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The boundary layer flow of a nanofluid past a stretching/shrinking sheet with a convective boundary condition is studied.
Numerical solutions to the governing equations are obtained using a shooting method. The results are found for the local Nusselt
number and the local Sherwood number as well as the temperature and concentration profiles for some values of the convective
parameter, stretching/shrinking parameter, Brownian motion parameter, and thermophoresis parameter. The results indicate that
the local Nusselt number is consistently higher for higher values of the convective parameter. However, the local Nusselt number
decreases with increasing values of the Brownian motion parameter as well as the thermophoresis parameter. In addition, the local
Sherwood number increases with increasing Brownian motion parameter and decreases with increasing convective parameter and
thermophoresis parameter.

1. Introduction

The boundary layer flow over a stretching sheet is impor-
tant in applications such as extrusion, wire drawing, metal
spinning, and hot rolling [1]. Crane [2] pioneered the study
of stretching sheet by presenting an exact analytical solution
for the steady two-dimensional stretching of a plate in
a quiescent fluid. Since then, many authors have consid-
ered various aspects of this problem. Wang [3] extended
Crane’s study to include both suction and slip effects at the
boundary. Sahoo [4] considered non-Newtonian fluid in his
research.

Recently, the study on the flow over a shrinking sheet
has garnered considerable attention. Miklavčič and Wang
[5] initiated the study of flow over a shrinking sheet. They
found that the vorticity is not confined within a boundary
layer, and a steady flow cannot exist without exerting ade-
quate suction at the boundary. Ever since, numerous studies

emerge, investigating different aspects of this problem. Fang
et al. [6] used a second-order slip flow in their research.
Bhattacharyya et al. [7] analyzed the effects of partial slip
on laminar boundary layer stagnation-point flow and heat
transfer towards a shrinking sheet.

Inclusion of nanoparticles into the base fluid such as
water is known to increase the heat transfer capability of
the fluid. Choi and Eastman [8] discovered that the addition
of less than 1% of nanoparticles into the base fluid doubles
the heat conductivity of the fluid. Other characteristics of
nanofluid include minimal clogging of tube and long term
stability as compared to other fluids containing micro- and
millimeter sized particles (see [9–13]). Twomodels have been
constantly used by researchers to study the behaviour of
nanofluid, namely, the Tiwari-Das model [14] and Buon-
giorno model [15]. Contrary to the Tiwari-Das model [14]
that focuses on volumetric fraction of nanoparticles, Buon-
giorno model [15] pays more attention to Brownian motion
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and thermophoresis effects. Furthermore, instead of focusing
on the thermophysical properties of the nanofluid, Buon-
giorno model shifted the focus to explaining the further
heat transfer enhancement observed in convective situations.
Buongiorno model was used in many recent papers, for
example, Nield and Kuznetsov [16–18], Kuznetsov and Neild
[19, 20], Khan and Pop [21], Bachok et al. [22, 23], and Khan
and Aziz [24], among others.

In the boundary layer flow and heat transfer analysis,
constant surface temperature and heat flux are customarily
used. However, there are times when heat transfer at the sur-
face relies on the surface temperature, as what mostly occurs
in heat exchangers. In this situation, convective boundary
condition is used to replace the condition of prescribed
surface temperature or prescribed surface heat flux. Aziz [25]
employed the convective boundary condition in his research
to study the heat transfer characteristics for the Blasius flow.
Ishak [26] introduced the effects of suction and injection
at the boundary. Makinde and Aziz [27] investigated the
boundary layer flowof a nanofluid past a stretching sheetwith
a convective surface boundary condition.

Motivated by the above-mentioned investigations and
applications, we extend the study of Makinde and Aziz [27]
to include both stretching and shrinking cases, in addition to
the suction effect. Although there aremany studies conducted
on the shrinking or stretching sheet, little work has been done
to include both the stretching and shrinking cases. For the
shrinking case which was not considered by Makinde and
Aziz [27], the solutions do not exist since vorticity could
not be confined within the boundary layer. However, with
an added suction effect to confine the vorticity, the solution
may exist. The dependency of the local Nusselt number and
the local Sherwood number on four parameters, namely,
the stretching/shrinking, convective, Brownian motion, and
thermophoresis parameters, is the main focus of the present
investigation. Numerical solutions are presented graphically
and in tabular forms to show the effects of these parameters
on the local Nusselt number and the local Sherwood num-
ber.

2. Mathematical Formulation

Consider a steady, two-dimensional (𝑥, 𝑦) boundary layer
flow of a viscous and incompressible fluid over a stretch-
ing/shrinking sheet immersed in a nanofluid. It is assumed
that the stretching/shrinking velocity is in the form 𝑈

𝑤
=

𝑎𝑥, where 𝑎 is a positive constant and 𝑥 is the coordinate
measured along the stretching/shrinking surface. It is also
assumed that the constant mass flux velocity is V

0
with V

0
<

0 for suction and V
0
> 0 for injection or withdrawal of

the fluid. The nanofluid is confined to y > 0, where 𝑦 is
the coordinate measured normal to the stretching/shrinking
surface, as shown in Figure 1. It is further assumed that
the bottom surface of the sheet is heated by convection
from a hot fluid at temperature 𝑇

𝑓
which provides a heat

transfer coefficient ℎ.The surface temperature𝑇
𝑤
is the result

of a convective heating process characterized by the hot
fluid.

The governing equations for the steady conservation of
mass, momentum, thermal energy, and nanoparticle volume
fraction equations can be written as [15–24]

𝜕𝑢
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+
𝜕𝜐
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= 0, (1)
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(4)
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(5)

where 𝑢 and 𝜐 are the velocity components along the 𝑥-
and 𝑦-axis, respectively, 𝑃 is the fluid pressure, 𝑇 is the
fluid temperature, 𝛼 is the thermal diffusivity, ] is the
kinematic viscosity,𝐷

𝐵
is the Brownian diffusion coefficient,

𝐷
𝑇
is the thermophoresis diffusion coefficient, and 𝜑 is the

nanoparticle volume fraction. Furthermore, 𝜏 = (𝜌𝑐)
𝑝
/(𝜌𝑐)
𝑓

is the ratio between the effective heat capacity of the fluidwith
𝜌
𝑓
and 𝜌
𝑝
being the density of the fluid and the density of the

particles, respectively, and 𝑐
𝑓
and 𝑐
𝑝
denote the specific heat

of the fluid and the particle at constant pressure, respectively.
The subscript ∞ represents the values at large values of y
(outside the boundary layer). Details of the derivation of (4)
and (5) are given in the papers by Buongiorno [15] and Nield
and Kuznetsov [17].

Equations (1)–(5) are subjected to the following boundary
conditions [25–27]:

𝜐 = 𝜐
0
, 𝑢 = 𝜎 𝑈

𝑤
(𝑥) ,

−𝑘
𝜕𝑇

𝜕𝑦
= ℎ (𝑇

𝑓
− 𝑇) , 𝜑 = 𝜑

𝑤
at 𝑦 = 0,

𝑢 → 0, 𝜐 → 0, 𝑇 → 𝑇
∞
,

𝜑 → 𝜑
∞

as 𝑦 → ∞,

(6)

where 𝜎 is a constant with 𝜎 > 0 for stretching and 𝜎 <
0 for shrinking and 𝑘 is the thermal conductivity of the
base fluid. The subscript 𝑤 denotes the values at the solid
surface. The governing equations (1)–(5) subjected to the
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Figure 1: Geometry of the problem for (a) stretching and (b) shrinking sheets.

boundary conditions (6) can be expressed in a simpler form
by introducing the following transformation:

𝜓 = (𝑈
𝑤
]𝑥)
1/2

𝑓 (𝜂) , 𝜂 = (
𝑈
𝑤

]𝑥
)
1/2

𝑦,

𝜃 (𝜂) =
𝑇 − 𝑇
∞

𝑇
𝑓
− 𝑇
∞

, 𝛽 (𝜂) =
𝜑 − 𝜑
∞

𝜑
𝑤
− 𝜑
∞

,

(7)

where 𝜂 is the similarity variable and𝜓 is the stream function
defined as 𝑢 = 𝜕𝜓/𝜕𝑦 and 𝜐 = −𝜕𝜓/𝜕𝑥, which identically
satisfies (1). By employing the boundary layer approximations
and the similarity variables (7), (2)–(5) reduce to the follow-
ing nonlinear ordinary differential equations:

𝑓


+ 𝑓𝑓


− 𝑓
2

= 0, (8)

1

Pr
𝜃


+ 𝑓𝜃


+ Nb𝛽𝜃 +Nt𝜃2 = 0, (9)

𝛽


+
Nt
Nb
𝜃


+ Le𝑓𝛽 = 0, (10)

and the boundary conditions (6) become

𝑓 (0) = 𝑆, 𝑓


(0) = 𝜎,

𝜃


(0) = −𝛾 [1 − 𝜃 (0)] , 𝛽 (0) = 1,

(11)

𝑓


= 0, 𝜃 = 0, 𝛽 = 0 as 𝜂 → ∞, (12)

where primes denote differentiation with respect to 𝜂. Fur-
ther, Pr is the Prandtl number, Nb is the Brownian motion
parameter, Nt is the thermophoresis parameter, Le is the
Lewis number, 𝑆 is the mass flux parameter with 𝑆 > 0 for

suction and 𝑆 < 0 for injection, and 𝛾 is the Biot number
(convective parameter), which are defined as

Pr = ]

𝛼
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,
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∞

,
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𝐵
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V
0

√𝑎]
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ℎ

𝑘
√
]

𝑎
.

(13)

When Nb = Nt = 0, the present problem reduces to a regular
viscous fluid, and the nanoparticle volume fraction equation
(10) becomes ill-posed and is of no physical significance.

The physical quantities of interest are the skin friction
coefficient 𝐶

𝑓
, the local Nusselt number Nu

𝑥
, and the local

Sherwood number Sh
𝑥
which are defined as

𝐶
𝑓
=
𝜏
𝑤

𝜌𝑈2
𝑤
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𝑥
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𝐷
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∞
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,

(14)

where 𝜏
𝑤
, 𝑞
𝑤
, and 𝑞

𝑚
are the surface shear stress, the heat, and

mass fluxes, respectively, which are given by [23]

𝜏
𝑤
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(15)

Using the similarity variables (7), we obtain

𝐶
𝑓
Re1/2
𝑥
= 𝑓


(0) , Nu
𝑥
Re−1/2
𝑥
= −𝜃


(0) ,

Sh
𝑥
Re−1/2
𝑥
= −𝛽


(0) ,

(16)

where Re
𝑥
= 𝑈
𝑤
𝑥/] is the local Reynolds number.
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3. Results and Discussion

The set of ordinary differential equations (8)–(10) with the
boundary conditions (11) and (12) were solved numerically
using a shooting method. In this method, the dual solutions
are obtained by setting different initial guesses for the values
of 𝑓(0), −𝜃(0), and −𝛽(0), where all profiles satisfy the
far field boundary conditions (12) asymptotically but with
different boundary layer thicknesses. The problem for a
regular (viscous) fluid involves five parameters: Prandtl num-
ber, stretching/shrinking, suction/injection, and convective
parameters. In this study, three parameters are added, namely,
the Lewis number, Brownian motion, and thermophoresis
parameters. The asymptotic boundary conditions (12) at 𝜂 =
∞ are replaced by 𝜂 = 15 as customary in the boundary layer
analysis.This choice is adequate for the velocity, temperature,
and concentration profiles to reach the far field boundary
conditions asymptotically. We note that when 𝜎 = 1, the
closed-form solution for (8) was reported by P. S. Gupta and
A. S. Gupta [28] and Ishak et al. [29], which is given by𝑓(𝜂) =
𝜁 − (1/𝜁)𝑒

−𝜁𝜂, where 𝜁 − (1/𝜁) = 𝑆 and 𝜁 > 0. Consequently,
this expression leads to 𝑓(𝜂) = −𝜁𝑒−𝜁𝜂. Numerical results
for 𝑓(0) are compared with the analytical results obtained
and shown in Table 1 where they are found to be in excellent
agreement, cementing the validity of the numerical results in
this study. From Table 1, it is obvious that the skin friction
coefficient 𝑓(0) decreases with the increasing of 𝜎.

Variations with 𝜎 of the local Nusselt number Nu
𝑥
Re−1/2
𝑥

(heat transfer rates) and the local Sherwood number
Sh
𝑥
Re−1/2
𝑥

(concentration rates) for different values of param-
eters are presented in Figures 2–7. As can be seen in these
figures, there are more than one solution obtained for a fixed
value of 𝜎. When 𝜎 is equal to a certain value 𝜎 = 𝜎

𝑐
where

𝜎
𝑐
(<0) is the critical value of 𝜎, there is only one solution,

and when 𝜎 < 𝜎
𝑐
, there is no solution. From these figures, it

is seen that the values of |𝜎
𝑐
| remain unchanged for different

values of 𝛾, Nt, and Nb. This is clear from (8)–(12) where
the thermal field does not affect the flow field. However,
based on our computations, we found that by increasing the
mass flux parameter 𝑆, the range of solutions widens where
𝜎
𝑐
= −1.0000, −1.5625, and −2.2500 for 𝑆 = 2, 2.5, and 3,

respectively.
From Figures 2–7, the local Nusselt number and the

local Sherwood number for a nanofluid change with the
variations of 𝛾, Nt, andNb. It can be seen that the surface heat
transfer from Figures 2–4 generally decreases as 𝜎 increases.
From these figures, it is shown that the local Nusselt number
(Figure 2) is consistently higher for a nanofluid with higher
values of convective parameter 𝛾. As 𝛾 is directly proportional
to the heat transfer coefficient ℎ, it is inversely proportional
to the thermal resistance [25]. Thus, as 𝛾 increases, the heat
resistance decreases and hence increases the heat transfer
rate at the surface. Figures 3 and 4 show the effects of
thermophoresis and Brownian motion parameter (Nt and
Nb, resp.) on the local Nusselt number. The figures show that
by increasing both parameters, the heat transfer rate at the
surface reduces. To further test this observation, we construct
Tables 2(a) and 3(a)where we compute variations of the local

Table 1: Values of 𝑓(0) for different values of 𝑆.

𝑆 𝜎
𝑓(0)

P. S. Gupta and A. S. Gupta
[28]

Ishak et al. [29]
Present study

2

−0.2 — 0.3789
−0.1 — 0.1949
0.1 — −0.2049
0.5 — −1.1124
1 −2.4142 −2.4142

2.5

−0.2 — 0.4834
−0.1 — 0.2489
0.1 — −0.2539
0.5 — −1.3431
1 −2.8508 −2.8508

3

−0.2 — 0.5864
−0.1 — 0.2966
0.1 — −0.3033
0.5 — −1.5792
1 −3.3028 −3.3028

Nusselt number with Nt and Nb, and Nt and 𝛾. Again, we can
see that the surface heat transfer is lower for higher values
of Nt and Nb. These results concur with previous results
obtained by Nield and Kuznetsov (see [16–18]). Increasing
Brownian motion and thermophoresis parameters causes the
thermal boundary layer to thicken, thus decreasing the local
Nusselt number. This phenomenon is explained by Rasekh
et al. [30] where they claimed that the increased Brownian
motion impacts a larger extent of the fluid and the ther-
mophoresis diffusion penetrates deeper into the fluid. On the
other hand, to further attest to the results shown in Figure 2,
Table 3(a) shows that for every value of Nt, the local Nusselt
number increases with the increment of 𝛾. From Figures 3
and 4 and Table 2(a), it is interesting to note that while the
local Nusselt number changes by approximately 0.4% when
Nb is increased, the local Nusselt number decreases by only
0.006%whenNt is increased. From this observation, it seems
that Brownian motion parameter Nb affects the surface heat
transfer more than the thermophoresis parameter Nt does.

As opposed to the local Nusselt number, the local
Sherwood number increases with increasing 𝜎. However,
Figure 5 shows that increasing 𝛾 does not favour mass
exchange efficiency, and thus the local Sherwood number
drops. Table 3(b) supports this claim where we compute the
variations of the local Sherwood number with Nt and 𝛾.
Figures 6 and 7 depict the variations of mass transfer rates
with different Nt andNb. Similar to the local Nusselt number,
increasing the thermophoresis parameter Nt will cause the
local Sherwood number to drop. Nevertheless, the latter
increases with increasing Nb. These observations are also
shown in Table 2(b). From the table, it is noted that although
the increment of Nb increases the local Sherwood number,
higher values of Nt lower the mass transfer rates. Through
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Table 2: (a) Variation of the local Nusselt number Nu
𝑥
with Nb and Nt and (b) variation of the local Sherwood number Sh

𝑥
with Nb and Nt

for 𝛾 = 0.1, Le = 2, and Pr = 6.8.

(a)

Nb = 0.1 Nb = 0.2 Nb = 0.3 Nb = 0.4 Nb = 0.5
Nt Nu

𝑥
Nt Nu

𝑥
Nt Nu

𝑥
Nt Nu

𝑥
Nt Nu

𝑥

0.1 0.099140 0.1 0.098973 0.1 0.098752 0.1 0.098453 0.1 0.098043
0.2 0.099139 0.2 0.098972 0.2 0.098750 0.2 0.098451 0.2 0.098039
0.3 0.099138 0.3 0.098971 0.3 0.098749 0.3 0.098448 0.3 0.098035
0.4 0.099137 0.4 0.098970 0.4 0.098747 0.4 0.098446 0.4 0.098031
0.5 0.099136 0.5 0.098969 0.5 0.098746 0.5 0.098443 0.5 0.098026

(b)

Nb = 0.1 Nb = 0.2 Nb = 0.3 Nb = 0.4 Nb = 0.5
Nt Sh

𝑥
Nt Sh

𝑥
Nt Sh

𝑥
Nt Sh

𝑥
Nt Sh

𝑥

0.1 3.866697 0.1 3.916454 0.1 3.933054 0.1 3.941369 0.1 3.946375
0.2 3.767307 0.2 3.866821 0.2 3.900021 0.2 3.916650 0.2 3.926663
0.3 3.667917 0.3 3.817189 0.3 3.866988 0.3 3.891933 0.3 3.906953
0.4 3.568529 0.4 3.767557 0.4 3.833956 0.4 3.867217 0.4 3.887244
0.5 3.469141 0.5 3.717926 0.5 3.800925 0.5 3.842501 0.5 3.867536

Table 3: (a) Variation of the local Nusselt number Nu
𝑥
with 𝛾 and Nt and (b) variation of the local Sherwood number Sh

𝑥
with 𝛾 and Nt for

Nb = 0.5, Le = 2, and Pr = 6.8.

(a)

Nt = 0.1 Nt = 0.2 Nt = 0.3 Nt = 0.4 Nt = 0.5
𝛾 Nu

𝑥
𝛾 Nu

𝑥
𝛾 Nu

𝑥
𝛾 Nu

𝑥
𝛾 Nu

𝑥

0.1 0.098043 0.1 0.098039 0.1 0.098035 0.1 0.098031 0.1 0.098026
0.2 0.192308 0.2 0.192276 0.2 0.192243 0.2 0.192211 0.2 0.192178
0.3 0.282986 0.3 0.282884 0.3 0.282779 0.3 0.282673 0.3 0.282565
0.4 0.370261 0.4 0.370029 0.4 0.369792 0.4 0.369549 0.4 0.369301
0.5 0.454302 0.5 0.453870 0.5 0.453427 0.5 0.452972 0.5 0.452503

(b)

Nt = 0.1 Nt = 0.2 Nt = 0.3 Nt = 0.4 Nt = 0.5
𝛾 Sh

𝑥
𝛾 Sh

𝑥
𝛾 Sh

𝑥
𝛾 Sh

𝑥
𝛾 Sh

𝑥

0.1 3.946375 0.1 3.926663 0.1 3.906953 0.1 3.887244 0.1 3.867536
0.2 3.927421 0.2 3.888766 0.2 3.850122 0.2 3.811491 0.2 3.772871
0.3 3.909188 0.3 3.852327 0.3 3.795505 0.3 3.738723 0.3 3.681982
0.4 3.891640 0.4 3.817279 0.4 3.743010 0.4 3.668834 0.4 3.594756
0.5 3.874741 0.5 3.783559 0.5 3.692549 0.5 3.601719 0.5 3.511676

Figures 5–7, it is interesting to see that the change occurring
in the mass transfer rates is almost monotonous for all values
of Nt. However, the difference in the local Sherwood number
increases as 𝛾 increases and decreases as Nb increases.

Figures 8–11 show the samples of temperature and con-
centration profiles for different values of 𝛾 and Nt. These
profiles satisfy the far field boundary conditions (12) asymp-
totically which support the validity of the numerical results
obtained, as well as supporting the existence of the dual
solutions shown in Figures 2–7. For a similar problem where
dual solutions exist, Merkin [31], Weidman et al. [32], and
Postelnicu and Pop [33] have shown that the first solution
is linearly stable and physically realizable, while the second

solution is not. Thus for the present problem, it is expected
that only the first solution is physically relevant. The gener-
ated temperature profiles shown in Figure 8 are qualitatively
similar to those of Aziz [25] and Ishak [26]. From the figure,
it is seen that the temperature increases as 𝛾 increases. As
mentioned earlier, the surface temperature 𝑇

𝑤
depends on

the convective parameter 𝛾. As 𝛾 reaches ∞, the surface
temperaturewill approach 1, which conforms to the boundary
condition (11). Figure 9 shows the temperature profiles for
different values of Nt. It is observed that the change in
temperature occurs only slightly for every change in Nt. This
phenomenon supports the results obtained in Figure 3 and
Table 2(a). Figures 8 and 9 agree with the observation of
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Figure 2: Variations of the local Nusselt number (heat transfer rate)
with 𝜎 for different values of 𝛾 when Nb = Nt = 0.5, Le = 2, Pr = 6.8,
and S = 2.

81

0.0981

0.0981

0.0981

0.09

0.0981

0.098

0.098
−1 −0.5 0 0.5 1

𝜎

First solution
Second solution

Nt = 0.1, 0.3, 0.5

N
u x

Re
x
−
1/
2

Figure 3: Variations of the local Nusselt number (heat transfer rate)
with 𝜎 for different values of Nt when Nb = 0.5, Le = 2, Pr = 6.8, 𝛾 =
0.1, and S = 2.

Makinde and Aziz [27] where the thermal boundary layer
thickens with the rise in temperature as convective parameter
and thermophoresis parameter intensify.

The concentration profiles corresponding to the temper-
ature profiles in Figures 8 and 9 are shown in Figures 10 and
11. In Figures 8 and 9, it is observed that the temperature
increases as the convective parameter 𝛾 and thermophoresis
parameter Nt increase. Due to the dependency of the con-
centration on the temperature field, we expect that higher
convective and thermophoresis parameters would allow a
deeper penetration of the concentration [27]. Hence, it is seen
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Figure 4: Variations of the local Nusselt number (heat transfer rate)
with 𝜎 for different values of Nb when Nt = 0.5, Le = 2, Pr = 6.8, 𝛾 =
0.1, and S = 2.
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Figure 5: Variations of the local Sherwood number (concentration
rates) with 𝜎 for different values of 𝛾 when Nb = Nt = 0.5, Le = 2, Pr
= 6.8, and S = 2.

that in Figures 10 and 11, the concentration increases with
the increasing of convective parameter 𝛾 and thermophoresis
parameter Nt.

4. Conclusions

The boundary layer flow of a nanofluid past a stretch-
ing/shrinking sheet with a convective boundary condition
was studied. The effects of stretching/shrinking parameter,
convective parameter, Brownian motion parameter and ther-
mophoresis parameter on the local Nusselt number and local
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Figure 7: Variations of the local Sherwood number (concentration
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Sherwood number were studied. Numerical solutions to the
governing equations were obtained using a shootingmethod.
The results for the local Nusselt number and the local Sher-
wood number are presented for different values of the gov-
erning parameters.The local Nusselt number decreases as the
stretching/shrinking parameter increases. On the other hand,
the local Sherwood number increases with the increasing
of stretching/shrinking parameter. The local Nusselt number
is consistently higher for higher values of the convective
parameter but lower for higher values of the Brownian
motion parameter and thermophoresis parameter. From the
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Figure 8: Temperature profiles for different values of 𝛾 when Nb =
Nt = 0.5, Le = 2, Pr = 6.8, 𝜎 = −0.1, and S = 2.
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Figure 9: Temperature profiles for different values of Nt when Nb =
0.5, Le = 2, Pr = 6.8, 𝛾 = 0.1, 𝜎 = −0.1, and S = 2.

results, Brownian motion parameter affects the surface heat
transfer rate more than the thermophoresis parameter. The
local Sherwood number increases with increasing Brownian
motion parameter and decreases with increasing convective
parameter and thermophoresis parameter. The results also
indicate the existence of dual solutions for both stretching
and shrinking cases.
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