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Since Bayesian Model Averaging (BMA) method can combine the forecasts of different models together to generate a new one
which is expected to be better than any individual model’s forecast, it has been widely used in hydrology for ensemble hydrologic
prediction. Previous studies of the BMA mostly focused on the comparison of the BMA mean prediction with each individual
model’s prediction. As BMA has the ability to provide a statistical distribution of the quantity to be forecasted, the research focus in
this study is shifted onto the comparison of the prediction uncertainty interval generated by BMA with that of each individual model
under two different BMA combination schemes. In the first BMA scheme, three models under the same Nash-Sutcliffe efficiency
objective function are, respectively, calibrated, thus providing three-member predictions ensemble for the BMA combination. In
the second BMA scheme, all three models are, respectively, calibrated under three different objective functions other than Nash-
Sutcliffe efficiency to obtain nine-member predictions ensemble. Finally, the model efficiency and the uncertainty intervals of each

individual model and two BMA combination schemes are assessed and compared.

1. Introduction

To date, various hydrological models have been put forward
and widely used in flood forecasting, planning, and water
resources management [1, 2]. Since different models have
strengths in capturing different aspects of the real world
processes, combining the results from diverse models by
weighting procedures can present a better performance than
any individual model [3-5]. The early model combination
researches in hydrologic forecasting employed such tools as
neural network [6] and fuzzy system [7]. Recently, Bayesian
Model Averaging (BMA), a method for averaging over
different competing models, has been introduced to ensemble
hydrologic predictions.

Bayesian Model Averaging came to prominence in statis-
tics in the mid-1990s, and Madigan and Raftery [8] were
the first to propose this method for combining predictions.
Subsequently, Raftery [9] and Draper [10] gave more detailed
discussion about BMA. It has been applied in diverse fields

such as economics [11], biology [12], ecology [13], public
health [14], toxicology [15], meteorology [16], and manage-
ment science [17]. In many case studies, BMA produces
accurate and reliable predictions and was shown to be a
better scheme than other model-combining methods [18-
20]. In recent years, hydrologists have also applied BMA to
hydrologic modeling, such as groundwater [21] and rainfall-
runoft modeling [22-24].

A prediction from a single model has been recognized
to be associated with a certain degree of uncertainty, and
so is the prediction from combining a number of different
single models. Thus, uncertainty analysis is an indispensable
element for any hydrologic modeling study. The uncertainty
usually arises from errors during the calibration of param-
eters, the design of model structure, and measurements
of input and output data [25, 26]. To account for these
uncertainties, many uncertainty analysis techniques have
been developed and applied to diverse catchments, such
as Generalized Likelihood Uncertainty Estimation (GLUE),
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FIGURE 1: Flowchart of using BMA scheme for hydrological ensem-
ble prediction as well as for prediction uncertainty analysis.

Parameter Solution (ParaSol), and Bayesian inference based
on Markov chain Monte Carlo (MCMC) [27, 28]. Each
of those techniques has its own advantage in uncertainty
analysis. In the uncertainty analysis of BMA scheme, the
composition of Monte Carlo method [29] is used to generate
BMA probabilistic ensemble predictions, and then the 90%
uncertainty intervals can be derived within the range of the
5% and 95% quantiles.

Previous studies of BMA in hydrology mostly focused
on the comparison of the BMA mean prediction with each
individual model’s prediction, to prove the better perfor-
mance of the prediction after weighted averaging. As BMA
also has the ability to provide a statistical distribution of the
quantity to be forecasted, the research focus in this study is
shifted onto the comparison of the prediction uncertainty
interval generated by the BMA with that of each individual
model, in order to see if BMA can also improve the prediction
reliability. The technical route of the research in this paper is
described in Figure 1. Another purpose of this paper is that
by calibrating different hydrological models under different
objective functions, each of which has distinctive advantages
in better modeling certain flow ranges, we can construct
different sets of ensemble members for combination in order
to fully explore the superiority of BMA. Therefore, two kinds
of BMA combination schemes are designed, analyzed, and
compared. In the first BMA scheme, we calibrate each of
the three models under the same Nash-Sutcliffe efficiency
objective function, thus providing three-member predic-
tions ensemble for the BMA combination. In the second
BMA scheme, three different objective functions other than
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Nash-Sutcliffe efficiency are adopted, each of which is sup-
posed to have some advantage of better simulating a certain
range of flows (low flow, medium flow, and high flow).
All three models are, respectively, calibrated for each of
three objective functions to obtain the optimized parameter
sets.

2. Methods

2.1. Bayesian Model Averaging. Bayesian Model Averaging
(BMA) is a statistical technique designed to infer a prediction
by weighted averaging over many different competing mod-
els. This method is not only a scheme for model combination
but also a coherent approach for accounting for between-
model and within-model uncertainty [22]. Below is a brief
description of the basic ideas of this method.

Let us consider a quantity Q to be predicted on the basis
of input data D = [X,Y] (X denotes the input forcing
data, and Y stands for the observational flow data). f =
[f1> f25---> fx]is the ensemble of the K-member predictions.
The probabilistic prediction of BMA is given by

p@QID)=Y p(fi | D)-p(Ql fi- D). o)

k=1

The terms in (1) are explained as follows. p(f, | D)
is the posterior probability of the prediction f; given the
input data D and reflects how well model f; fits Y. Actually
p(fr | D) is just the BMA weight wy, and better per-
forming predictions receive higher weights than the worse
performing ones; all weights are positive and should add
up to L. p(Q | f,D) is the conditional probability
density function (PDF) of the predictand Q conditional on f;,
and D. For computation convenience, p(Q | fi,D) is
always assumed to be a normal PDF and is represented
as g(Q | fk,o,f) ~ N(fe 0,%), where a,f is the variance
associated with model prediction f; and observations Y. In
order to make this assumption valid, some techniques such
as Box-Cox transformation are needed to make the data
approximately normally distributed and to narrow the data
range.

The BMA mean prediction is a weighted average of the
individual model’s predictions, with their posterior probabil-
ities being the weights. In the case that the observations and
individual model predictions are all normally distributed, the
BMA mean prediction can be expressed as

E[Q|D] = ZP(fk | D) -E[g(Q | fk>‘7}3)] = Zwkfk-
k=1 k=1
(2)

2.2. EM Algorithm for BMA Parameter Estimation. To esti-
mate BMA weight w, and model prediction variance o7,
the Expectation-Maximization (EM) algorithm, which has
proved to be an efficient technique for BMA calculation based
on the assumption that K-member predictions are normally
distributed, is described in this section [23].
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Firstly, if we denote the set of BMA parameters to be
estimated by 0 = {wk,aﬁ, k = 1,2,...,K}, the log form of
likelihood function can be represented as

K
1(6) =1log (p(Q| D)) = 10g<zwk-g(Q | fk,ai)) (3)
k=1

It is difficult to maximize the function (3) by analytical
method. The EM algorithm is a method for finding the
maximum likelihood by alternating between two steps, the
expectation step and maximization step. The two steps are
iterated to convergence when there is no significant change
between two consecutive iterative log-likelihood estimations.
In EM algorithm, a latent variable (unobserved quantity) zj
is used as an assistant for estimating BMA weight wy. The
procedure of EM algorithm for BMA scheme is described as
follows.

(1) Initialization. Set Iter = 0.

Initialize
o _ 1
w,’ = —,
k7K
(4)
K T 2
02(0) _ Zk:l Zt:l (Yt - fzﬁ)
k K-T ’

where Iter is the number of iteration and T is the number
of data in the calibration period. Y* and f} are denoted as
the observation and the corresponding prediction by the kth
model for the time t.

(2) Calculate the Initial Likelihood:

T K 0)
16)® = Y log (Z (w-g(1 f12™)) ) 9

t=1 k=1

(3) Compute the Latent Variable. Set Iter = Iter + 1, then
calculate

;o (Iter-1)
¢ (Iter) g9 (Q | fk’ak )
Zk = .
K (Iter—1)
219 (Q | foor )

(4) Update the Weight:

(Iter) 1 < I (Iter) >
ter t
w = — z . (7)
k k
T\5S

(5) Update the Variance:

(6)

T (Tter) 2
t=1 zltc ‘(Yt—fi)

T ¢ (Iter)
Zt:1 2y

2 (Iter)
(o =

(8)

(6) Update the Likelihood:

T K
l(e)(lter) _ Zlog<z (wl(clter) g (Q | fli’(fi(lter)») . 9

=1 k=1

(7) Check for Convergence. If 1) — 1) 1D g Jess
than a prespecified tolerance level, stop the whole estimation
procedure; else go back to Step (3).

2.3. Estimation of Prediction Uncertainty Interval. After BMA
weight w; and prediction variance oﬁ being estimated, we use
the composition of Monte Carlo method to generate BMA
probabilistic predictions for any time t [29]. The procedures
are described as follows.

(1) Generate an integer value of k from [1,2,..., K] with
probability [w,,w,,...,wk]. A specific procedure is
described as follows.

(1a) Set the cumulative weight w(') = 0 and compute
w,’c = w,’c_1 +w fork=1,2,...,K.
(1b) Generate a random number u between 0 and 1.

(Ic) Ifw,_, < u < wy, it indicates that we choose the
kth member of the ensemble predictions.

(2) Generate a value of Q, from the PDF of g(Q, |
f,i,ai). Here, g(Q, | f,i,cr,f) represents the normal
distribution with mean f{ and variance o}.

(3) Repeat the above steps (1) and (2) for M times. M is
the probabilistic ensemble size. In this paper, we set
M =100.

After generating the BMA probabilistic ensemble pre-
dictions, sort them in the ascending order. Then the 90%
uncertainty intervals can be derived within the range of the
5% and 95% quantiles.

For each individual model in the BMA scheme, the
prediction uncertainty interval can also be constructed,
with the Monte Carlo sampling method still being used to
approximate the assumed PDF of g(Q, | ff, 7).

3. Materials

3.1 Study Area and Data. The study area is Mumahe catch-
ment, a branch of Han River. It is located in Shanxi Province
of China and the total area is 1224km”. The basin has
a subtropical climate, and the area is humid with fairly
high precipitation. The mean annual rainfall for the period
of 1980-1987 is 1070 mm, and the mean annual runoff is
687 mm, or roughly 64% of the annual rainfall. The hydrolog-
ical data include daily runoft, rainfall, and evaporation. There
are 2992 data points in total, and 1825 (the period of 1980.1.1-
1985.12.31) of them are used for calibration, while the rest
1167 data points (the period 0f1986.1.1-1987.12.31) are used for
validation.

3.2. Hydrological Models and Optimization Algorithm. In this
study, three conceptual hydrological models are employed for
testing the capability of BMA: the Xinanjiang Rainfall-Runoft
Model (XAJ), the Soil Moisture Accounting and Routing
Model (SMAR), and SIMHYD Rainfall-Runoft Model.
Xinanjiang Rainfall-Runoff Model was developed in
1970s. It is a conceptual hydrologic model, which has been
widely used in humid and semihumid regions of China.
And all the 15 parameters of this model have strong physical
meanings. SMAR model is a lumped conceptual model with
soil moisture as a central theme. The model consists of two



components in sequence: a water balance component with
5 water balance parameters and a routing component with
4 routing parameters. SIMHYD model is a daily conceptual
model that estimates daily stream flow from daily rainfall
and areal potential evapotranspiration data and it contains 7
parameters [30]. For calibrating these hydrological models,
Shuffled Complex Evolution (SCE-UA) method is employed
here for parameter optimization [31].

3.3. Objective Functions. The selection of objective function
(OF) is of great importance since it will have great influence
on the values of calibrated parameters and thus on simulation
results of the rainfall-runoff model. Different objective func-
tions can be adopted for different kinds of practical issues.
For example, the objective function of squared model errors
of squared transformed flow can be applied in high flow
studies, and the objective function of squared model errors
of logarithmic transformed flow can be applied in low flow
studies [32]. In this study, four objective functions have been
used for the parameter calibration.

(1) OFI: The Nash-Sutcliffe Coefficient of Efficiency (R*):
2

Y1y (s = Uim)
2 >

Zthl ( (t)bs B Qobs)

are observed and simulated data at time

R =10- (10)

where Qf)bs and Q°

sim

t and Q,, is the average of observed data in the calibration
period.

(2) OF2: Mean Squared Error of Squared Transformed
(MSEST):

t 2

Zz;l (Qobs - Qiim2>2. 11)
T

Transforming the observed data in squared form puts great
emphasis on fitting peak values.

(3) OF3: Mean Squared Error of Squared Root Transformed

(MSESRT):
5T, (V@ ~ Q) (12)
. .

MSESRT can be employed in the medium flow simulation.

(4) OF4: Mean Squared Error of Logarithmic Transformed
(MSELT):

MSEST =

MSESRT =

Se, (nQly, ~ QL) (13)
T

This transformation helps model parameterization to better
fit the low flow values.

MSELT =

3.4. Construction of BMA(3) and BMA(9) Schemes. When the
prediction data are highly non-Gaussian, we should firstly
transform the data to be normally distributed by Box-Cox
transformation before using EM algorithm. OF1 is the most
widely used objective function for parameter optimization
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FIGURE 2: Diagram of BMA(3) combination scheme.
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FIGURE 3: Diagram of BMA(9) combination scheme.

and is used in calibrating each of three hydrological models
mentioned above to generate three different predictions.
We combine these three different predictions by BMA to
construct a three-member predictions ensemble; thus, we
denote the first BMA scheme as BMA(3). Figure 2 shows
the procedure of BMA(3) combination scheme. The other
three objective functions, that is, OF2, OF3, and OF4 are,
respectively, fit for high, medium, and low flow simulation.
All three hydrological models are, respectively, calibrated
for each of these three objective functions to obtain the
optimized parameter sets. As the same model with different
parameter sets will give rise to different outcomes, nine
different predictions are generated. We can use BMA method
to combine these nine different predictions to construct a
nine-member predictions ensemble, which is just the second
BMA scheme denoted as BMA(9). The procedure of BMA(9)
combination scheme is described in Figure 3.

Let E denote the uncertainty of the forecast, and it can
be written as E = [E,,, E,,,, E;], including three components,
that is, the high flow simulation uncertainty Ej,, the medium
flow simulation uncertainty E,,, and the low flow simulation
uncertainty E;. In BMA(9), the forecasts which are generated
under OF2 have relatively small E;, so they can get higher
weights than other forecasts in high flow simulation. Simi-
larly, the forecasts generated under OF3 have relatively high
weights in medium flow simulation, while the ones generated
under OF4 have higher weights than others in low flow
simulation. By averaging the forecasts from a set of different
combinations of hydrological model and objective function,
the advantage of BMA(9) is its ability to reduce the simulation
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errors by giving weights to each of the nine-member forecasts
according to their performance in different flow ranges.

3.5. Performance Criteria for Evaluating the Mean Prediction.
There are three indices for evaluating the mean prediction.

(1) The Nash-Sutcliffe Coefficient of Efficiency (R®). The
definition of R® has expressed in (10). R* is not only
an objective function but also a widely used performance
criterion. It ranges from minus infinity to 1.0, with higher
values indicating better agreement. It is difficult to evaluate
the performance of the model with R in all flow ranges, since
the value of R? is always negative in the medium flow range.

(2) Daily Root Mean Square Error (DRMS):

- J S (Qlts = Q) 19)
T

where Qf)bs and Q;m are observed and simulated data at
time t. DRMS is sensitive to the differences between the
observations and simulations. The lower the DRMS value is,

the better the prediction performance is.

(3) Relative Error of Total Runoff (RE):

T t
RE = 1.0 - 221 Qi (15)

It reflects the performance in the simulation of the total runoff
amount. Lower values of RE indicate better agreement of total
surface runoff.

3.6. Performance Criteria for Assessing the Prediction Uncer-
tainty Interval. Xiong et al. [33] have presented a set of
indices for assessing the prediction uncertainty intervals
generated by the uncertainty analysis methods. Three main
indices are selected here to assess the prediction uncertainty
intervals produced by BMA schemes as well as from each
individual hydrological model.

(1) Containing Ratio (CR). The containing ratio is used
for assessing the goodness of the uncertainty interval. It is
defined as the percentage of observed data points that are
covered in the prediction bounds.

(2) Average Band-Width (B). Consider

1

B=—
T

M~

(4,-4), (16)

t:

1l
—

where g, and g) are denoted as upper and lower prediction
bounds at time t. The average band-width B is also an index
for measuring the performance of estimated uncertainty
interval.

(3) Average Deviation Amplitude (D). The average deviation
amplitude D is an index to quantify the average deflection of

0.5
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FIGURE 4: Histogram of weights of individual model predictions in
BMA(3) scheme.
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FIGURE 5: Histogram of weights of the individual model predictions
in BMA(9) scheme.

the curve of the middle points of the prediction bounds from
the observed streamflow hydrograph. It is defined as

1i
D=—
Tt:1

where Q. is the observed discharge at time ¢.

; 17)

> (d+ ) - Qs

4. Results and Discussion

The weights of individual models in BMA(3) scheme are
displayed in Figure 4, while the weights in BMA(9) are
showed in Figure 5. Moreover, in order to compare the
performance of two BMA schemes in different flow ranges,
according to the characteristics of the streamflow values of
Mumahe catchment, data are broken into three flow ranges:
high flow (top 10%), medium flow (middle 50%), and low flow
(bottom 40%).

4.1. BMA(3) Results. We check the mean prediction of
BMA(3) using three criteria illustrated in Section 4.1. Results
of BMA(3) and its 3 individual models in the mean prediction



6
2000
21600
g
> 1200
c:o 800
£
<
£ 400
w
0 A
1 51 101 151 201 251 301 351
The year of 1983
90% interval
— XAJ
Observations
(a)
2000
Z 1600
g’ 1200
z
2 800
£
<
£ 400
« J
0 i AR . S -
1 51 101 151 201 251 301 351
The year of 1983
90% interval
—— SIMHYD
Observations

(c)

Journal of Applied Mathematics

2000
21600
E
= 1200
2 800
£
<
£ 400}
w
0 .
1 51 101 151 201 251 301 351
The year of 1983
90% interval
—— SMAR
Observations
(b)
2000
21600
E
> 1200
= 800
£
<
£ 400
& L
O o % A
1 51 101 151 201 251 301 351
The year of 1983
90% interval
—— BMAQ®)
Observations

(d)

FIGURE 6: The mean prediction and 90% uncertainty interval of both BMA(3) and 3 individual models for the Mumahe catchment in 1983

during the calibration period.

for the whole flow series are presented in Table 1. In terms of
R?, the mean prediction of BMA(3) can achieve 90.68% in
calibration period and 86.98% in validation period, which is
better than its best individual model prediction (XAJ). How-
ever, in terms of RE, the mean prediction of BMA(3) performs
much worse than its best individual model prediction.

Three indices illustrated in Section 4.2 are used for
assessing the prediction uncertainty intervals of both BMA(3)
and its three individual models. The results for the whole
flow series are also showed in Table 1. It is clear that BMA(3)
uncertainty interval has the largest values of CR and B, and
almost the smallest D, in both calibration and validation peri-
ods. In other words, BMA(3) uncertainty interval has better
properties than any individual model’s uncertainty interval in
terms of CR and D, but worse in terms of B. Then we compare
the differences between BMA(3) and its individual model in
uncertainty interval by the graph. Figure 6 displays the mean
prediction and 90% uncertainty interval of both BMA(3) and
its 3 individual models for Mumahe catchment in the year of
1983 during the calibration period. The observations of 1983
are shown as dots, and the BMA(3) mean prediction and its
individual models’ predictions are represented by solid curve.
As the statistical results showed in Table 1, the uncertainty
intervals of the individual models have low containing ratio
and large deviation amplitude. But the uncertainty interval of
BMA(3) is much broader than that of any of its individuals.
It can be found from Figure 7 that the results of validation

period are similar to that of the calibration period. In general,
the uncertainty interval of BMA(3) has better performance
than its individual models for the whole flow series.

4.2. BMA(9) Results. Table 2 lists the results of BMA(9) and
its 9 individual models in the mean prediction for the whole
flow series. And from it we can easily find that in calibration
period, the mean prediction of BMA(9) performs better than
its best individual prediction according to the value of R*
and DRMS, though the mean prediction of BMA(9) does not
have any advantage in comparison to its individual model
predictions in terms of RE.

The results of the uncertainty intervals of BMA(9) and
its 9 individual models are also listed in Table 2. The
containing ratio of BMA(9) uncertainty interval reaches
91.11% in calibration period and 90.23% in validation period,
which are much higher than those of the uncertainty intervals
of any individual model. The average deviation amplitude
of the BMA(9) uncertainty interval is smaller than that
of the uncertainty intervals of most of its nine individual
models. From Figures 8 and 9, the similar conclusion can be
concluded both in calibration and validation periods.

4.3. Comparison of BMA(3) and BMA(9). The results of both
BMA(3) and BMA(9) in terms of the mean prediction and
90% uncertainty interval for the whole flow series are listed
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FIGURE 7: The mean prediction and 90% confidence interval of both BMA(3) and 3 individual models for the Mumahe catchment in 1987

during the validation period.

TABLE 1: Results of BMA(3) and its 3 individual models in the mean prediction as well as 90% uncertainty interval for the whole flow series.

Mean prediction

90% uncertainty interval

Models ) 5 s
R® (%) DRMS RE (%) CR (%) B (m’/s) D (m%/s)

Calibration period:

XAJ 88.69 30.77 21.04 24.83 31.41 16.69

SMAR 87.69 32.11 16.21 32.83 32.80 17.21

SIM 80.73 40.17 31.51 14.83 27.38 22.33

BMA(3) 90.68 27.92 27.87 40.72 43.76 16.06
Validation period:

XAJ 85.77 29.22 17.79 24.28 24.66 14.09

SMAR 85.30 29.70 14.19 31.91 25.52 14.56

SIM 69.81 42.56 39.48 14.33 18.40 20.07

BMA(3) 86.98 27.95 30.72 40.65 36.71 14.13

Note: bolded values represent the best results.

in Table 3 for comparison. BMA(3) mean prediction has
slightly better performance than BMA(9) mean prediction
in terms of R* and DRMS in both calibration and validation
periods, while BMA(3) mean prediction is slightly worse
than BMA(9) mean prediction in terms of RE. For the
uncertainty intervals, some findings are listed as follows: (1)
in terms of CR, BMA(9) uncertainty interval is much higher
than BMA(3) uncertainty interval in both calibration and
validation periods; (2) in terms of B, BMA(9) uncertainty

interval is obviously larger than BMA(3) uncertainty interval
in both calibration and validation periods; (3) in terms
of D, BMA(9) uncertainty interval performs slightly better
than BMA(3) uncertainty interval in both calibration and
validation periods.

Further, we compare the BMA(3) and BMA(9) mean pre-
dictions with respect to three flow ranges in Table 4. Accord-
ing to the values of three indices for mean prediction, BMA(3)
mean prediction has better performance than BMA(9) mean
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TABLE 2: Results of BMA(9) and its 9 individual models in the mean prediction and 90% uncertainty interval for the whole flow series.

— - —
Objective function Models Mean prediction 90% uncertainty interval
R* (%) DRMS RE (%) CR (%) B (m’/s) D (m’/s)
Calibration period
XAJ 85.45 34.89 30.24 17.89 29.43 21.46
OF2 (MSEST) SMAR 84.61 35.89 6.96 31.67 36.51 19.30
SIM 80.73 40.17 3151 15.39 28.47 22.67
XAJ 89.78 29.25 10.44 68.06 33.37 1.75
OF3 (MSESRT) SMAR 80.25 40.66 10.13 4417 3537 1739
SIM 72.42 48.05 -5.82 4772 42.57 21.26
XAJ 79.99 40.93 12.39 63.94 33.92 14.75
OF4 (MSELT) SMAR 58.01 59.29 922 4228 43.45 28.32
SIM 5271 62.92 —41.07 38.89 55.51 26.93
BMA(9) 90.49 28.22 21.40 9111 70.98 14.54
Validation period
XAJ 82.70 3221 3192 14.79 21.56 18.20
OF2 (MSEST) SMAR 80.05 34.59 0.66 30.23 29.52 16.64
SIM 69.81 42.56 39.48 20.84 24.43 2232
XAJ 88.52 26.25 454 68.56 26.95 9.62
OF3 (MSESRT) SMAR 78.26 36.11 7.48 44.56 2759 14.53
SIM 71.09 41.64 8.98 53.86 27.69 16.47
XAJ 77.25 36.94 8.74 63.07 26.68 11.85
OF4 (MSELT) SMAR 43.43 58.25 ~18.79 35.53 35.76 2736
SIM 7227 40.79 ~21.69 34.05 36.22 18.96
BMA(9) 84.54 30.46 25.42 90.23 55.91 13.20
Note: bolded values represent the best results.
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FIGURE 8: The mean prediction and 90% uncertainty interval of both BMA(9) and SIMHYD3 model (the SIMHYD with the objective function
OF3) for the Mumahe catchment in 1983 during the calibration period.

prediction in high flow range, but has worse performance = of BMA(9) uncertainty interval has absolute predominance
in medium and low flow ranges, during both calibration  in comparison with that of BMA(3) uncertainty interval for
and validation periods. Then we compare the uncertainty = each of three flow ranges in both calibration and validation
intervals of BMA(3) and BMA(9) in three different flow periods; (2) the B value of BMA(9) uncertainty interval is
ranges and have some findings as follows: (1) the CR value  larger than that of BMA(3) uncertainty interval for all three
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FIGURE 9: The mean prediction and 90% confidence interval of BMA(9) and SIMHYD3 model (the SIMHYD with the objective function
OF3) for the Mumahe catchment in 1987 during the validation period.

TABLE 3: The comparison of BMA(3) and BMA(9) in the mean prediction and 90% uncertainty interval for the whole flow series.

Indices Calibration Validation
BMA(3) BMA(9) BMA(3) BMA(9)
Mean Prediction
R* (%) 90.68 90.49 86.98 84.54
DRMS (m’/s) 27.92 28.22 27.95 30.46
RE (%) 27.87 21.40 30.72 25.42
90% uncertainty interval
CR (%) 40.72 91.11 40.65 90.23
B (m3/s) 43.76 70.98 36.71 55.91
D (m*/s) 16.06 14.54 14.13 13.20

TABLE 4: The comparison of BMA(3) and BMA(9) in the mean prediction and 90% uncertainty interval for three flow ranges.

Indices High flow Medium flow Low flow
BMA(3) BMA(9) BMA(3) BMA(9) BMA(3) BMA(9)
Calibration period
Mean prediction
R* (%) 93.01 91.74 32.28 52.76 95.83 96.39
DRMS (m?/s) 78.15 84.90 23.24 19.41 7.81 7.27
RE (%) 15.48 17.44 35.66 21.51 69.29 46.73
90% uncertainty interval
CR (%) 88.74 92.05 45.91 91.32 27.40 90.75
B (m’/s) 273.17 342.61 40.34 74.97 6.39 19.23
D (m*/s) 59.78 63.66 18.33 15.44 6.21 5.02
Validation period
Mean prediction
R* (%) 89.00 85.47 22.03 41.82 93.66 94.94
DRMS (m’/s) 92.51 106.35 19.01 16.42 6.87 6.14
RE (%) 22.49 27.68 31.35 17.66 67.48 45.11
90% uncertainty interval
CR (%) 85.33 88.00 46.76 90.81 28.60 90.02
B (m’/s) 252.88 282.17 34.97 61.22 719 18.45

D (m’/s) 65.67 66.12 14.90 14.03 5.99 4.82
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flow ranges in both calibration and validation periods; (3) the
D value of BMA(9) uncertainty interval is slightly larger than
that of BMA(3) in high flow range but smaller in medium and
low flow ranges in both calibration and validation periods.

5. Conclusions

In this paper, the Bayesian Model Averaging (BMA) method
is employed to construct a three-member predictions ensem-
ble, denoted by BMA(3), and a nine-member predictions
ensemble, denoted by BMA(9), for ensemble prediction as
well as for prediction uncertainty analysis. There are three
kinds of comparisons made in terms of both mean prediction
and prediction uncertainty interval in this study: BMA(3)
with its three individual models, BMA(9) with its nine
individual models, and BMA(3) with BMA(9). In particular,
we break observational flows into three different ranges for
detailed comparison and analysis. The performance of two
BMA schemes can be summarized as follows.

(1) In terms of mean predictions, BMA(3) performs
generally better than any of its individual models.
And BMA(9) mean prediction has generally higher
accuracy than each of its individual model predic-
tions. The comparison between BMA(3) and BMA(9)
in mean predictions indicates that BMA(9) does not
have any advantage compared to BMA(3) as far as
the entire flow series is concerned. The performance
of BMA(9) mean prediction is better than that of
BMA(3) in both medium and low flow ranges, how-
ever, worse in the high flow range.

(2) In terms of the containing ratio for assessing the
uncertainty intervals, the BMA(3) has a larger CR
value than any of its individual models. And the
containing ratio of BMA(9) uncertainty interval is
also markedly larger than that of all its individual
models when the CR value is calculated for the whole
flow series. When the CR value is compared for
different flow ranges, BMA(9) uncertainty interval
performs better than its individual models in high,
medium, and low flow ranges. In comparison with
BMA(3), BMA(9) uncertainty interval also has abso-
lute predominance in terms of CR.

(3) The average band-width B of BMA(3) uncertainty
interval is larger than that of all its individuals.
And the average band-width of BMA(9) uncertainty
interval is even larger than that of BMA(3). It is
found that, for uncertainty intervals, the increase of
containing ratio is accompanied by the increase of
band-width, which has already been pointed out by
Xiong et al. [33].

(4) The average deviation amplitude D of BMA(3) uncer-
tainty interval is generally smaller than the best
individual in the ensemble. In terms of D, BMA(9)
uncertainty interval also has a better performance
than the best individual among its nine-member
ensemble, especially in high flow range. Moreover, in
terms of D, BMA(9) uncertainty interval performs

Journal of Applied Mathematics

better than BMA(3) uncertainty interval in medium
and low flow ranges, but worse in the high flow range.

Based on this study, it is found that BMA is a particularly
useful method for dealing with two issues. Firstly, when there
are two or more competing models or methods available
for the same problem, BMA can assess the relative perfor-
mances of all models by assigning weights to each model or
method and then produce more accurate mean prediction
by weighted averaging of all predictions from those models
or methods. Secondly, BMA can be used when there is
uncertainty over control variables. The uncertainty intervals
for both individual predictions and the BMA prediction can
be derived when the distribution of the data is known or
assumed.

Two issues from this study of BMA also need to be
pointed out. The first is about the data transformation
process. It is obvious that the daily flow data do not strictly
obey the normal distribution even after the Box-Cox trans-
formation. In fact, it is impossible to make every prediction
from every model be normally distributed by using only
a uniform transformation coefficient. Another problem is
about the quality of the hydrological models chosen for
combination. In this paper, the models employed here are all
conceptual hydrological models. If better models are chosen
as the ensemble members, then it is expected that the better
results will come out of the BMA combination.
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