑥
𝑘
(𝑡) , 𝑡, 𝛾

1
(𝑡)) 𝑑𝑡

+ 𝑔
𝑘
(𝑥
𝑘
(𝑡) , 𝑡, 𝛾

2
(𝑡)) 𝑑𝐵 (𝑡)

(59)

with the initial conditions 𝑥
𝑘
(𝑡
0
) = 𝑥

0
and 𝛾(𝑡

0
) = (𝛾

1
(𝑡
0
),

𝛾
2
(𝑡
0
)). Define the stopping times

𝜎
𝑘
= 𝑇 ∧ inf {𝑡 ∈ [𝑡

0
, 𝑇] :

𝑥𝑘 (𝑡)
 ≥ 𝑘} . (60)

Clearly, if 𝑡
0
≤ 𝑡 ≤ 𝜎

𝑘
,

𝑥
𝑘
(𝑡) = 𝑥

𝑘+1
(𝑡) , (61)

which indicates that 𝜎
𝑘
is increasing so 𝜎

𝑘
has its limit 𝜎

∞
=

lim
𝑘→+∞

𝜎
𝑘
. Define {𝑥(𝑡) : 𝑡

0
≤ 𝑡 < 𝜎

∞
} by

𝑥 (𝑡) = 𝑥
𝑘
(𝑡) , 𝑡 ∈ [[𝜎

𝑘−1
, 𝜎
𝑘
[[ , 𝑘 ≥ 1, (62)

where 𝜎
0
= 𝑡
0
. Applying (61), one can show that 𝑥(𝑡 ∧ 𝜎

𝑘
) =

𝑥
𝑘
(𝑡 ∧ 𝜎
𝑘
). It then follows from (59) that

𝑥 (𝑡 ∧ 𝜎
𝑘
) = 𝑥
0
+ ∫

𝑡∧𝜎
𝑘

𝑡
0

𝑓
𝑘
(𝑥 (𝑠) , 𝑠, 𝛾

1
(𝑠)) 𝑑𝑠

+ ∫

𝑡∧𝜎
𝑘

𝑡
0

𝑔
𝑘
(𝑥 (𝑠) , 𝑠, 𝛾2 (𝑠)) 𝑑𝐵 (𝑠)

= 𝑥
0
+ ∫

𝑡∧𝜎
𝑘

𝑡
0

𝑓 (𝑥 (𝑠) , 𝑠, 𝛾
1
(𝑠)) 𝑑𝑠

+ ∫

𝑡∧𝜎
𝑘

𝑡
0

𝑔 (𝑥 (𝑠) , 𝑠, 𝛾2 (𝑠)) 𝑑𝐵 (𝑠) ,

(63)

for any 𝑡 ∈ [𝑡
0
, 𝑇) and 𝑘 ≥ 1. It is easy to see that if 𝜎

∞
≤ 𝑇,

then

lim sup
𝑡→𝜎
∞

|𝑥 (𝑡)|

≥ lim sup
𝑘→+∞

𝑥 (𝜎
𝑘
)
 = lim sup
𝑘→+∞

𝑥𝑘 (𝜎𝑘)
 = ∞.

(64)

Therefore {𝑥(𝑡) : 𝑡
0
≤ 𝑡 < 𝜎

∞
} is a maximal local solution.

Now, we will prove the uniqueness. Let {𝑥(𝑡) : 𝑡
0

≤ 𝑡 <

𝜎
∞

} be another maximal local solution. Define

𝜎
𝑘
= 𝜎
∞

∧ inf {𝑡 ∈ [[𝑡
0
, 𝜎
∞

[[ : 𝑥 (𝑡) ≥ 𝑘} . (65)
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Then 𝜎
𝑘

→ 𝜎
∞

a.s. and

𝑃 {𝑥 (𝑡) = 𝑥 (𝑡) , 𝑡 ∈ [[𝑡
0
, 𝜎
𝑘
∧ 𝜎
𝑘
]]} = 1 ∀𝑘 ≥ 1. (66)

Letting 𝑘 → ∞ gives

𝑃 {𝑥 (𝑡) = 𝑥 (𝑡) , 𝑡 ∈ [[𝑡
0
, 𝜎
∞

∧ 𝜎
∞

[[} = 1. (67)

In order to complete the proof, we need only to show that
𝜎
∞

= 𝜎
∞

a.s. In fact, for almost every 𝜔 ∈ {𝜎
∞

< 𝜎
∞

}, we
have

𝑥 (𝜎
∞

, 𝜔)


= lim
𝑘→+∞

𝑥 (𝜎
𝑘
, 𝜔)

 = lim
𝑘→+∞

𝑥 (𝜎
𝑘
, 𝜔)

 = ∞,
(68)

which contradicts the fact that 𝑥(𝑡, 𝜔) is continuous on 𝑡 ∈

[𝑡
0
, 𝜎
∞

(𝜔)). This implies 𝜎
∞

≥ 𝜎
∞

a.s. In the same way, one
can show 𝜎

∞
≤ 𝜎
∞
a.s.Thus wemust have 𝜎

∞
= 𝜎
∞
a.s.This

completes the proof.

In many situations, we often consider an SDE on [𝑡
0
,∞)

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡, 𝛾
1
(𝑡)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑡, 𝛾
2
(𝑡)) 𝑑𝐵 (𝑡) , 𝑡

0
≤ 𝑡 < ∞

(69)

with initial data 𝑥(𝑡
0
) = 𝑥

0
and 𝛾(𝑡

0
). If the assumption of

the existence-and-uniqueness theorem holds on every finite
subinterval [𝑡

0
, 𝑇] of [𝑡

0
,∞), then (69) has a unique solution

𝑥(𝑡) on the entire interval [𝑡
0
,∞). Such a solution is called

a global solution. To establish a more general result about
global solution, we need more notations. To this end, we
introduce an operator 𝐿𝑉 from R𝑛 × R

+
× S to R which is

given by

𝐿𝑉 (𝑥, 𝑡, (𝑖
1
, 𝑖
2
))

= 𝑉
𝑡
(𝑥, 𝑡, (𝑖

1
, 𝑖
2
)) + 𝑉

𝑥
(𝑥, 𝑡, (𝑖

1
, 𝑖
2
)) 𝑓 (𝑥, 𝑡, 𝑖

1
)

+ 0.5 trace [𝑔𝑇 (𝑥, 𝑡, 𝑖
2
) 𝑉
𝑥𝑥

(𝑥, 𝑡, (𝑖
1
, 𝑖
2
)) 𝑔 (𝑥, 𝑡, 𝑖

2
)]

+ ∑

(𝑗1,𝑗2)∈S

𝑞
𝑖
1
𝑖
2
;𝑗
1
𝑗
2

𝑉 (𝑥, 𝑡, (𝑗
1
, 𝑗
2
)) ,

(70)

where 𝑉(𝑥, 𝑡, (𝑖
1
, 𝑖
2
)) ∈ 𝐶

2,1
(R𝑛 × R

+
× S;R

+
) and

𝑉
𝑡
(𝑥, 𝑡, (𝑖

1
, 𝑖
2
)) =

𝜕𝑉 (𝑥, 𝑡, (𝑖
1
, 𝑖
2
))

𝜕𝑡
;

𝑉
𝑥
(𝑥, 𝑡, (𝑖

1
, 𝑖
2
))

= (
𝜕𝑉 (𝑥, 𝑡, (𝑖

1
, 𝑖
2
))

𝜕𝑥
1

, . . . ,
𝜕𝑉 (𝑥, 𝑡, (𝑖

1
, 𝑖
2
))

𝜕𝑥
𝑛

) ;

𝑉
𝑥𝑥

(𝑥, 𝑡, (𝑖
1
, 𝑖
2
)) = (

𝜕
2
𝑉 (𝑥, 𝑡, (𝑖

1
, 𝑖
2
))

𝜕𝑥
𝑖
𝜕𝑥
𝑗

)

𝑛×𝑛

.

(71)

Theorem 11. Assume that the local Lipschitz condition (57)
holds. Assume also that there is a function 𝑉(𝑥, 𝑡, (𝑖

1
, 𝑖
2
)) ∈

𝐶
2,1

(R𝑛 × R
+
× S;R

+
) and a constant 𝜃 > 0 such that

lim
|𝑥|→∞

( inf
(𝑡,(𝑖1 ,𝑖2))∈R+×S

𝑉 (𝑥, 𝑡, (𝑖
1
, 𝑖
2
))) = ∞, (72)

𝐿𝑉 (𝑥, 𝑡, (𝑖
1
, 𝑖
2
)) ≤ 𝜃 (1 + 𝑉 (𝑥, 𝑡, (𝑖

1
, 𝑖
2
))) ,

∀ (𝑥, 𝑡, (𝑖
1
, 𝑖
2
)) ∈ R

𝑛
× R
+
× S.

(73)

Then there exists a unique global solution 𝑥(𝑡) to (69).

Proof. We need only to prove the theorem for any initial
condition 𝑥

0
∈ R𝑛 and (𝛾

1
(𝑡
0
), 𝛾
2
(𝑡
0
)) ∈ S. FromTheorem 10,

we know that the local Lipschitz condition guarantees the
existence of the unique maximal solution 𝑥(𝑡) on [𝑡

0
, 𝜎
∞

),
where 𝜎

∞
is the explosion time. We need only to show 𝜎

∞
=

∞ a.s. If this is not true, then we can find a pair of positive
constants 𝜀 and 𝑇 such that

𝑃 {𝜎
∞

≤ 𝑇} > 2𝜀. (74)

For each integer 𝑘 ≥ 1, define the stopping time

𝜎
𝑘
= inf {𝑡 ≥ 𝑡

0
: |𝑥 (𝑡)| ≥ 𝑘} . (75)

Since 𝜎
𝑘

→ 𝜎
∞
almost surely, we can find a sufficiently large

integer 𝑘
0
for

𝑃 {𝜎
𝑘
≤ 𝑇} > 𝜀, ∀𝑘 ≥ 𝑘

0
. (76)

Fix any 𝑘 ≥ 𝑘
0
, then for any 𝑡

0
≤ 𝑡 ≤ 𝑇, by virtue of the

generalized Itô formula (see, e.g., [1])

𝐸𝑉 (𝑥 (𝑡 ∧ 𝜎
𝑘
) , 𝑡 ∧ 𝜎

𝑘
, 𝛾 (𝑡 ∧ 𝜎

𝑘
))

= 𝑉 (𝑥
0
, 𝑡
0
, 𝛾
0
) + 𝐸∫

𝑡∧𝜎
𝑘

𝑡
0

𝐿𝑉 (𝑥 (𝑠) , 𝑠, 𝛾 (𝑠)) 𝑑𝑠

≤ 𝑉 (𝑥
0
, 𝑡
0
, 𝛾
0
) + 𝜃 (𝑇 − 𝑡

0
)

+ 𝜃∫

𝑡

𝑡
0

𝐸𝑉 (𝑥 (𝑠 ∧ 𝜎
𝑘
) , 𝑠 ∧ 𝜎

𝑘
, 𝛾 (𝑠 ∧ 𝜎

𝑘
)) 𝑑𝑠.

(77)

Making use of the Gronwall inequality gives

𝐸𝑉 (𝑥 (𝑡 ∧ 𝜎
𝑘
) , 𝑡 ∧ 𝜎

𝑘
, 𝛾 (𝑡 ∧ 𝜎

𝑘
))

≤ [𝑉 (𝑥
0
, 𝑡
0
, 𝛾
0
) + 𝜃 (𝑇 − 𝑡

0
)] exp {𝜃 (𝑇 − 𝑡

0
)} .

(78)

Therefore

𝐸 (𝐼
{𝜎
𝑘
≤𝑇}

𝑉 (𝑥 (𝜎
𝑘
) , 𝜎
𝑘
, 𝛾 (𝜎
𝑘
)))

≤ [𝑉 (𝑥
0
, 𝑡
0
, 𝛾
0
) + 𝜃 (𝑇 − 𝑡

0
)] exp {𝜃 (𝑇 − 𝑡

0
)} .

(79)

At the same time, set

𝑔
𝑘
= inf {𝑉 (𝑥, 𝑡, (𝑖

1
, 𝑖
2
)) : |𝑥| ≥ 𝑘, 𝑡 ∈ [𝑡

0
, 𝑇] , (𝑖

1
, 𝑖
2
) ∈ S} .

(80)
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Then (72) means 𝑔
𝑘

→ ∞. It follows from (76) and (79) that

[𝑉 (𝑥
0
, 𝑡
0
, 𝛾
0
) + 𝜃 (𝑇 − 𝑡

0
)] exp {𝜃 (𝑇 − 𝑡

0
)}

≥ 𝑔
𝑘
𝑃 {𝜎
𝑘
≤ 𝑇} ≥ 𝜀𝑔

𝑘
.

(81)

Letting 𝑘 → ∞ yields a contradiction, that is to say,𝜎
∞

= ∞.
The proof is complete.

3. 𝐿𝑃-Estimates

In the previous section, we have investigated the existence
and uniqueness of the solution to (8). In this section, as above,
let 𝑥(𝑡), 𝑡

0
≤ 𝑡 ≤ 𝑇 be the unique solution of (8) with initial

conditions 𝑥(𝑡
0
) = 𝑥
0
and 𝛾(𝑡

0
), and we will estimate the 𝑝th

moment of the solution.

Theorem 12. Assume that there is a function 𝑉(𝑥, 𝑡, (𝑖
1
, 𝑖
2
)) ∈

𝐶
2,1

(R𝑛 × R
+
× S;R

+
) and positive constants 𝑝, 𝜂, 𝜃 such that

for all (𝑥, 𝑡, (𝑖
1
, 𝑖
2
)) ∈ R𝑛 × R

+
× S,

𝜂|𝑥|
𝑝
≤ 𝑉 (𝑥, 𝑡, (𝑖

1
, 𝑖
2
)) , (82)

𝐿𝑉 (𝑥, 𝑡, (𝑖
1
, 𝑖
2
)) ≤ 𝜃𝑉 (𝑥, 𝑡, (𝑖

1
, 𝑖
2
)) . (83)

Assume also the initial condition 𝑥(𝑡
0
) = 𝑥

0
and 𝛾(𝑡

0
) obeys

𝐸𝑉(𝑥
0
, 𝑡
0
, 𝛾(𝑡
0
)) < ∞, then one has

𝐸|𝑥 (𝑡)|
𝑝

≤
𝐸𝑉 (𝑥

0
, 𝑡
0
, 𝛾 (𝑡
0
)) exp {𝜃 (𝑡 − 𝑡

0
)}

𝜂
, ∀𝑡 ∈ [𝑡

0
, 𝑇] .

(84)

Proof. For each integer 𝑘 ≥ 1, define the stopping time

𝜎
𝑘
= 𝑇 ∧ inf {𝑡 ≥ 𝑡

0
: |𝑥 (𝑡)| ≥ 𝑘} . (85)

Thus 𝜎
𝑘

→ 𝑇 a.s. Using the generalized Itô’s formula and
(83), we obtain that for 𝑡 ∈ [𝑡

0
, 𝑇]

𝐸𝑉 (𝑥 (𝑡 ∧ 𝜎
𝑘
) , 𝑡 ∧ 𝜎

𝑘
, 𝛾 (𝑡 ∧ 𝜎

𝑘
))

≤ 𝐸𝑉 (𝑥
0
, 𝑡
0
, 𝛾 (𝑡
0
))

+ 𝜃∫

𝑡

𝑡
0

𝐸𝑉 (𝑥 (𝑠 ∧ 𝜎
𝑘
) , 𝑠 ∧ 𝜎

𝑘
, 𝛾 (𝑠 ∧ 𝜎

𝑘
)) 𝑑𝑠.

(86)

Then the Gronwall inequality indicates

𝐸𝑉 (𝑥 (𝑡 ∧ 𝜎
𝑘
) , 𝑡 ∧ 𝜎

𝑘
, 𝛾 (𝑡 ∧ 𝜎

𝑘
))

≤ 𝐸𝑉 (𝑥
0
, 𝑡
0
, 𝛾 (𝑡
0
)) exp {𝜃 (𝑡 − 𝑡

0
)}

(87)

for all 𝑡 ∈ [𝑡
0
, 𝑇]. By virtue of condition (83) we obtain the

required assertion (84).

Corollary 13. Assume 𝑝 ≥ 2 and 𝑥
0
∈ 𝐿
𝑝

F
𝑡0

(Ω;R𝑛). Assume
also that there exists a constant 𝜃 > 0 such that, for all
(𝑥, 𝑡, (𝑖

1
, 𝑖
2
)) ∈ R𝑛 × R

+
× S,

𝑥
𝑇
𝑓 (𝑥, 𝑡, 𝑖

1
) +

𝑝 − 1

2

𝑔 (𝑥, 𝑡, 𝑖
2
)

2
≤ 𝜃 (1 + |𝑥|

2
) . (88)

Then one has

𝐸|𝑥 (𝑡)|
𝑝

≤ 2
(𝑝−2)/2

(1 + 𝐸
𝑥0


𝑝
) exp {𝑝𝜃 (𝑡 − 𝑡

0
)} ∀𝑡 ∈ [𝑡

0
, 𝑇] .

(89)

Proof. Define 𝑉(𝑥, 𝑡, (𝑖
1
, 𝑖
2
)) = (1 + |𝑥|

2
)
𝑝/2. Making use of

(88) yields

𝐿𝑉 (𝑥, 𝑡, (𝑖
1
, 𝑖
2
))

= 𝑝(1 + |𝑥|
2
)
(𝑝−2)/2

𝑥
𝑇
𝑓 (𝑥, 𝑡, 𝑖

1
)

+
𝑝

2
(1 + |𝑥|

2
)
(𝑝−2)/2𝑔 (𝑥, 𝑡, 𝑖

2
)

2

+
𝑝 (𝑝 − 2)

2
(1 + |𝑥|

2
)
(𝑝−4)/2

𝑥
𝑇
𝑔 (𝑥, 𝑡, 𝑖

2
)


2

≤ 𝑝(1 + |𝑥|
2
)
(𝑝−2)/2

[𝑥
𝑇
𝑓 (𝑥, 𝑡, 𝑖

1
) +

𝑝 − 1

2

𝑔 (𝑥, 𝑡, 𝑖
2
)

2
]

≤ 𝑝𝜃(1 + |𝑥|
2
)
𝑝/2

.

(90)

Then byTheorem 12, we get

𝐸(1 + |𝑥 (𝑡)|
2
)
𝑝/2

≤ 𝐸(1 +
𝑥0


2
)
𝑝/2

exp {𝑝𝜃 (𝑡 − 𝑡
0
)}

(91)

and the required assertion (89) follows.
It is useful to point out that if the linear growth condition

(43) is satisfied, then (88) is fulfilled with 𝜃 = √𝐾 + 𝐾(𝑝 −

1)/2. Now, we will show the other important properties of the
solution.

Theorem 14. Let 𝑝 ≥ 2 and 𝑥
0

∈ 𝐿
𝑝

F
𝑡0

(Ω;R𝑛). Assume also
that the linear growth condition (43) holds. Then one has

𝐸|𝑥 (𝑡) − 𝑥 (𝑠)|
𝑝
≤ 𝐶(𝑡 − 𝑠)

𝑝/2
, (92)

where

𝐶 = 2
𝑝−2

(1 + 𝐸
𝑥0


𝑝
) exp {𝑝𝜃 (𝑇 − 𝑡

0
)}

× ([2 (𝑇 − 𝑡
0
)]
𝑝/2

+ [𝑝 (𝑝 − 1)]
𝑝/2

)

(93)

and 𝜃 = √𝐾+𝐾(𝑝−1)/2. Particularly, the 𝑝th moment of the
solution is continuous on [𝑡

0
, 𝑇].
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Proof. Applying the elementary inequality |𝑎 + 𝑏|
𝑝

≤

2
𝑝−1

(|𝑎|
𝑝
+ |𝑏|
𝑝
), the Hölder inequality, and the linear growth

condition, we can derive that

𝐸|𝑥 (𝑡) − 𝑥 (𝑠)|
𝑝

≤ 2
𝑝−1

𝐸


∫

𝑡

𝑠

𝑓 (𝑥 (𝑢) , 𝑢, 𝛾
1
(𝑢)) 𝑑𝑢



𝑝

+ 2
𝑝−1

𝐸


∫

𝑡

𝑠

𝑔 (𝑥 (𝑢) , 𝑢, 𝛾
2
(𝑢)) 𝑑𝐵 (𝑢)



𝑝

≤ [2 (𝑡 − 𝑠)]
𝑝−1

𝐸∫

𝑡

𝑠

𝑓 (𝑥 (𝑢) , 𝑢, 𝛾
1
(𝑢))


𝑝
𝑑𝑢

+ 0.5[2𝑝 (𝑝 − 1)]
𝑝/2

(𝑡 − 𝑠)
(𝑝−2)/2

𝐸

× ∫

𝑡

𝑠

𝑔 (𝑥 (𝑢) , 𝑢, 𝛾2 (𝑢))

𝑝
𝑑𝑢

≤ 𝐶
1
(𝑡 − 𝑠)

(𝑝−2)/2
∫

𝑡

𝑠

𝐸(1 + |𝑥 (𝑢)|
2
)
𝑝/2

𝑑𝑢,

(94)

where𝐶
1
= 2
(𝑝−2)/2

𝐾
𝑝/2

([2(𝑇− 𝑡
0
)]
𝑝/2

+ [𝑝(𝑝−1)]
𝑝/2

). Using
(91) yields

𝐸|𝑥 (𝑡) − 𝑥 (𝑠)|
𝑝

≤ 𝐶
1
(𝑡 − 𝑠)

(𝑝−2)/2

× ∫

𝑡

𝑠

2
(𝑝−2)/2

(1 + 𝐸
𝑥0


𝑝
) exp {𝑝𝜃 (𝑢 − 𝑡

0
)} 𝑑𝑢

≤ 𝐶
1
2
(𝑝−2)/2

(1 + 𝐸
𝑥0


𝑝
)

× exp {𝑝𝜃 (𝑇 − 𝑡
0
)} (𝑡 − 𝑠)

(𝑝/2)
,

(95)

which is the desired inequality.

Theorem 15. Let 𝑝 ≥ 2 and 𝑥
0

∈ 𝐿
𝑝

F
𝑡0

(Ω;R𝑛). Assume that
there is a𝐾 > 0 such that for all (𝑥, 𝑡, (𝑖

1
, 𝑖
2
)) ∈ R𝑛×[𝑡

0
, 𝑇]×S

𝑥
𝑇 𝑓 (𝑥, 𝑡, 𝑖

1
)
 ∨

𝑔 (𝑥, 𝑡, 𝑖
2
)

2
≤ 𝐾(1 + |𝑥|)

2
. (96)

Then

𝐸( sup
𝑡
0
≤𝑡≤𝑇

|𝑥 (𝑡)|
𝑝
)

≤ (1 + 2𝐸
𝑥0


𝑝
) exp {2𝑝 (10𝑝 + 1)𝐾 (𝑇 − 𝑡

0
)} .

(97)

Proof. Making use of the generalized Itô’s formula and
condition (96), we have

|𝑥 (𝑡)|
𝑝

≤
𝑥0


𝑝
+ 𝑀(𝑡)

+ ∫

𝑡

𝑡
0

𝑝|𝑥 (𝑠)|
𝑝−2

[𝑥
𝑇
(𝑠) 𝑓 (𝑥 (𝑠) , 𝑠, 𝛾

1
(𝑠))

+
𝑝 − 1

2

𝑔 (𝑥 (𝑠) , 𝑠, 𝛾2 (𝑠))

2
] 𝑑𝑠

≤
𝑥0


𝑝
+ 𝑀(𝑡) + 0.5𝑝 (𝑝 + 1)𝐾

× ∫

𝑡

𝑡
0

|𝑥 (𝑠)|
𝑝−2

(1 + |𝑥 (𝑠)|
2
) 𝑑𝑠

≤
𝑥0


𝑝
+ 𝑀(𝑡) + 𝑝 (𝑝 + 1)𝐾∫

𝑡

𝑡
0

(1 + |𝑥 (𝑠)|
𝑝
) 𝑑𝑠,

(98)

where

𝑀(𝑡) = ∫

𝑡

𝑡
0

𝑝|𝑥 (𝑠)|
𝑝−2

𝑥
𝑇
(𝑠) 𝑔 (𝑥 (𝑠) , 𝑠, 𝛾2 (𝑠)) 𝑑𝐵 (𝑠) . (99)

Therefore, for any 𝑡
1
∈ [𝑡
0
, 𝑇],

𝐸( sup
𝑡
0
≤𝑡≤𝑡
1

|𝑥 (𝑡)|
𝑝
) ≤ 𝐸

𝑥0

𝑝
+ 𝐸( sup

𝑡
0
≤𝑡≤𝑡
1

|𝑀 (𝑡)|)

+ 𝑝 (𝑝 + 1)𝐾𝐸∫

𝑡
1

𝑡
0

(1 + |𝑥 (𝑠)|
𝑝
) 𝑑𝑠.

(100)

At the same time, applying the well-known Burkholder-
Davis-Gundy inequality (see, e.g., [2]) gives

𝐸( sup
𝑡
0
≤𝑡≤𝑡
1

|𝑀 (𝑡)|)

≤ 3𝐸(∫

𝑡
1

𝑡
0

𝑝
2
|𝑥 (𝑠)|

2𝑝−2𝑔 (𝑥 (𝑠) , 𝑠, 𝛾2 (𝑠))

2
𝑑𝑠)

0.5

≤ 3𝐸( sup
𝑡
0
≤𝑡≤𝑡
1

|𝑥 (𝑡)|
𝑝

×∫

𝑡
1

𝑡
0

𝑝
2
|𝑥 (𝑠)|

𝑝−2𝑔 (𝑥 (𝑠) , 𝑠, 𝛾
2
(𝑠))


2
𝑑𝑠)

0.5

≤ 0.5𝐸( sup
𝑡
0
≤𝑡≤𝑡
1

|𝑥 (𝑡)|
𝑝
) + 4.5𝐸

× ∫

𝑡
1

𝑡
0

𝑝
2
𝐾|𝑥 (𝑠)|

𝑝−2
(1 + |𝑥 (𝑠)|

2
) 𝑑𝑠

≤ 0.5𝐸( sup
𝑡
0
≤𝑡≤𝑡
1

|𝑥 (𝑡)|
𝑝
) + 9𝑝

2
𝐾𝐸∫

𝑡
1

𝑡
0

(1 + |𝑥 (𝑠)|
𝑝
) 𝑑𝑠.

(101)
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Substituting the above inequality into (100) gives

𝐸( sup
𝑡
0
≤𝑡≤𝑡
1

|𝑥 (𝑡)|
𝑝
) ≤ 2𝐸

𝑥0

𝑝

+ 2𝑝 (10𝑝 + 1)𝐾∫

𝑡
1

𝑡
0

(1 + |𝑥 (𝑠)|
𝑝
) 𝑑𝑠.

(102)

Thus

1 + 𝐸( sup
𝑡
0
≤𝑡≤𝑡
1

|𝑥 (𝑡)|
𝑝
)

≤ 1 + 2𝐸
𝑥0


𝑝
+ 2𝑝 (10𝑝 + 1)𝐾

× ∫

𝑡
1

𝑡
0

(1 + sup
𝑡
0
≤𝑡≤𝑠

|𝑥 (𝑡)|
𝑝
)𝑑𝑠.

(103)

Then the required assertion follows from the Gronwall
inequality.

Up to now, we have discussed the 𝐿
𝑝-estimates for the

solution in the case when 𝑝 ≥ 2. As for 0 < 𝑝 < 2, the similar
results can be given without any difficulty as long as we note
that the Hölder inequality implies

𝐸|𝑥 (𝑡)|
𝑝
≤ [𝐸|𝑥 (𝑡)|

2
]
0.5𝑝

. (104)

4. Example

Consider the following Black-Scholes model:

𝑑𝑋 (𝑡) = 𝜇 (𝛾
1
(𝑡))𝑋 (𝑡) 𝑑𝑡 + ] (𝛾

2
(𝑡))𝑋 (𝑡) 𝑑𝐵 (𝑡) , (105)

where 𝛾
1
(𝑡) is a right-continuous homogenous Markovian

chain taking values in finite state spaces S
1
= {1, 2} and 𝛾

2
(𝑡)

is a right-continuous homogenous Markovian chain taking
values in finite state spaces S

2
= {1, 2, 3}, 𝜇(𝑖) = 𝑖, 𝑖 = 1, 2,

](𝑗) = 𝑗 + 1, 𝑗 = 1, 2, 3. Taking 𝐾 = 16, 𝐾 = 9, then (42)
and (43) hold. Therefore, by Theorem 7, (105) has a unique
solution.

5. Conclusions and Further Research

This paper is devoted to studying the existence and unique-
ness of solution of SDEs with multi-Markovian switchings
and estimating the𝑝thmoment of the solution.We have used
two continuous-time Markovian chains to model the SDEs.
This area is becoming increasingly useful in engineering,
economics, communication theory, active networking, and
so forth. The sufficient criteria for existence and unique-
ness of solution, local solution, and maximal local solution
were established. Those results indicate that (8) keeps many
properties that (89) owns. At the same time, although the
hypothesis (H1) is used in this paper, wewant to point out that
this hypothesis is not essential. In fact, (H1) can be replaced
by the following generalized hypothesis.

(H1): both 𝛾
1
(𝑡) and 𝛾

2
(𝑡) are right-continuous homoge-

nous Markovian chains such that 𝛾(𝑡) = (𝛾
1
(𝑡), 𝛾
2
(𝑡)) is a

homogenous vector chain.
Under hypothesis (H1), the results given in this paper

can be established similarly. It is easy to see that if 𝛾
1
(𝑡) ≡

𝛾
2
(𝑡) and 𝛾

1
(𝑡) is a right-continuous homogenous Markovian

chain, then (H1) is fulfilled immediately. At the same time,
if 𝛾
1
(𝑡) ≡ 𝛾

2
(𝑡), (8) will reduce to the classical SDEs with

single Markovian chain; that is to say, the classical theory
about SDEs with single Markovian chain is a special case
of our theory. On the other hand, many theorems in this
paper will play important roles in further study. For example,
Theorem 15 will be useful when one studies the approximate
solutions.

Some important and interesting questions can be further
investigated using the results in this paper. For example,
approximate solutions, boundedness and stability, stochas-
tic functional differential equations with vector Markovian
switching and their applications. In particular, the stability of
(8) is one of the most important and interesting topics, and
those investigations are in progress.
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