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We present a projection algorithm which modifies the method proposed by Censor and Elfving (1994) and also introduce a self-
adaptive algorithm for the multiple-sets split feasibility problem (MSFP). The global rates of convergence are firstly investigated
and the sequences generated by two algorithms are proved to converge to a solution of the MSFP. The efficiency of the proposed
algorithms is illustrated by some numerical tests.

1. Introduction

The multiple-sets split feasibility problem (MSFP) is to find
𝑥
∗ satisfying

𝑥
∗

∈ 𝐶 :=

𝑡

⋂

𝑖=1

𝐶
𝑖

such that 𝐴𝑥
∗

∈ 𝑄 :=

𝑟

⋂

𝑗=1

𝑄
𝑗
, (1)

where 𝐴 is an 𝑀 × 𝑁 real matrix, 𝐶
𝑖
⊆ R𝑁, 𝑖 = 1, . . . , 𝑡, and

𝑄
𝑗
⊆ R𝑀, 𝑗 = 1, . . . , 𝑟, are the nonempty closed convex sets.

This problem was firstly proposed by Censor et al. in [1] and
can be a model for many inverse problems where constraints
are imposed on the solutions in the domain of a linear
operator as well as in the operator’s range. Many researchers
studied theMSFP and introduced various algorithms to solve
it (see [1–7] and the references therein). If 𝑡 = 𝑟 = 1, then
this problem reduces to the feasible case of the split feasibility
problem (see, e.g., [8–11]), which is to find 𝑥

∗

∈ 𝐶 with
𝐴𝑥
∗

∈ 𝑄.
Assume that theMSFP (1) is consistent; that is, its solution

set, denoted by Γ, is nonempty. For convenience reasons,
Censor et al. [1] considered the following constrained MSFP:

find 𝑥
∗

∈ Ω such that 𝑥
∗ solves the MSFP, (2)

whereΩ ⊆ H
1
is an auxiliary simple nonempty closed convex

set containing at least one solution of the MSFP. For solving

the constrained MSFP, Censor et al. [1] defined a proximity
function 𝑝(𝑥) to measure the distance of a point to all sets

𝑝 (𝑥) =

1

2
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2

+

1

2

𝑟
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𝛽
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐴𝑥 − 𝑃
𝑄𝑗

𝐴 (𝑥)
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,

(3)

where 𝛼
𝑖

> 0 and 𝛽
𝑗

> 0 for all 𝑖 and 𝑗, respectively, and
∑
𝑡

𝑖=1
𝛼
𝑖
+ ∑
𝑟

𝑗=1
𝛽
𝑗
= 1. We see that

∇𝑝 (𝑥) =

𝑡

∑

𝑖=1

𝛼
𝑖
(𝑥 − 𝑃

𝐶𝑖
(𝑥))

+

𝑟

∑

𝑗=1

𝛽
𝑗
𝐴
𝑇

(𝐼 − 𝑃
𝑄𝑗

)𝐴𝑥.

(4)

Censor et al. [1] proposed a projection algorithm as follows:

𝑥
𝑛+1

= 𝑃
Ω
(𝑥
𝑛
− 𝑠∇𝑝 (𝑥

𝑛
)) , (5)

where 𝑠 is a positive number such that 0 < 𝑠
𝐿

≤ 𝑠 ≤ 𝑠
𝑈

<

2/𝐿(𝑝) and 𝐿(𝑝) is the Lipschitz constant of ∇𝑝.
Observe that in the algorithm (5) the determination of

the stepsize 𝑠 depends on the operator (matrix) norm ‖𝐴‖ (or
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the largest eigenvalue of 𝐴 ∗ 𝐴). This means that, in order
to implement the algorithm (5), one has first to compute (or,
at least, estimate) operator norm of 𝐴, which is in general
not an easy work in practice. To overcome this difficulty,
Zhang et al. [4] and Zhao and Yang [5, 7] proposed self-
adaptive methods where the stepsize has no connection with
matrix norms. Their methods actually compute the stepsize
by adopting different self-adaptive strategies.

Note that the algorithms proposed by Censor et al. [1],
Zhang et al. [4], and Zhao and Yang [5, 7] involve the projec-
tion to an auxiliary set Ω. In fact, the set Ω is introduced just
for the convenience of the proof of the convergence and itmay
be difficult to determine Ω in some cases. Considering this,
Zhao and Yang [6] presented simple projection algorithms
which does not need projection to an auxiliary set Ω.

In this paper, we introduce two projection algorithms for
solving the MSFP, inspired by Beck and Teboulle’s iterative
shrinkage-thresholding algorithm for linear inverse problem
[12].Thefirst algorithmmodifiesCensor et al.’smethodwhich
does not need projection to an auxiliary set Ω. The second
algorithm is self-adaptive and adopts the backtracking rule
to determine the stepsize. We firstly study the global rate of
convergence of two algorithms and prove that the sequences
generated by the proposed algorithms converge to a solution
of the MSFP. Some numerical results are presented, which
illustrate the efficiency of the proposed algorithms.

2. Preliminaries

In this section, we review some definitions and lemmaswhich
will be used in the main results.

The following lemma is not hard to prove (see [1, 13]).

Lemma 1. Let 𝑝 be given as in (3). Then
(i) 𝑝 is convex and continuously differential,
(ii) ∇𝑝(𝑥) is Lipschitz continuous with 𝐿(𝑝) = ∑

𝑡

𝑖=1
𝛼
𝑖
+

𝜌(𝐴
𝑇

𝐴)∑
𝑟

𝑗=1
𝛽
𝑗

as the Lipschitz constant, where
𝜌(𝐴
𝑇

𝐴) is the spectral radius of the matrix 𝐴
𝑇

𝐴.

For any 𝜏 > 0, consider the following quadratic approxi-
mation of 𝑝(𝑥) at a given point 𝑦:

𝑅
𝜏
(𝑥, 𝑦) := 𝑝 (𝑦) + ⟨𝑥 − 𝑦, ∇𝑝 (𝑦)⟩ +
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2
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2

, (6)

which admits a unique minimizer

𝐹
𝜏
(𝑦) := argmin {𝑅

𝜏
(𝑥, 𝑦) : 𝑥 ∈ R

𝑁

} . (7)

Simple algebra shows that (ignoring constant terms in 𝑦)

𝐹
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}
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1

𝜏

∇𝑝 (𝑦) .

(8)

The following lemma is well known and a fundamental
property for a smooth function in the class 𝐶1,1; for example,
see [14, 15].

Lemma 2. Let 𝑓 : R𝑛 → R be a continuously differentiable
function with Lipschitz continuous gradient and Lipschitz
constant 𝐿(𝑓). Then, for any 𝐿 > 𝐿(𝑓),

𝑓 (𝑥) ≤ 𝑓 (𝑦) + ⟨𝑥 − 𝑦, ∇𝑓 (𝑦)⟩ +
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,

for every 𝑥, 𝑦 ∈ R
𝑛

.

(9)

We are now ready to state and prove the promised key
result.

Lemma 3 (see [12]). Let 𝑦 ∈ R𝑛 and 𝜏 > 0 be such that
𝑝 (𝐹
𝜏
(𝑦)) ≤ 𝑅

𝜏
(𝐹
𝜏
(𝑦) , 𝑦) . (10)

Then for any 𝑥 ∈ R𝑛,
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(𝑦) − 𝑦⟩ .

(11)
Proof. From (10), we have

𝑝 (𝑥) − 𝑝 (𝐹
𝜏
(𝑦)) ≥ 𝑝 (𝑥) − 𝑅

𝜏
(𝐹
𝜏
(𝑦) , 𝑦) . (12)

Now, from the fact that 𝑝 are convex, it follows that
𝑝 (𝑥) ≥ 𝑝 (𝑦) + ⟨𝑥 − 𝑦, ∇𝑝 (𝑦)⟩ . (13)

On the other hand, by the definition of 𝑅
𝜏
(𝑥, 𝑦), one has
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Therefore, using (12)–(14), it follows that
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(15)
where in the first equality above we used (8).

Remark 4. Note that, from Lemmas 1 and 2, it follows that if
𝜏 ≥ 𝐿(𝑝), then the condition (10) is always satisfied for 𝐹

𝜏
(𝑦).

3. Two Projection Algorithms

In this section, we propose two projection algorithms which
do not need an auxiliary set Ω; one modifies the algorithm
introduced by Censor et al. [1] and the other is a self-adaptive
algorithm which solves the MSFP without prior knowledge
of spectral radius of the matrix 𝐴

𝑇

𝐴.

Algorithm 5. Let 𝐿
1
≥ 𝐿(𝑝) be a fixed constant and take 𝜏

𝑛
∈

(𝐿(𝑝), 𝐿
1
). Let 𝑥

0
be arbitrary. For 𝑛 = 0, 1, 2, . . ., compute

𝑥
𝑛+1

= 𝑥
𝑛
−

1

𝜏
𝑛

∇𝑝 (𝑥
𝑛
) . (16)
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Remark 6. Algorithm 5 is different from Censor et al.’s algo-
rithm (5) in [1] and it does not need the projection to an auxil-
iary simple nonempty closed convex set Ω. In Algorithm 5,
we take 𝜏

𝑛
> 𝐿(𝑝) instead of 𝜏

𝑛
> 𝐿(𝑝)/2 (as in Censor et al.’s

algorithm) which is restricted to a smaller range.

Algorithm 7. Given 𝛾 > 0 and 𝜂 > 1, let 𝑥
0
be arbitrary. For

𝑛 = 0, 1, 2, . . ., find the smallest nonnegative integer 𝑚
𝑛
such

that 𝜏
𝑛
= 𝛾𝜂
𝑚𝑛 and

𝑥
𝑛+1

= 𝑥
𝑛
−

1

𝜏
𝑛

∇𝑝 (𝑥
𝑛
) , (17)

which satisfies
𝑝 (𝑥
𝑛+1

) − 𝑝 (𝑥
𝑛
) + ⟨∇𝑝 (𝑥

𝑛
) , 𝑥
𝑛
− 𝑥
𝑛+1

⟩

≤

𝜏
𝑛

2

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

2

.

(18)

Remark 8. Note that the sequence of function values {𝑝(𝑥
𝑛
)}

produced by Algorithms 5 and 7 is nonincreasing. Indeed, for
every 𝑛 ≥ 1,

𝑝 (𝑥
𝑛+1

) ≤ 𝑅
𝜏𝑛

(𝑥
𝑛+1

, 𝑥
𝑛
)

≤ 𝑅
𝜏𝑛

(𝑥
𝑛
, 𝑥
𝑛
) = 𝑝 (𝑥

𝑛
) ,

(19)

where the first inequality comes from Lemma 2 for
Algorithm 5 and from (18) for Algorithm 7, and the
second inequality follows from (7). 𝜏

𝑛
in (19) is either chosen

by the backtracking rule (18) or 𝜏
𝑛

∈ (𝐿(𝑝), 𝐿
1
), where 𝐿(𝑝)

is a given Lipschitz constant of ∇𝑝.

Lemma 9. There holds
𝛽𝐿 (𝑝) ≤ 𝜏

𝑛
≤ 𝛼𝐿 (𝑝) , (20)

where 𝛼 = 𝐿
1
/𝐿(𝑝), 𝛽 = 1 in Algorithm 5 and 𝛼 = 𝜂, 𝛽 =

𝛾/𝐿(𝑝) in Algorithm 7.

Proof. It is easy to verify (20) for Algorithm 5. By 𝜂 > 1 and
the choice of 𝜏

𝑛
, we get 𝜏

𝑛
≥ 𝛾. From Lemma 2, it follows that

inequality (18) is satisfied for 𝜏
𝑛

≥ 𝐿(𝑝), where 𝐿(𝑝) is the
Lipschitz constant of ∇𝑝. So, for Algorithm 7 one has 𝜏

𝑛
≤

𝜂𝐿(𝑝) for every 𝑛 ≥ 1.

Remark 10. From Lemma 9, it follows that backtracking rule
(18) is well defined.

Remark 11. In algorithm “ISTA with backtracking” proposed
by Beck and Teboulle [12], they took 𝜏

𝑛
= 𝜏
𝑛−1

𝜂
𝑚𝑛 , with 𝜏

0
> 0

and 𝜂 > 1. It is obvious that 𝜏
𝑛
increases with 𝑛. It is verified

that small 𝜏
𝑛
is more efficient than a larger one in numerical

experiments (see Table 1). So, in Algorithm 7, we take 𝜏
𝑛

=

𝛾𝜂
𝑚𝑛 for backtracking rule which is smaller than the one in

the algorithm of Beck and Teboulle.

Theorem 12. Let {𝑥
𝑛
} be a sequence generated by Algorithm 5

or Algorithm 7. Then {𝑥
𝑛
} converges to a solution of the MSFP

(1), and furthermore for any 𝑛 ≥ 1 it holds that

𝑝 (𝑥
𝑛
) ≤

𝛼𝐿 (𝑝)
󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑥
∗󵄩󵄩
󵄩
󵄩

2

2𝑛

, ∀𝑥
∗

∈ Γ.
(21)

Proof. Invoking Lemma 3 with 𝑥 = 𝑥
∗, 𝑦 = 𝑥

𝑘
, and 𝜏 = 𝜏

𝑘
,

we obtain
2

𝜏
𝑘

(𝑝 (𝑥
∗

) − 𝑝 (𝑥
𝑘+1

)) ≥
󵄩
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󵄩
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𝑥
𝑘+1

− 𝑥
𝑘

󵄩
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󵄩
󵄩

2

+ 2 ⟨𝑥
𝑘
− 𝑥
∗

, 𝑥
𝑘+1

− 𝑥
𝑘
⟩
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󵄩
󵄩

2

−
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
∗󵄩
󵄩
󵄩
󵄩

2

,

(22)

which combined with (20) and the fact that 𝑝(𝑥
∗

) = 0,
𝑝(𝑥
𝑘+1

) ≥ 0 yields

−

2

𝛼𝐿 (𝑝)

𝑝 (𝑥
𝑘+1

) ≥
󵄩
󵄩
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𝑥
𝑘+1

− 𝑥
∗󵄩
󵄩
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󵄩

2

−
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
∗󵄩
󵄩
󵄩
󵄩

2

, (23)

which implies
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘+1

− 𝑥
∗󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
∗󵄩
󵄩
󵄩
󵄩
. (24)

So {𝑥
𝑛
} is a Fejér monotone sequence. Summing the inequal-

ity (23) over 𝑘 = 0, 1, . . . , 𝑛 − 1 gives

−

2

𝛼𝐿 (𝑝)

𝑛−1

∑

𝑘=0

𝑝 (𝑥
𝑘+1
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󵄩
󵄩
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󵄩

2

−
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󵄩
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𝑥
0
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∗󵄩
󵄩
󵄩
󵄩

2

. (25)

Invoking Lemma 3 onemore timewith𝑥 = 𝑦 = 𝑥
𝑘
and 𝜏 = 𝜏

𝑘

yields

2

𝜏
𝑘

(𝑝 (𝑥
𝑘
) − 𝑝 (𝑥

𝑘+1
)) ≥
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𝑘+1
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󵄩
󵄩
󵄩

2

. (26)

Since 𝜏
𝑘
≥ 𝛽𝐿(𝑝) (see (20)) and𝑝(𝑥

𝑘
)−𝑝(𝑥

𝑘+1
) ≥ 0 (see (19)),

it follows that
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𝛽𝐿 (𝑝)

(𝑝 (𝑥
𝑘
) − 𝑝 (𝑥

𝑘+1
)) ≥
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󵄩
󵄩
𝑥
𝑘
− 𝑥
𝑘+1

󵄩
󵄩
󵄩
󵄩

2

. (27)

Multiplying the last inequality by 𝑘 and summing over 𝑘 =

0, . . . , 𝑛 − 1, we obtain

2

𝛽𝐿 (𝑝)

𝑛−1

∑

𝑘=0

(𝑘𝑝 (𝑥
𝑘
) − (𝑘 + 1) 𝑝 (𝑥

𝑘+1
) + 𝑝 (𝑥

𝑘+1
))

≥

𝑛−1

∑

𝑘=0

𝑘
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
𝑘+1

󵄩
󵄩
󵄩
󵄩

2

,

(28)

which simplifies to

2

𝛽𝐿 (𝑝)

(−𝑛𝑝 (𝑥
𝑛
) +

𝑛−1

∑

𝑘=0

𝑝 (𝑥
𝑘+1
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≥

𝑛−1

∑

𝑘=0

𝑘
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
𝑘+1

󵄩
󵄩
󵄩
󵄩

2

.

(29)

Adding (25) and (29) times 𝛽/𝛼, we get

−

2𝑛

𝛼𝐿 (𝑝)

𝑝 (𝑥
𝑛
) ≥
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󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
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󵄩
󵄩
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𝛽

𝛼
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𝑘
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
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󵄩
󵄩
󵄩
󵄩

2

−
󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑥
∗󵄩
󵄩
󵄩
󵄩

2

,

(30)
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Table 1: Computational results for Example 13 with different algorithms.

Initial point
Algorithm 5 with different 𝜏 Algorithm 7

1.01L(𝑝) 1.1L(𝑝) 1.2L(𝑝) 1.3L(𝑝) 1.4L(𝑝)
Iter. Iter. Iter. Iter. Iter. Iter. InIt.

(0, 0, 0, 0, 0) 96 104 114 123 132 7 22
(20, 10, 20, 10, 20) 1246 1358 1482 1606 1730 35 77
(100, 0, 0, 0, 0) 1256 1368 1493 1618 1743 39 90
(1, 1, 1, 1, 1) 1228 1338 1460 1582 1704 28 54

Table 2: Computational results for Example 14 with different dimensions and different numbers of 𝐶
𝑖
and 𝑄

𝑗
.

𝑁 20 30 40 50 60

𝑡 = 5, Algorithm 5 Iter. 515 675 774 875 1098
Sec. 0.093 0.125 0.156 0.203 0.485

𝑟 = 5 Algorithm 7
Iter. 11 8 7 7 7
InIt. 71 94 105 104 133
Sec. 0.016 0.031 0.047 0.062 0.078

𝑡 = 10, Algorithm 5 Iter. 772 1412 1456 1583 1614
Sec. 0.328 0.625 0.782 1.047 1.297

𝑟 = 15 Algorithm 7
Iter. 14 13 9 8 7
InIt. 76 92 120 122 140
Sec. 0.031 0.063 0.078 0.094 0.125

𝑡 = 30, Algorithm 5 Iter. 854 1467 2100 2246 2448
Sec. 0.406 0.828 1.437 1.875 3.516

𝑟 = 40 Algorithm 7
Iter. 15 13 13 13 9
InIt. 78 88 113 123 144
Sec. 0.032 0.047 0.093 0.188 0.297

and hence, it follows that

𝑝 (𝑥
𝑛
) ≤

𝛼𝐿 (𝑝)
󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑥
∗󵄩󵄩
󵄩
󵄩

2

2𝑛

, ∀𝑥
∗

∈ Γ,
(31)

which yields
lim
𝑛→∞

𝑝 (𝑥
𝑛
) = 0. (32)

Since {𝑥
𝑛
} is Fejér monotone, it is bounded. To prove

the convergence of {𝑥
𝑛
}, it only remains to show that all

converging subsequences have the same limit. Suppose in
contradiction that two subsequences {𝑥

𝑛𝑘
} and {𝑥

𝑛𝑙
} converge

to different limits𝑥 and𝑥, respectively (𝑥 ̸= 𝑥).We are to show
that 𝑥 is a solution of the MSFP. The continuity of 𝑝(𝑥) then
implies that

0 ≤ 𝑝 (𝑥) = lim
𝑘→∞

𝑝 (𝑥
𝑛𝑘
) = lim
𝑛→∞

𝑝 (𝑥
𝑛
) = 0. (33)

Therefore, 𝑝(𝑥) = 0; that is, 𝑥 ∈ 𝐶 = ⋂
𝑡

𝑖=1
𝐶
𝑖
and 𝐴𝑥 ∈

𝑄 = ⋂
𝑟

𝑗=1
𝑄
𝑗
; that is, 𝑥 is a solution of the MSFP. Similarly,

we can show that it is a solution of the MSFP. Now, by
Fejér monotonicity of the sequence {𝑥

𝑛
}, it follows that the

sequence {‖𝑥
𝑛
− 𝑥‖} is bounded and nonincreasing and thus

has a limit lim
𝑛→∞

‖𝑥
𝑛
− 𝑥‖ = 𝑙

1
. However, we also have

lim
𝑛→∞

‖𝑥
𝑛
−𝑥‖ = lim

𝑘→∞
‖𝑥
𝑛𝑘

−𝑥‖ = 0, and lim
𝑛→∞

‖𝑥
𝑛
−

𝑥‖ = lim
𝑙→∞

‖𝑥
𝑛𝑙

− 𝑥‖ = ‖𝑥 − 𝑥‖, so that 𝑙
1
= 0 = ‖𝑥 − 𝑥‖,

which is obviously a contradiction. Thus {𝑥
𝑛
} converges to a

solution of the MSFP (1). The proof is completed.

4. Numerical Tests

In order to verify the theoretical assertions, we present some
numerical tests in this section. We apply Algorithms 5 and 7
to solve two test problems of [4] (Examples 13 and 14) and
compare the numerical results of two algorithms.

For convenience, we denote the vector with all elements 0
by 𝑒
0
and the vector with all elements 1 by 𝑒

1
in what follows.

In the numerical results listed in the following tables, “Iter.”
and “Sec.” denoted the number of iterations and theCPU time
in seconds, respectively. For Algorithm 7, “InIt.” denoted the
number of total iterations of finding suitable 𝜏

𝑛
in (18).

Example 13 (see [4]). Consider a split feasibility problem as
finding 𝑥 ∈ 𝐶 = {𝑥 ∈ R5 | ‖𝑥‖ ≤ 0.25} such that 𝐴𝑥 ∈ 𝑄 =

{𝑦 = (𝑦
1
, 𝑦
2
, 𝑦
3
, 𝑦
4
)
𝑇

∈ R4 | 0.6 ≤ 𝑦
𝑗

≤ 1, 𝑗 = 1, 2, 3, 4},
where the matrix

𝐴 = (

2 −1 3 2 3

1 2 5 2 1

2 0 2 1 −2

2 −1 0 −3 5

) . (34)

The weights of 𝑝(𝑥) were set to 𝛼 = 0.9 and 𝛽 = 0.1. In the
implementation, we took 𝑝(𝑥) < 𝜀 = 10

−9 as the stopping
criterion as in [4].
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For Algorithm 5, we tested 𝜏
𝑛

= 1.01𝐿(𝑝), 1.1𝐿(𝑝), . . . ,

1.9𝐿(𝑝) and the numerical results were reported in Table 1
with different initial points𝑥

0
. (Since the number of iterations

for 𝜏
𝑛

= 1.5𝐿(𝑝), 1.6𝐿(𝑝), . . . , 1.9𝐿(𝑝) was larger than those
for 𝜏
𝑛

≤ 1.4𝐿(𝑝), we only reported the results for 𝜏
𝑛

≤

1.4𝐿(𝑝).) We took 𝛾 = 1 and 𝜂 = 1.1 for Algorithm 7. Table 1
shows that Algorithm 5was efficient when choosing a suitable
𝜏
𝑛
(𝜏
𝑛

∈ (𝐿(𝑝), 1.1𝐿(𝑝)) was the best choice for the current
example), while the number of iterations of Algorithm 5 was
still larger than those for Algorithm 7.

Example 14 (see [4]). Consider the MSFP, where 𝐴 =

(𝑎
𝑖𝑗
)
𝑁×𝑁

∈ R𝑁×𝑁 and 𝑎
𝑖𝑗

∈ (0, 1) generated randomly:

𝐶
𝑖
= {𝑥 ∈ R

𝑁

|
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑑
𝑖

󵄩
󵄩
󵄩
󵄩
≤ 𝑟
𝑖
} , 𝑖 = 1, 2, . . . , 𝑡,

𝑄
𝑗
= {𝑦 ∈ R

𝑁

| 𝐿
𝑗
≤ 𝑦 ≤ 𝑈

𝑗
} , 𝑗 = 1, 2, . . . , 𝑟,

(35)

where 𝑑
𝑖
∈ R𝑁 is the center of the ball 𝐶

𝑖
, 𝑒
0

≤ 𝑑
𝑖
≤ 10𝑒

1
,

and 𝑟
𝑖
∈ (40, 50) is the radius; 𝑑

𝑖
and 𝑟
𝑖
are both generated

randomly. 𝐿
𝑗
and 𝑈

𝑗
are the boundary of the box 𝑄

𝑗
and are

also generated randomly, satisfying 20𝑒
1
≤ 𝐿
𝑗
≤ 30𝑒
1
, 40𝑒
1
≤

𝑈
𝑗

≤ 80𝑒
1
, respectively. The weights of 𝑝(𝑥) were 1/(𝑡 + 𝑟).

The stopping criterion was 𝑝(𝑥) < 𝜀 = 10
−4 with the initial

point 𝑥
0
= 𝑒
0
∈ R𝑁.

We tested Algorithms 5 and 7 with different 𝑡 and 𝑟 in
different dimensional Euclidean space. In Algorithm 5, since
a smaller 𝜏

𝑛
is more efficient than a larger one, we take 𝜏

𝑛
=

1.01𝐿(𝑝) in the experiment. We take 𝛾 = 1 and 𝜂 = 1.2

for Algorithm 7. For comparison, the same random values
were taken in each test. The numerical results were listed in
Table 2, from which we can observe the efficiency of the self-
adaptiveAlgorithm 7, both from the points of viewof number
of iterations and CPU time.
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