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We study the wave solutions for a degenerated reaction diffusion system arising from the invasion of cells. We show that there exists
a family of waves for the wave speed larger than or equal a certain number and below which there are nomonotonic wave solutions.
We also investigate the monotonicity, uniqueness, and asymptotics of the waves.

1. Introduction

In [1], the following coupled partial differential equation
system was proposed to study the invasion by precursor and
differentiated cells:

𝑢
𝑡
= 𝐷𝑢
𝑥𝑥
+ 𝛼𝑢(1 −

𝑢 + ]V

𝑘
1

) − 𝛽𝑢(1 −

V

𝑘
2

) ,

V
𝑡
= 𝛽𝑢(1 −

V

𝑘
2

) ,

(1)

where 𝑢(𝑥, 𝑡) denotes the population densities of the pre-
cursor cells. The constant 𝐷 > 0 is the diffusion rate of
the cell 𝑢, which has proliferation rate 𝛼 > 0, and 𝑘

1
>

0 is the carrying capacity of 𝑢. The parameter ] measures
the relative contribution that the differentiated cell with
population density V(𝑥, 𝑡) makes to the carrying capacity 𝑘

1
.

The cell population density V is limited by its carrying capacity
𝑘
2
and has a maximum differentiation rate 𝛽 > 0. The model

assumes that the differentiated cells do not have mobility.
By letting (see [1])

�̂� =

𝑢

𝑘
1

, V̂ =
V

𝑘
1

, �̂� = 𝛼𝑡, 𝑥 = √

𝛼

𝐷

𝑥 (2)

and dropping the hat notation for convenience, system (1) is
changed into

𝑢
𝑡
= 𝑢
𝑥𝑥
+ 𝑢 (1 − 𝑢 − ]V) − 𝜆𝑢 (1 − 𝐾V) ,

V
𝑡
= 𝜆𝑢 (1 − 𝐾V) ,

(3)

where 𝜆 = 𝛽/𝛼 and𝐾 = 𝑘
1
/𝑘
2
.

System (1) or (3) belongs to reaction diffusion systems
of degenerate type, and such systems have attracted much
attention in research fields such as epidemics and wound
healing [2–4] as well as combustion and calcium wave
problems [5–8]. However, system (3) differs from the above
systems in the appearance of degenerate reaction terms. In
fact, 𝑢 = 0 coupling with any V = constant consists of a
constant solution of (3).This resembles the combustion wave
equation considered in [9]; however, our method in proving
the existence of the fronts of (3) differs from theirs.

If the parameters satisfy

0 ≤ ] < 𝐾, (4)

then system (3) admits an additional equilibrium: 𝐵 : (1 −

]/𝐾, 1/𝐾) representing the state that the spatial domain is
successfully invaded. We also separate the equilibrium 𝐴 :

(0, 0) from the rest of the line of equilibria,𝑢 = 0.Theunstable
equilibrium (0, 0) represents the state before the invasion.

We are interested in the existence of the wave solutions
connecting 𝐴 with 𝐵 as time and space evolve from −∞ to
+∞. Setting 𝜉 = 𝑥 + 𝑐𝑡, 𝑥 ∈ R, 𝑡 ∈ R+, a traveling wave
solution to (3) solves

𝑢
𝜉𝜉
− 𝑐𝑢
𝜉
+ 𝑢 (1 − 𝑢 − ]V) − 𝜆𝑢 (1 − 𝐾V) = 0,

−𝑐V
𝜉
+ 𝜆𝑢 (1 − 𝐾V) = 0,

(5)
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with boundary conditions:

(𝑢, V) (−∞) = (0, 0) , (𝑢, V) (+∞) = (1 −

]

𝐾

,

1

𝐾

) .

(6)

For the notational convenience, we further set

𝑢 =

𝑢

1 − ]/𝐾
, (7)

and drop the bar on 𝑢 to have

𝑢
𝜉𝜉
− 𝑐𝑢
𝜉
+ 𝑢 [1 − 𝜆 − (1 −

]

𝐾

)𝑢 + (𝜆𝐾 − ]) V] = 0,

−𝑐V
𝜉
+ 𝜆(1 −

]

𝐾

)𝑢 (1 − 𝐾V) = 0,

(8)

(𝑢, V) (−∞) = (0, 0) , (𝑢, V) (+∞) = (1,

1

𝐾

) . (9)

Numerical investigations [1] strongly suggest that system
(10) and (9) admit traveling wave solutions for ] = 0 and
] = 1. When the differentiated cell density does not affect the
proliferation of the precursor cells, we have ] = 0; when the
total cell population contributes to the proliferation carrying
capacity, we have ] = 1. Numerically, however, when ] =

1, (8) may have nonmonotone traveling wave solutions and
requires a different treatment. Hence, in this paper we only
study the wave solutions for ] = 0. The system (8) in this case
can be further reduced to

𝑢
𝜉𝜉
− 𝑐𝑢
𝜉
+ 𝑢 (1 − 𝜆 − 𝑢 + 𝜆𝐾V) = 0,

−𝑐V
𝜉
+ 𝜆𝑢 (1 − 𝐾V) = 0.

(10)

The computations in [1] show that the wave may exist for
𝑐 ≥ 2√1 − 𝜆, but a rigorous existence proof is still lacking.
We will confirm this observation by a mathematical analysis
of the model. The system is of cooperative type, and we can
use the monotone iteration scheme developed in [10] for the
existence proof. Such method reduces the existence of the
wave solutions to that of the ordered upper and lower solution
pairs for (10) and (9). The upper and lower solutions in this
paper come directly from two KPP type equations, which are
constructed so that they have the same decay rate at −∞.
Such information is also relevant to the monotonicity and
uniqueness of the wave solutions. Indeed, since we have a
good understanding of the decay properties of the solutions at
infinities, we then can study the properties of the solutions on
finite domain, in which the powerful sliding domain method
(see [11]) can be used to have the desired results. We remark
that the methods we used in the proofs of the monotonicity
and the uniqueness have subtle difference from the ones used
in [12].

For a comprehensive study and interesting applications
of the traveling wave solutions arising in various degenerate
or nondegenerate parabolic equations and systems, please see
[13].

2. The Main Result

In this section, we will use monotone iteration method to set
up the upper and lower solutions for system (10) and (9).

Definition 1. A 𝐶
2
(R) × 𝐶1(R) function (𝑢(𝜉), V(𝜉))𝑇, 𝜉 ∈ R

is an upper solution of (10) and (9) if it satisfies

𝑢
𝜉𝜉
− 𝑐𝑢
𝜉
+ 𝑢 (1 − 𝜆 − 𝑢 + 𝜆𝐾V) ≤ 0,

−𝑐V
𝜉
+ 𝜆𝑢 (1 − 𝐾V) ≤ 0

(11)

and the boundary conditions

(

𝑢

V
) (−∞) ≥ (

0

0
) , (

𝑢

V
) (+∞) ≥ (

1

1

𝐾

) . (12)

We can similarly define the lower solution (𝑢, V)(𝜉), 𝜉 ∈ R

by reversing the inequalities (11) and (12).

The following known result [14] is needed in the construc-
tion of the upper and lower solutions.

Consider the following form of the KPP equation:

𝜔

− 𝑐𝜔

+ 𝑓 (𝜔) = 0,

𝜔 (−∞) = 0, 𝜔 (+∞) = 𝑏,

(13)

where 𝑓 ∈ C2([0, 𝑏]) and 𝑓 > 0 on the open interval (0, 𝑏)
with 𝑓(0) = 𝑓(𝑏) = 0, 𝑓(0) = 𝑎 > 0, and 𝑓(𝑏) = −𝑏

1
< 0.

Lemma 2. Corresponding to every 𝑐 ≥ 2√𝑎, system (13)
has a unique (up to a translation of the origin) monotonically
increasing traveling wave solution𝜔(𝜉) for 𝜉 ∈ R. The traveling
wave solution 𝜔 has the following asymptotic behaviors.

For the wave solution with noncritical speed 𝑐 > 2√𝑎, one
has

𝜔 (𝜉) = 𝑎
𝜔
𝑒
((𝑐−√𝑐

2
−4𝑎)/2)𝜉

+𝑜 (𝑒
((𝑐−√𝑐

2
−4𝑎)/2)𝜉

) as 𝜉 → −∞,

𝜔 (𝜉) = 𝑏 − 𝑏
𝜔
𝑒
((𝑐−√𝑐

2
+4𝑏
1
)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝑏
1
)/2)𝜉

) as 𝜉 → +∞,

(14)

where 𝑎
𝜔
and 𝑏
𝜔
are positive constants.

For the wave with critical speed 𝑐 = 2√𝑎, one has

𝜔 (𝜉) = 𝑑
𝑐
𝜉𝑒

√𝑎𝜉
+ 𝑜 (𝜉𝑒

√𝑎𝜉
) as 𝜉 → −∞,

𝜔 (𝜉) = 𝑏 − 𝑏
𝑐
𝑒
(√𝑎−√𝑎+𝑏

1
)𝜉
+ 𝑜 (𝑒

(√𝑎−√𝑎+𝑏
1
)𝜉
) as 𝜉 → +∞,

(15)

where the constant 𝑑
𝑐
is negative and 𝑏

𝑐
is positive.

Wenext consider the following version of theKPP system:

𝜔

− 𝑐𝜔

+ (1 − 𝜆) 𝜔 (1 − 𝜔) = 0,

𝜔 (−∞) = 0, 𝜔 (+∞) = 1.

(16)
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According to Lemma2, for every 𝑐 ≥ 2√1 − 𝜆 system, (16) has
a unique (up to a translation of the origin)monotone solution
�̃�(𝜉), 𝜉 ∈ R. Now, fix this �̃�(𝜉) and consider the equation

−𝑐V
𝜉
+ 𝜆�̃� (1 − 𝐾V) = 0. (17)

For each fixed 𝑐 ≥ 2√1 − 𝜆 and the corresponding �̃�(𝜉),
(17) has a solution

V (𝜉) =
1

𝐾

(1 − 𝑒
−(𝜆/𝑐)𝐾∫

𝜉

−∞
�̃�(𝑠)𝑑𝑠

) . (18)

We next compare �̃�(𝜉) with V(𝜉) for 𝜉 ∈ R.

Lemma 3. There exists a 𝜁
1
≥ 0 such that if

0 < 𝜆 ≤

2

2 + 𝐾 (1 + √2)

, (19)

one has

1

𝐾

�̃� (𝜉 + 𝜁
1
) ≥ V (𝜉) , 𝜉 ∈ R. (20)

Proof. According to Lemma 2, the wave solution �̃�(𝜉) to (16)
has the following asymptotic behaviors.

For 𝑐 > 2√1 − 𝜆,

�̃� (𝜉) = 𝑎
𝜔
𝑒
((𝑐−√𝑐

2
−4(1−𝜆))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4(1−𝜆))/2)𝜉

) as 𝜉 → −∞,

(21)

�̃� (𝜉) = 𝑏 − 𝑏
𝜔
𝑒
((𝑐−√𝑐

2
+4(1−𝜆))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4(1−𝜆))/2)𝜉

) as 𝜉 → +∞,

(22)

and 𝑎
𝜔
, 𝑏
𝜔
are positive constants.

For 𝑐 = 2√1 − 𝜆, we have

�̃� (𝜉) = 𝑑
𝑐
𝜉𝑒

√1−𝜆𝜉
+ 𝑜 (𝜉𝑒

√1−𝜆𝜉
) as 𝜉 → −∞, (23)

�̃� (𝜉) = 𝑏 − 𝑏
𝑐
𝑒
(1−√2)√1−𝜆𝜉

+ 𝑜 (𝑒
(1−√2)√1−𝜆𝜉

) as 𝜉 → +∞,

(24)

where the constant 𝑑
𝑐
is negative and 𝑏

𝑐
is positive.

We now study the asymptotics of the function V(𝜉).
Formulas (21) and (23) imply that

∫

𝜉

−∞

�̃� (𝑠) 𝑑𝑠 → 0 as 𝜉 → −∞. (25)

We can then expand

𝑒
−(𝜆/𝑐)𝐾∫

𝜉

−∞
�̃�(𝑠)𝑑𝑠

= 1 −

𝜆

𝑐

𝐾∫

𝜉

−∞

�̃� (𝑠) 𝑑𝑠

+ 𝑜((∫

𝜉

−∞

�̃� (𝑠) 𝑑𝑠)

2

) .

(26)

A further expanding of (26) for 𝜉 → −∞ and for 𝑐 >
2√1 − 𝜆 yields

1 − 𝑒
−(𝜆/𝑐)𝐾∫

𝜉

−∞
�̃�(𝑠)𝑑𝑠

=

2𝜆𝑎
𝜔

(𝑐 − √𝑐
2
− 4 (1 − 𝜆)) 𝑐

𝑒
((𝑐−√𝑐

2
−4(1−𝜆))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4(1−𝜆))/2)𝜉

) ,

(27)

and for 𝑐 = 2√1 − 𝜆,

1 − 𝑒
−(𝜆/𝑐)𝐾∫

𝜉

−∞
�̃�(𝑠)𝑑𝑠

=

𝜆

2√1 − 𝜆

(𝑑
𝑐
𝜉 −

𝑑
𝑐

1 − 𝜆

) 𝑒

√1−𝜆𝜉
+ 𝑜 (𝜉𝑒

√1−𝜆𝜉
) .

(28)

As for 𝜉 > 0 sufficiently large, we have

lim
𝜉→+∞

∫

𝜉

−∞
�̃� (𝑠) 𝑑𝑠

𝜉

= lim
𝜉→+∞

�̃� (𝜉) = 1;
(29)

therefore,

V (𝜉) = 𝐾 (1 − 𝑒−(𝜆/𝑐)𝐾𝜉) + 𝑜 (𝑒−(𝜆/𝑐)𝐾𝜉) as 𝜉 → +∞.

(30)

We next show

−

𝜆

𝑐

𝐾 ≥

𝑐 − √𝑐
2
+ 4 (1 − 𝜆)

2

, (31)

or equivalently

2𝑐 (1 − 𝜆)

𝑐 + √𝑐
2
+ 4 (1 − 𝜆)

≥ 𝜆𝐾. (32)

Setting 𝑔(𝑐) = 2(1 − 𝜆)/1 + √1 + 4(1 − 𝜆)/𝑐
2, then it is

easy to see that 𝑔(𝑐) increases as 𝑐 does. Hence,

𝑔 (𝑐) ≥ 𝑔 (2√1 − 𝜆) =

2 (1 − 𝜆)

1 + √2

. (33)

We therefore require 0 < 𝜆 ≤ 2/(2 + 𝐾(1 + √2)) to have
(31).

We now shift �̃�(𝜉). Since (16) is shifting invariant, �̃�(𝜉+𝜁),
𝜉 ∈ R is also a solution for any 𝜁 ∈ R. It then follows from
(21) for 𝑐 > √1 − 𝜆,

�̃� (𝜉 + 𝜁) = 𝑎
𝜔
𝑒
((𝑐−√𝑐

2
−4(1−𝜆))/2)𝜁

𝑒
((𝑐−√𝑐

2
−4(1−𝜆))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4(1−𝜆))/2)𝜉

) as 𝜉 → −∞,

(34)

and for 𝑐 = √1 − 𝜆,

�̃� (𝜉 + 𝜁) = 𝑑
𝑐
(𝜉 + 𝜁) 𝑒

√1−𝜆𝜁
𝑒

√1−𝜆𝜉
,

+ 𝑜 (𝜉𝑒

√1−𝜆𝜉
) as 𝜉 → −∞.

(35)
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If we choose 𝜁 > 0 sufficiently large, the positiveness
of ((𝑐 − √𝑐2 − 4(1 − 𝜆))/2)𝜁 and √1 − 𝜆𝜁 implies that if 𝑐 =
2√1 − 𝜆,

𝑑
𝑐
(𝜉 + 𝜁) 𝑒

√1−𝜆𝜁
>

𝜆

2√1 − 𝜆

(𝑑
𝑐
𝜉 −

𝑑
𝑐

1 − 𝜆

) (36)

and if 𝑐 > 2√1 − 𝜆,

𝑎
𝜔
𝑒
((𝑐−√𝑐

2
−4(1−𝜆))/2)𝜁

>

2𝜆𝑎
𝜔

(𝑐 − √𝑐
2
− 4 (1 − 𝜆)) 𝑐

. (37)

It then follows from (31), (34), and (35) that there exists a
𝑁 > 0 sufficiently large,

1

𝐾

�̃� (𝜉 + 𝜁) ≥ V (𝜉) for 𝜉 ∈ (−∞, −𝑁] ∪ [𝑁, +∞) ,

(38)

and for 𝜉 ∈ [−𝑁,𝑁], since �̃� and V are both monotonically
increasing onRwe can further shift �̃�(𝜉+𝜁) to the left atmost
2𝑁 units to have (1/𝐾)�̃�(𝜉 + 𝜁) ≥ V(𝜉), 𝜉 ∈ R. Hence there
exists a finite 𝜁

1
≥ 0 such that the conclusion of the Lemma

holds.

Now, we write 𝑢(𝜉) = �̃�(𝜉 + 𝜁
0
), 𝜉 ∈ R and let V(𝜉) be

defined in (18). We remark here that the computation of V(𝜉)
still uses �̃�(𝜉).

Lemma 4. Assume the conditions in Lemma 3, then (𝑢, V)(𝜉),
𝜉 ∈ R defines an upper solution for (10) and (9).

Proof. We can easily verify that (𝑢, V)(𝜉) satisfies the bound-
ary conditions (12).

For the 𝑢 component, we have

𝑢

− 𝑐𝑢

+ 𝑢 (1 − 𝜆 − 𝑢 + 𝜆𝐾V)

= 𝑢 [1 − 𝜆 − 𝑢 + 𝜆𝐾V − (1 − 𝜆) (1 − 𝑢)]

= −𝜆𝐾𝑢(

1

𝐾

𝑢 − V) ≤ 0.

(39)

The last inequality follows from the previous lemma.
As for the V component, for each �̃�, we have

−𝑐V
𝜉
+ 𝜆�̃� (1 − 𝐾V) = 0. (40)

We next set up the lower solution for (10) and (9).
For a fixed 𝑙 > 0, we consider another version of the KPP

system:

𝑤

− 𝑐𝑤

+ (1 − 𝜆)𝑤(1 −

1 − 𝜆 + 𝑙

1 − 𝜆

𝑤) = 0,

𝑤 (−∞) = 0, 𝑤 (+∞) =

1 − 𝜆

1 − 𝜆 + 𝑙

< 1.

(41)

Then, for any 𝑐 ≥ 2√1 − 𝜆, (41) has correspondingly a unique
wave solution �̆�(𝜉), 𝜉 ∈ R.

We define

V (𝜉) =
1

𝐾

(1 − 𝑒
−(𝜆/𝑐)𝐾∫

𝜉

−∞
�̆�(𝑠)𝑑𝑠

) . (42)

The next lemma gives the relation between �̆�(𝜉) and V(𝜉),
𝜉 ∈ R.

Lemma 5. There exists a 𝜁
1
≥ 0 such that

1

𝐾

�̆� (𝜉 − 𝜁
1
) ≤ V (𝜉) , 𝜉 ∈ R. (43)

Proof. Theproof is similar to that of Lemma 3. Noting as 𝜉 →
+∞, �̆�(𝜉) → (1/𝐾)((1 −𝜆)/(1 −𝜆+ 𝑙)) < 1/𝐾. Hence, we do
not need condition (19) here.

We denote 𝑢(𝜉) = �̆�(𝜉 − 𝜁
1
), 𝜉 ∈ R. Then, we have the

following.

Lemma 6. Such defined (𝑢, V)(𝜉), 𝜉 ∈ R consists of a lower
solution for (10) and (9).

Proof. One the boundary, we have
(𝑢, V) (−∞) = (0, 0) ,

(𝑢, V) (+∞) = (

1 − 𝜆

1 − 𝜆 + 𝑙

,

1

𝐾

) ≤ (1,

1

𝐾

)

(44)

and for the 𝑢 component,

𝑢

− 𝑐𝑢

+ 𝑢 (1 − 𝜆 − 𝑢 + 𝜆𝐾V)

= 𝑢

− 𝑐𝑢

+ (1 − 𝜆) 𝑢 (1 −

1 − 𝜆 + 𝑙

1 − 𝜆

𝑢)

− (1 − 𝜆) 𝑢 (1 −

1 − 𝜆 + 𝑙

1 − 𝜆

𝑢)

+ 𝑢 (1 − 𝜆 − 𝑢 + 𝜆𝐾V)

= 𝑢 [1 − 𝜆 − 𝑢 + 𝜆𝐾V − (1 − 𝜆) + (1 − 𝜆 + 𝑙) 𝑢] ≥ 0

(45)

due to Lemma 5.
Noting that V(𝜉) solves the equation

−𝑐V
𝜉
+ 𝜆�̆� (1 − 𝐾V) = 0, (46)

it satisfies the inequality trivially.

Lemma 7. The upper and lower solutions are ordered
(𝑢, V) (𝜉) ≥ (𝑢, V) (𝜉) , 𝜉 ∈ R. (47)

Proof. For each fixed 𝑐 ≥ 2√1 − 𝜆, if �̆�(𝜉) solves the system
(41), then the function �̃�(𝜉) = ((1 − 𝜆 + 𝑙)/(1 − 𝜆))�̆�(𝜉) solves
(16). Hence, it follows that �̃�(𝜉) > �̆�(𝜉), and then 𝑢(𝜉) > 𝑢(𝜉)
for all 𝜉 ∈ R.

By definition of V(𝜉) and V(𝜉), we have

V (𝜉) =
1

𝐾

(1 − 𝑒
−(𝜆/𝑐)𝐾∫

𝜉

−∞
�̃�(𝑠)𝑑𝑠

)

=

1

𝐾

(1 − 𝑒
−(𝜆/𝑐)𝐾((1−𝜆+𝑙)/(1−𝜆)) ∫

𝜉

−∞
�̆�(𝑠)𝑑𝑠

)

>

1

𝐾

(1 − 𝑒
−(𝜆/𝑐)𝐾∫

𝜉

−∞
�̆�(𝑠)𝑑𝑠

) = V (𝜉) .

(48)

Hence, the conclusion of the lemma holds.



International Journal of Differential Equations 5

Theorem 8. Let the parameters satisfy (19), then for each 𝑐 ≥
2√1 − 𝜆, system (10) and (9) have a unique (up to a translation
of the origin) strictly monotonically increasing traveling wave
solution, while for 0 < 𝑐 < 2√1 − 𝜆, there is no monotonic
traveling wave. The traveling wave solution has the following
asymptotic behaviors.

For 𝑐 = 2√1 − 𝜆,

(

𝑢

V
) (𝜉) = (

𝑐
11
𝜉

𝑐
12
𝜉

) 𝑒

√1−𝜆𝜉
+ 𝑜 (𝑒

√1−𝜆𝜉
) , as 𝜉 → −∞,

(49)

(

𝑢

V
) (𝜉) = (

1

1

𝐾

) − (

𝑐
21
𝑒
−(𝜆𝐾/2√1−𝜆)𝜉

𝑐
22
𝑒
−(𝜆𝐾/2√1−𝜆)𝜉

)

+(

𝑜(𝑒
−(𝜆𝐾/2√1−𝜆)𝜉

)

𝑜 (𝑒
−(𝜆𝐾/2√1−𝜆)𝜉

)
) , as 𝜉 → +∞,

(50)

and for 𝑐 > 2√1 − 𝜆,

(

𝑢

V
) (𝜉) = (

𝑑
11
𝜉

𝑑
12
𝜉

) 𝑒
((𝑐−√𝑐

2
+4(1−𝜆))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4(1−𝜆))/2)𝜉

) , as 𝜉 → −∞,

(51)

(

𝑢

V
) (𝜉) = (

1

1

𝐾

) − (

𝑑
21
𝑒
−(𝜆𝐾/𝑐)𝜉

𝑑
22
𝑒
−(𝜆𝐾/𝑐)𝜉

)

+(

𝑜 (𝑒
−(𝜆𝐾/𝑐)𝜉

)

𝑜 (𝑒
−(𝜆𝐾/𝑐)𝜉

)
) as 𝜉 → +∞,

(52)

where 𝑐
11
, 𝑐
12
, 𝑐
21
, 𝑐
22
, 𝑑
21
, and 𝑑

22
> 0 and 𝑑

11
, 𝑑
12
< 0.

Proof. Noting that between the upper and lower solutions,
there is no equilibrium other than (0, 0) and (1, 1/𝐾) of
system (10) and (9). Hence, the monotone iteration scheme
developed in [10] is still applicable. Such monotone iteration
scheme reduces the existence of the traveling wave solutions
to that of the ordered upper and lower solution pairs, and the
existence of the traveling waves then follows by Lemmas 6, 4,
and 7, and by [10], so the obtained travelingwave solutions are
nondecreasing, while for 𝑐 < 2√1 − 𝜆, it is easy to verify, by
analyzing the equilibrium (0, 0), that the nontrivial bounded
solutions of (10) are oscillatory.

We next show that the wave solutions are strictly mono-
tonically increasing on R.

For any fixed 𝑐 ≥ √1 − 𝜆, let (𝑢
𝑐
, V
𝑐
)(𝜉) be the cor-

responding traveling wave solution and (𝑤
1
(𝜉), 𝑤
2
(𝜉)) be

its derivative. Then, (𝑤
1
(𝜉), 𝑤
2
(𝜉)) ≥ 0 for 𝜉 ∈ R, and

(𝑤
1
(𝜉), 𝑤
2
(𝜉)) satisfies the following systems:

𝑤
1,𝜉𝜉

− 𝑐𝑤
1,𝜉
+ (1 − 𝜆 − 2𝑢

𝑐
+ 𝜆𝐾V

𝑐
) 𝑤
1
+ 𝜆𝐾𝑢

𝑐
𝑤
2
= 0,

−𝑐𝑤
2,𝜉
+ 𝜆 (1 − 𝐾V

𝑐
) 𝑤
1
− 𝜆𝐾𝑢

𝑐
𝑤
2
= 0,

(𝑤
1
, 𝑤
2
) (±∞) = 0.

(53)

It then follows that

𝑤
1,𝜉𝜉

− 𝑐𝑤
1,𝜉
+ (1 − 𝜆 − 2𝑢

𝑐
+ 𝜆𝐾V

𝑐
) 𝑤
1
≤ 0,

−𝑐𝑤
2,𝜉
+ 𝜆 (1 − 𝐾V

𝑐
) 𝑤
1
− 𝜆𝐾𝑢

𝑐
𝑤
2
= 0,

(𝑤
1
, 𝑤
2
) (±∞) = 0.

(54)

Applying the maximum principle to the first inequality of
(54), we immediately conclude that𝑤

1
(𝜉) > 0 for 𝜉 ∈ R. Thu,

𝑢
𝑐
(𝜉) is strictly monotonically increasing.
The strict monotonicity of V

𝑐
(𝜉) comes from (10). Since

𝑢
𝑐
(𝜉) > 0 for all 𝜉 ∈ R, and for such 𝑢

𝑐
(𝜉), we have

V
𝑐
(𝜉) =

1

𝐾

(1 − 𝑒
−(𝜆/𝑐)𝐾∫

𝜉

−∞
𝑢
𝑐
(𝑠)𝑑𝑠

) , (55)

then it follows that 𝑤
2
(𝜉) = V

𝑐
(𝜉) > 0, 𝜉 ∈ R. This shows that

the wave solution (𝑢
𝑐
, V
𝑐
) is strictly monotonically increasing.

We then derive the asymptotics of the wave solutions at
±∞. Noting that the upper and lower solutions have the same
exponential decay rate at −∞, (49) and (51) come directly
from comparison.

We next study the asymptotics of the function (𝑤
1
, 𝑤
2
)(𝜉)

at +∞, recalling that (𝑤
1
, 𝑤
2
)(𝜉) = (𝑢

𝑐
, V
𝑐
)

(𝜉) and that it

satisfies the system (53). Since this system is hyperbolic at
+∞, (𝑤

1
, 𝑤
2
) approaches (0, 0) exponentially. We will derive

the exact exponential rate.
The limit equation at +∞ of system (53) is

𝑤
+

1,𝜉𝜉
− 𝑐𝑤
+

1,𝜉
− 𝑤
+

1
+ 𝜆𝐾𝑤

+

2
= 0,

−𝑐𝑤
+

2,𝜉
− 𝜆𝐾𝑢

𝑐
𝑤
+

2
= 0.

(56)

Since the second equation is decoupled from the system,
we immediately have

𝑤
+

2
(𝜉) = 𝐴𝑒

−(𝜆𝐾/𝑐)𝜉
. (57)

Plugging the above into the first equation yields a bounded
solution (up to the first order approximation) of the form

𝑤
+

1
(𝜉) = 𝐴

1
𝑒
−(𝜆𝐾/𝑐)𝜉

+ 𝐴
2
𝑒
((𝑐−√𝑐+4)/2)𝜉

. (58)

By roughness of exponential dichotomy [15], we have

(

𝑤
1
(𝜉)

𝑤
2
(𝜉)
) = (

𝐴
1
𝑒
−(𝜆𝐾/𝑐)𝜉

𝐴
2
𝑒
𝜇𝜉 ) + (

𝑜 (𝑒
−(𝜆𝐾/𝑐)𝜉

)

𝑜 (𝑒
𝜇𝜉
)

) , (59)

where 𝜇 is either −𝜆𝐾/𝑐 or (𝑐 − √𝑐 + 4)/2.
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Integrating the above from 𝜉
0
to +∞ and comparing

the decay rates of (𝑢
𝑐
, V
𝑐
)(𝜉) with that of the upper solution

(𝑢, V)(𝜉), we have (50) and (52).
On the uniqueness of the travelingwave solution for every

𝑐 ≥ 2√1 − 𝜆, we only prove the conclusion for traveling wave
solutions with asymptotic rates given in (51) and (52) since
the other case can be proved similarly. Let𝑈

1
(𝜉) = (𝑢

1
, V
1
)(𝜉)

and 𝑈
2
(𝜉) = (𝑢

2
, V
2
)(𝜉) be two traveling wave solutions of

system (10) and (9) with the same speed 𝑐 > 2√1 − 𝜆. There
exist positive constants𝐴

𝑖𝑗
, 𝐵
𝑖𝑗
, 𝑖, 𝑗 = 1, 2 and a large number

𝑁 > 0 such that for 𝜉 < −𝑁,

𝑈
1
(𝜉) = (

𝐴
11

𝐴
12

) 𝑒
((𝑐+√𝑐

2
−4(1−𝜆))/2)𝜉

+ 𝑜 (𝑒
((𝑐+√𝑐

2
−4(1−𝜆))/2)𝜉

)

(60)

𝑈
2
(𝜉) = (

𝐴
21

𝐴
22

) 𝑒
((𝑐+√𝑐

2
−4(1−𝜆))/2)𝜉

+ 𝑜 (𝑒
((𝑐+√𝑐

2
−4(1−𝜆))/2)𝜉

)

(61)

and for 𝜉 > 𝑁,

𝑈
1
(𝜉) = (

1 − 𝐵
11
𝑒
−(𝜆/𝑐)𝐾𝜉

1

𝐾

− 𝐵
12
𝑒
−(𝜆/𝑐)𝐾𝜉)+(

𝑜 (𝑒
−(𝜆/𝑐)𝐾𝜉

)

(𝑒
−(𝜆/𝑐)𝐾𝜉

)

) , (62)

𝑈
2
(𝜉) = (

1 − 𝐵
21
𝑒
−(𝜆/𝑐)𝐾𝜉

1

𝐾

− 𝐵
22
𝑒
−(𝜆/𝑐)𝐾𝜉

) + (

𝑜 (𝑒
−(𝜆/𝑐)𝐾𝜉

)

(𝑒
−(𝜆/𝑐)𝐾𝜉

)

) . (63)

The traveling wave solutions of system (10)-(9) are translation
invariant; thus, for any 𝜃 > 0, 𝑈𝜃

1
(𝜉) := 𝑈

1
(𝜉 + 𝜃) is also

a traveling wave solution of (10)-(9). By (60) and (62), the
solution 𝑈

1
(𝜉 + 𝜃) has the asymptotics

𝑈
𝜃

1
(𝜉) = (

𝐴
11
𝑒
((𝑐+√𝑐

2
−4(1−𝜆))/2)𝜃

𝐴
12
𝑒
((𝑐+√𝑐

2
−4(1−𝜆))/2)𝜃

)𝑒
((𝑐+√𝑐

2
−4(1−𝜆))/2)𝜉

+ 𝑜 (𝑒
((𝑐+√𝑐

2
−4(1−𝜆))/2)𝜉

)

(64)

for 𝜉 ≤ −𝑁 and

𝑈
𝜃

1
(𝜉) = (

1 − 𝐵
11
𝑒
−(𝜆/𝑐)𝐾𝜃

𝑒
−(𝜆/𝑐)𝐾𝜉

1

𝐾

− 𝐵
12
𝑒
−(𝜆/𝑐)𝐾𝜃

𝑒
−(𝜆/𝑐)𝐾𝜉

) + (

𝑜 (𝑒
−(𝜆/𝑐)𝐾𝜉

)

(𝑒
−(𝜆/𝑐)𝐾𝜉

)

)

(65)

for 𝜉 ≥ 𝑁.
Choosing 𝜃 > 0 large enough such that

𝐴
11
𝑒
((𝑐+√𝑐

2
−4(1−𝜆))/2)𝜃

> 𝐴
21
,

𝐴
12
𝑒
((𝑐+√𝑐

2
−4(1−𝜆))/2)𝜃

> 𝐴
22
,

𝐵
11
𝑒
−(𝜆/𝑐)𝐾𝜃

< 𝐵
21
,

𝐵
12
𝑒
−(𝜆/𝑐)𝐾𝜃

< 𝐵
22
,

(66)

then one has for 𝜉 ∈ (−∞, −𝑁] ∪ [𝑁, +∞),

𝑈
𝜃

1
(𝜉) > 𝑈

2
(𝜉) . (67)

We now consider system (10) on [−𝑁, +𝑁].There are two
possibilities.
Case 1. Suppose that we already have 𝑈𝜃

1
(𝜉) ≥ 𝑈

2
(𝜉) on

[−𝑁, +𝑁], then the function 𝑊(𝜉) = (𝑤
1
(𝜉), 𝑤
2
(𝜉))
𝑇
:=

𝑈
𝜃

1
(𝜉) − 𝑈

2
(𝜉) ≥ 0 and it satisfies for some 𝜁

𝑖
∈ (0, 1), 𝑖 = 1, 2,

(
𝑤


1

0

) − 𝑐(

𝑤


1

𝑤


2

) +𝑀(

𝑤
1

𝑤
2

) = 0,

𝑊 (−𝑁) > 0, 𝑊 (+𝑁) > 0. 𝜉 ∈ (−𝑁,𝑁) ,

(68)

where the matrix𝑀 is given by

𝑀(𝑤
1
, 𝑤
2
)

= (

1 − 𝜆 − 2 (𝑢
2
+ 𝜁
1
𝑤
1
) + 𝜆𝐾 (V

2
+ 𝜁
2
𝑤
2
) , 𝜆𝐾 (𝑢

2
+ 𝜁
1
𝑤
1
)

𝜆 (1 − 𝐾 (V
2
+ 𝜁
2
𝑤
2
)) , −𝜆𝐾 (𝑢

2
+ 𝜁
2
𝑤
1
)

) .

(69)

Since 𝑤
1
(𝜉) ≥ 0, 𝜉 ∈ [−𝑁,𝑁] and 𝜆𝐾(𝑢

2
+ 𝜁
1
𝑤
1
) ≥ 0,

then we have on 𝜉 ∈ [−𝑁,𝑁],

𝑤


1
− 𝑐𝑤


1
+ [1 − 𝜆 − 2 (𝑢

2
+ 𝜁
1
𝑤
1
) + 𝜆𝐾 (V

2
+ 𝜁
2
𝑤
2
)] 𝑤
1

+ 𝜆𝐾 (𝑢
2
+ 𝜁
2
𝑤
1
) 𝑤
2
= 0,

𝑤
1
(−𝑁) > 0, 𝑤

1
(𝑁) > 0.

(70)

The maximum principle then implies that 𝑤
1
(𝜉) > 0 on

[−𝑁,𝑁]. We then move to the second equation of (68). We
have

− 𝑐𝑤


2
− 𝜆𝐾 (𝑢

2
+ 𝜁
2
𝑤
1
) 𝑤
2

= −𝜆 (1 − 𝐾 (V
2
+ 𝜁
2
𝑤
2
)) 𝑤
1
< 0, 𝜉 ∈ [−𝑁,𝑁] ,

𝑤
2
(−𝑁) > 0, 𝑤

2
(𝑁) > 0.

(71)

The strict inequality comes from the fact that V
2
(𝜉) ≤

V
2
(𝜉) + 𝜁

2
𝑤
2
(𝜉) ≤ V𝜃

1
< 1/𝐾 for 𝜉 ∈ [−𝑁,𝑁]. It then follows

that 𝑤
2
(𝜉) > 0 for 𝜉 ∈ [−𝑁,𝑁]. For if there is a 𝜉 ∈ (−𝑁,𝑁)

such that 𝑤
2
(𝜉) = 0, then 𝑤

2
takes local minimum at 𝜉 and

the left hand side of the first inequality of (71) is zero at 𝜉. We
then have a contradiction.

Case 2. We may suppose that there is some point in (−𝑁,𝑁)
such that one of the components, say the 𝑗th component,
satisfies (𝑈𝜃

1
(𝜉))
𝑗
< (𝑈
2
(𝜉))
𝑗
at that point, 𝑗 = 1 or 2. We then

increase 𝜃, that is, shift 𝑈𝜃
1
(𝜉) further left, so that 𝑈𝜃

1
(−𝑁) >

𝑈
2
(−𝑁), 𝑈𝜃

1
(𝑁) > 𝑈

2
(𝑁). By themonotonicity of𝑈𝜃

1
and𝑈

2
,

we can find a 𝜃 ∈ (0, 2𝑁) such that in the interval (−𝑁,𝑁)
we have 𝑈𝜃

1
(𝜉 + 𝜃) > 𝑈

2
(𝜉). Shifting 𝑈𝜃

1
(𝜉 + 𝜃) back until one
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component of𝑈𝜃
1
(𝜉+𝜃)first touches its counterpart of𝑈

2
(𝜉) at

some point 𝜉 ∈ [−𝑁,𝑁], we then return back to Case 1 again,
where it has been shown that this is impossible.Therefore, we
must have

𝑈
𝜃

1
(𝜉) > 𝑈

2
(𝜉) (72)

for all 𝜉 ∈ R, where 𝜃 is the one chosen by means of (66) as
described above.

Now, decrease 𝜃 until one of the following situations
happens.

(1) There exists a 𝜃 ≥ 0, such that 𝑈𝜃
1
(𝜉) ≡ 𝑈

2
(𝜉). In this

case, we have finished the proof.

(2) There exists a 𝜃 ≥ 0 and 𝜉
1
∈ R, such that one of the

components of 𝑈𝜃 and 𝑈
2
are equal there; for all 𝜉 ∈

R, we have𝑈𝜃
1
(𝜉) ≥ 𝑈

2
(𝜉). On applying themaximum

principle onR and using the same argument as we did
for Case 1, we see that this is impossible.

Consequently, in either situation, there exists a 𝜃 ≥ 0,
such that

𝑈
𝜃

1
(𝜉) ≡ 𝑈

2
(𝜉) (73)

for all 𝜉 ∈ R.
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1992.

[12] A. W. Leung, X. Hou, and W. Feng, “Traveling wave solutions
for Lotka-Volterra system re-visited,” Discrete and Continuous
Dynamical Systems B, vol. 15, no. 1, pp. 171–196, 2011.

[13] A. I. Volpert, V. A. Volpert, and V. A. Volpert, Traveling
Wave Solutions of Parabolic Systems, vol. 140 of Translations
of Mathematical Monographs, American Mathematical Society,
Providence, RI, USA, 1994.

[14] D.H. Sattinger, “On the stability of waves of nonlinear parabolic
systems,” Advances in Mathematics, vol. 22, no. 3, pp. 312–355,
1976.

[15] W.A.Coppel,Dichotomies in StabilityTheory, vol. 629 ofLecture
Notes in Mathematics, Springer, Berlin, Germany, 1978.


