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We study the stability issue of the generalized 3D Navier-Stokes equations. It is shown that if the weak solution 𝑢 of the Navier-
Stokes equations lies in the regular class ∇𝑢 ∈ 𝐿𝑝(0,∞; 𝐵

0

𝑞,∞
(R
3
)), (2𝛼/𝑝) + (3/𝑞) = 2𝛼, 2 < 𝑞 < ∞, 0 < 𝛼 < 1, then every weak

solution V(𝑥, 𝑡) of the perturbed system converges asymptotically to 𝑢(𝑥, 𝑡) as ‖V(𝑡) − 𝑢(𝑡)‖𝐿2 → 0, 𝑡 → ∞.

1. Introduction and Main Result

In this study, we consider the Cauchy problem of the gener-
alized 3D Navier-stokes equations:

𝑢𝑡 + (−Δ)
𝛼
𝑢 + (𝑢 ⋅ ∇) 𝑢 + ∇𝜋 = 𝑓, (𝑥, 𝑡) ∈ R

3
× (0,∞) ,

∇ ⋅ 𝑢 = 0,

𝑢 (𝑥, 0) = 𝑢0.

(1)

Here, 0 < 𝛼 < 1, and 𝑢 and 𝜋 denote unknown velocity and
pressure, respectively. 𝑓 is the external force and 𝑢0 is a given
initial velocity.

It is well known that when 𝛼 = 1, system (1) becomes
the classic Navier-Stokes equations. For the Navier-Stokes
equations, it is proved that it has a global weak solution

𝑢 (𝑥, 𝑡) ∈ 𝐿
∞
(0, 𝑇; 𝐿

2
) ∩ 𝐿
2
(0, 𝑇;𝐻

1
) , ∀𝑇 > 0 (2)

for given 𝑢0 ∈ 𝐿
2
(R3) with ∇ ⋅ 𝑢0 = 0 [1]. However, the

regularity of Leray weak solutions is still an open problem
in mathematical fluid mechanics even if much effort has
been made [2–4]. It is an interesting problem to investigate
the stability properties of the Navier-Stokes equations and
related fluid models [5–11]. As regard to the above system (1),
the asymptotic stability of weak solution of the generalized
3D Navier-Stokes equation is described as follows. If 𝑢 is
perturbed initially by 𝜔0 without any smallness assumption,

then the perturbed system V is governed by the following
equations:

V𝑡 + (−Δ)
𝛼V + (V ⋅ ∇) V + ∇𝜋 = 𝑓,

∇ ⋅ V = 0,

V (𝑥, 0) = 𝑢0 + 𝜔0,

(3)

where 𝜔0 is the initial perturbation. There is large literature
on the stability issue of the classic Navier-Stokes equations
and related fluid models [12–17]. The aim of this paper is
to show the stability of weak solution in the framework
of the homogeneous Besov space. More precisely, with the
use of the Littlewood-Paley decomposition and the classic
Fourier splitting technique, we can show that when the initial
perturbation 𝜔0 ∈ 𝐿

2
(R3), then every weak solution V(𝑡) of

the perturbed system (2) converges asymptotically to 𝑢(𝑡) as
‖V(𝑡) − 𝑢(𝑡)‖𝐿2 → 0, 𝑡 → ∞.

Now our result reads as follows.

Theorem 1. Let 𝑓 ∈ 𝐿
2
(0, 𝑇;𝐻

−𝛼
(R3)), 𝜔0 ∈ 𝐿2(R3); Suppose

that 𝑢(𝑥, 𝑡) is a weak solution of (1) and that V(𝑥, 𝑡) is a weak
solution of the perturbed problem (2), respectively. Moreover, if
∇𝑢 also lies in the following regular class:

∇𝑢 ∈ 𝐿
𝑝
(0,∞; 𝐵

0

𝑞,∞
(R
3
)) ,

2𝛼

𝑝

+

3

𝑞

= 2𝛼, 2 < 𝑞 < ∞,

(4)

then ‖V(𝑡) − 𝑢(𝑡)‖𝐿2 → 0 (𝑡 → ∞).
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The remainder of this paper is organized as follows. In the
Section 2, we first recall the Littlewood-Paley decomposition
and the Bony decomposition; then we give three key lemmas.
And we prove asymptotic stability of the weak solution in the
Section 3.

2. Some Auxiliary Lemmas

Werecall some basic facts about the Littlewood-Paley decom-
position (refer to [18]). LetS(R3) be Schwartz class of rapidly
decreasing functions; supposing 𝑓 ∈ S(R3), the Fourier
transformationF is defined by

F𝑓 (𝜉) = ∫

R3
𝑒
−𝑖𝑥⋅𝜉

𝑓 (𝑥) 𝑑𝑥. (5)

Choose two nonnegative radial functions 𝜒, 𝜑 ∈ S(R3), sup-
ported in B = {𝜉 ∈ R3, |𝜉| ≤ 4/3} and C = {𝜉 ∈ R3, 3/4 ≤

|𝜉| ≤ 8/3}, respectively, such that

𝜒 (𝜉) + ∑

𝑗≥0

𝜑 (2
−𝑗
𝜉) = 1, 𝜉 ∈ R

3
. (6)

Let ℎ = F−1𝜑 and ̃ℎ = F−1𝜒, we define the dyadic blocks
as follows:

Δ 𝑗𝑓 = 𝜑 (2
−𝑗
𝐷)𝑓

= 2
3𝑗
∫

R3
ℎ (2
𝑗
𝑦)𝑓 (𝑥 − 𝑦) 𝑑𝑦, for 𝑗 ≥ 0,

𝑆𝑗𝑓 = 𝜒 (2
−𝑗
𝐷)𝑓 = ∑

−1≤𝑘≤𝑗−1

Δ 𝑘𝑓

= 2
3𝑗
∫

R3

̃
ℎ (2
𝑗
𝑦)𝑓 (𝑥 − 𝑦) 𝑑𝑦,

Δ−1𝑓 = 𝑆0𝑓, Δ 𝑗𝑓 = 0 for 𝑗 ≤ −2.

(7)

We can easily verify that

Δ 𝑗Δ 𝑘𝑓 = 𝜑 (2
−𝑗
𝜉) 𝜑 (2

−𝑘
𝜉)

̂
𝑓 = 0, if 󵄨󵄨󵄨

󵄨
𝑗 − 𝑘

󵄨
󵄨
󵄨
󵄨
≥ 2,

Δ 𝑗 (𝑆𝑘−1𝑓Δ 𝑘𝑓) = 𝜑 (2
−𝑗
𝜉) 𝜒 (2

−(𝑘−1)
𝜉)

̂
𝑓

× 𝜑 (2
−𝑘
𝜉)

̂
𝑓 = 0, if 󵄨󵄨󵄨

󵄨
𝑗 − 𝑘

󵄨
󵄨
󵄨
󵄨
≥ 5.

(8)

Especially for any 𝑓 ∈ 𝐿
2
(R3), we have the Littlewood-Paley

decomposition:

𝑓 = 𝑆0 (𝑓) + ∑

𝑗≥0

Δ 𝑗𝑓, 𝑓 ∈ S
󸀠
(R
3
) . (9)

Now we give the definition of the Besov space. Let 𝑠 ∈ R

and 𝑝, 𝑞 ∈ [1,∞]; the inhomogeneous Besov space 𝐵𝑠
𝑝,𝑞
(R3)

(see [18]) is defined by the full-dyadic decomposition, such as

𝐵
𝑠

𝑝,𝑞
(R
3
) = {𝑓 ∈ S

󸀠
(R
3
) :

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐵𝑠
𝑝,𝑞

< ∞} , (10)

where

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐵𝑠
𝑝,𝑞

=

{
{
{
{
{

{
{
{
{
{

{

(

∞

∑

𝑗=−1

2
𝑗𝑠𝑞󵄩󵄩
󵄩
󵄩
󵄩
Δ 𝑗𝑓

󵄩
󵄩
󵄩
󵄩
󵄩

𝑞

𝐿
𝑝

)

1/𝑞

, 1 ≤ 𝑞 < ∞,

sup
𝑗≥−1

2
𝑗𝑠󵄩󵄩
󵄩
󵄩
󵄩
Δ 𝑗𝑓

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝

, 𝑞 = ∞,

(11)

and S󸀠(R3) is a dual space of S(R3).
The Bony decomposition (see [19]) will be frequently

used; it is followed by

𝑢V = 𝑇𝑢V + 𝑇V𝑢 + 𝑅 (𝑢, V) , (12)

where

𝑇𝑢V = ∑
𝑗

𝑆𝑗−1𝑢Δ 𝑗V, 𝑅 (𝑢, V) = ∑

|𝑗󸀠−𝑗|≤1

Δ 𝑗𝑢Δ 𝑗󸀠V. (13)

The following Bernstein inequality (see [18]) will be used
in the next section.

Lemma 2. Assume that 𝑘, 𝑗 ∈ 𝑍 and 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞, for
𝑓 ∈ S(R3), one has

sup
|𝛼|=𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝛼
Δ 𝑗𝑓

󵄩
󵄩
󵄩
󵄩
󵄩𝐿𝑞(R3)

≤ 𝐶2
𝑗𝑘+3𝑗((1/𝑝)−(1/𝑞))󵄩󵄩

󵄩
󵄩
󵄩
Δ 𝑗𝑓

󵄩
󵄩
󵄩
󵄩
󵄩𝐿𝑝(R3)

, (14)

and the constant 𝐶 is independent of 𝑗 and 𝑘.

In the following, we will introduce two lemmas, which
will be employed in the proof of our theorem.

Lemma 3. Suppose that 𝑢, 𝑤 ∈ 𝐿
∞
(0, 𝑇; 𝐿

2
) ∩ 𝐿

2
(0, 𝑇;𝐻

𝛼
),

for all 𝑇 > 0, ∇V ∈ 𝐿
𝑝
(0,∞; 𝐵

0

𝑞,∞
), (2𝛼/𝑝) + (3/𝑞) = 2𝛼,

2 < 𝑞 < ∞.
Then the trilinear form

𝐹 (𝑢, V, 𝑤) = ∫
𝑇

0

∫

R3
(𝑢 ⋅ ∇V) 𝑤 𝑑𝑥 𝑑𝑡 (15)

is continuous and

|𝐹 (𝑢, V, 𝑤)| ≤ 𝐶‖𝑢‖
1/𝑝

𝐿∞(0,𝑇;𝐿2)
‖𝑢‖
1−(1/𝑝)

𝐿2(0,T;𝐻𝛼)‖𝑤‖
1/𝑝

𝐿∞(0,𝑇;𝐿2)

× ‖𝑤‖
1−(1/𝑝)

𝐿2(0,𝑇;𝐻𝛼)
‖∇V‖𝐿𝑝(0,𝑇;𝐵0

𝑞,∞
).

(16)

In particular, if 𝑢 = 𝑤, then

|𝐹 (𝑤, V, 𝑤)| ≤
1

2

∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
Λ
𝛼
𝑤
󵄩
󵄩
󵄩
󵄩

2

𝐿2
𝑑𝑡 + 𝐶∫

𝑇

0

‖𝑤‖
2

𝐿2
‖∇V‖
𝑝

𝐵0
𝑞,∞

𝑑𝑡.

(17)
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Proof of Lemma 3. We borrow the idea of [20] to prove this
lemma. By using of the Littlewood-Paley decomposition and
the Bony decomposition, we obtain

𝐹 (𝑢, V, 𝑤) = ∫
𝑇

0

∫

R3
(𝑢
𝑖
𝑤) 𝜕𝑖V 𝑑𝑥 𝑑𝑡

= ∫

𝑇

0

∫

R3
(𝑇𝑢𝑖𝑤 + 𝑇𝑤𝑢

𝑖
+ 𝑅 (𝑢

𝑖
, 𝑤))

× (∑

𝑗

Δ 𝑗𝜕𝑖V)𝑑𝑥𝑑𝑡

= ∑

|𝑘−𝑗|≤4

∫

𝑇

0

∫

R3
𝑆𝑘−1𝑢
𝑖
Δ 𝑘𝑤Δ 𝑗𝜕𝑖V 𝑑𝑥 𝑑𝑡

+ ∑

|𝑘−𝑗|≤4

∫

𝑇

0

∫

R3
Δ 𝑘𝑢
𝑖
𝑆𝑘−1𝑤Δ 𝑗𝜕𝑖V 𝑑𝑥 𝑑𝑡

+ ∑

|𝑘−𝑘󸀠|≤1

∑

𝑘,𝑘󸀠≥𝑗−3

∫

𝑇

0

∫

R3
Δ 𝑘𝑢
𝑖
Δ 𝑘󸀠𝑤Δ 𝑗𝜕𝑖V 𝑑𝑥 𝑑𝑡

= 𝐼1 + 𝐼2 + 𝐼3.

(18)

Then we estimate 𝐼1, 𝐼2, and 𝐼3 one by one. Applying
the Hölder inequality and the Bernstein inequality (40), we
derive

󵄨
󵄨
󵄨
󵄨
𝐼1

󵄨
󵄨
󵄨
󵄨
≤ 𝐶 ∑

|𝑘−𝑗|≤4

∑

𝑘󸀠≤𝑘−2

∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
󵄩
Δ 𝑘󸀠𝑢
𝑖󵄩󵄩
󵄩
󵄩
󵄩𝐿2𝑞/(𝑞−2)

󵄩
󵄩
󵄩
󵄩
Δ 𝑘𝑤

󵄩
󵄩
󵄩
󵄩𝐿2

󵄩
󵄩
󵄩
󵄩
󵄩
Δ 𝑗𝜕𝑖V

󵄩
󵄩
󵄩
󵄩
󵄩𝐿𝑞
𝑑𝑡

≤ 𝐶 ∑

|𝑘−𝑗|≤4

∑

𝑘󸀠≤𝑘−2

∫

𝑇

0

2
(3/𝑞)𝑘

󸀠󵄩
󵄩
󵄩
󵄩
󵄩
Δ 𝑘󸀠𝑢
𝑖󵄩󵄩
󵄩
󵄩
󵄩𝐿2

󵄩
󵄩
󵄩
󵄩
Δ 𝑘𝑤

󵄩
󵄩
󵄩
󵄩𝐿2

󵄩
󵄩
󵄩
󵄩
󵄩
Δ 𝑗𝜕𝑖V

󵄩
󵄩
󵄩
󵄩
󵄩𝐿𝑞
𝑑𝑡

≤ 𝐶 ∑

|𝑘−𝑗|≤4

∑

𝑘󸀠≤𝑘−2

∫

𝑇

0

(2
(𝛼/𝑝
󸀠
)𝑘
󸀠
󵄩
󵄩
󵄩
󵄩
Δ 𝑘󸀠𝑢

󵄩
󵄩
󵄩
󵄩𝐿2
)

× (2
(𝛼/𝑝
󸀠
)𝑘󵄩
󵄩
󵄩
󵄩
Δ 𝑘𝑤

󵄩
󵄩
󵄩
󵄩𝐿2
)

×

󵄩
󵄩
󵄩
󵄩
󵄩
Δ 𝑗∇V

󵄩
󵄩
󵄩
󵄩
󵄩𝐿𝑞
2
((3/𝑞)−(𝛼/𝑝

󸀠
))𝑘
󸀠
−(𝛼/𝑝

󸀠
)𝑘
𝑑𝑡,

(19)

where (1/𝑝) + (1/𝑝󸀠) = 1.
Since |𝑘 − 𝑗| ≤ 4, 𝑘

󸀠
< 𝑘 and (2𝛼/𝑝) + (3/𝑞) = 2𝛼 with

2 < 𝑞 < ∞, then

2
((3/𝑞)−(𝛼/𝑝

󸀠
))𝑘
󸀠
−(𝛼/𝑝

󸀠
)𝑘
= 2
((3/𝑞)−𝛼+(𝛼/𝑝))𝑘

󸀠
−(𝛼−(𝛼/𝑝))𝑘

= 2
(3/2𝑞)(𝑘

󸀠
−𝑘)

≤ 𝐶.

(20)

Thanks to the Sobolev embedding 𝐵
𝛼/𝑝
󸀠

2,∞
(R3) 󳨅→

𝐵
𝛼/𝑝
󸀠

2,2
(R3) = 𝐻𝛼/𝑝

󸀠

(R3), we have the following estimate:

󵄨
󵄨
󵄨
󵄨
𝐼1

󵄨
󵄨
󵄨
󵄨
≤ 𝐶∫

𝑇

0

‖𝑢‖
𝐻𝛼/𝑝
󸀠 ‖𝑤‖
𝐻𝛼/𝑝
󸀠 ‖∇V‖𝐵0

𝑞,∞

𝑑𝑡. (21)

Similarly, for 𝐼2, we also have

󵄨
󵄨
󵄨
󵄨
𝐼2

󵄨
󵄨
󵄨
󵄨
≤ 𝐶∫

𝑇

0

‖𝑢‖
𝐻𝛼/𝑝
󸀠 ‖𝑤‖
𝐻𝛼/𝑝
󸀠 ‖∇V‖𝐵0

𝑞,∞

𝑑𝑡. (22)

To estimate the last term 𝐼3, by using the Hölder inequal-
ity and the Bernstein inequality we obtain

󵄨
󵄨
󵄨
󵄨
𝐼3

󵄨
󵄨
󵄨
󵄨
≤ 𝐶 ∑

|𝑘−𝑘󸀠|≤1

∑

𝑘,𝑘󸀠≥𝑗−3

∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
󵄩
Δ 𝑘𝑢
𝑖󵄩󵄩
󵄩
󵄩
󵄩𝐿2

󵄩
󵄩
󵄩
󵄩
Δ 𝑘󸀠𝑤

󵄩
󵄩
󵄩
󵄩𝐿2

󵄩
󵄩
󵄩
󵄩
󵄩
Δ 𝑗𝜕𝑖V

󵄩
󵄩
󵄩
󵄩
󵄩𝐿∞

𝑑𝑡

≤ 𝐶 ∑

|𝑘−𝑘󸀠|≤1

∑

𝑘,𝑘󸀠≥𝑗−3

∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
󵄩
Δ 𝑘𝑢
𝑖󵄩󵄩
󵄩
󵄩
󵄩𝐿2

󵄩
󵄩
󵄩
󵄩
Δ 𝑘󸀠𝑤

󵄩
󵄩
󵄩
󵄩𝐿2

× (2
(3/𝑞)𝑗󵄩󵄩

󵄩
󵄩
󵄩
Δ 𝑗𝜕𝑖V

󵄩
󵄩
󵄩
󵄩
󵄩𝐿𝑞
) 𝑑𝑡

≤ 𝐶 ∑

|𝑘−𝑘󸀠|≤1

∑

𝑘,𝑘󸀠≥𝑗−3

∫

𝑇

0

(2
(𝛼/𝑝
󸀠
)𝑘󵄩
󵄩
󵄩
󵄩
Δ 𝑘𝑢

󵄩
󵄩
󵄩
󵄩𝐿2
)

× (2
(𝛼/𝑝
󸀠
)𝑘
󸀠
󵄩
󵄩
󵄩
󵄩
Δ 𝑘󸀠𝑤

󵄩
󵄩
󵄩
󵄩𝐿2
)

×

󵄩
󵄩
󵄩
󵄩
󵄩
Δ 𝑗∇V

󵄩
󵄩
󵄩
󵄩
󵄩𝐿𝑞
2
−(3/𝑞)𝑗 −(𝛼/𝑝

󸀠
)(𝑘+𝑘

󸀠
)
𝑑𝑡.

(23)

Since |𝑘 − 𝑘󸀠| ≤ 1, 𝑘, 𝑘󸀠 ≥ 𝑗 − 3 and (2𝛼/𝑝) + (3/𝑞) = 2𝛼, 2 <
𝑞 < ∞, we have

2
−(3/𝑞)𝑗−(𝛼/𝑝

󸀠
)(𝑘+𝑘

󸀠
)
= 2
−(3/𝑞)𝑗−(3/2)(𝑘+𝑘

󸀠
)(1/𝑞)

≤ 2
9/𝑞

≤ 𝐶,

󵄨
󵄨
󵄨
󵄨
𝐼3

󵄨
󵄨
󵄨
󵄨
≤ 𝐶∫

𝑇

0

‖𝑢‖
𝐻𝛼/𝑝
󸀠 ‖𝑤‖
𝐻𝛼/𝑝
󸀠 ‖∇V‖𝐵0

𝑞,∞

𝑑𝑡.

(24)

So, we can derive

|𝐹 (𝑢, V, 𝑤)|

≤ 𝐶∫

𝑇

0

‖𝑢‖
𝐻𝛼/𝑝
󸀠 ‖𝑤‖
𝐻𝛼/𝑝
󸀠 ‖∇V‖𝐵0

𝑞,∞

𝑑𝑡

≤ 𝐶(∫

𝑇

0

‖𝑢‖
2𝑝
󸀠

𝐻𝛼/𝑝
󸀠
𝑑𝑡)

1/2𝑝
󸀠

(∫

𝑇

0

‖𝑤‖
2𝑝
󸀠

𝐻𝛼/𝑝
󸀠
𝑑𝑡)

1/2𝑝
󸀠

× (∫

𝑇

0

‖∇V‖
𝑝

𝐵0
𝑞,∞

𝑑𝑡)

1/𝑝

≤ 𝐶‖𝑢‖
𝐿2𝑝
󸀠

(0,𝑇;𝐻𝛼/𝑝
󸀠

)
‖𝑤‖
𝐿2𝑝󸀠(0,𝑇;𝐻𝛼/𝑝

󸀠

)
‖∇V‖𝐿𝑝(0,𝑇;𝐵0

𝑞,∞
).

(25)

Applying the interpolation inequality, we have

‖𝑢‖
𝐿2𝑝󸀠(0,𝑇;𝐻𝛼/𝑝

󸀠

)
≤ 𝐶‖𝑢‖

1−(1/𝑝
󸀠
)

𝐿∞(0,𝑇;𝐿2)
⋅ ‖𝑢‖
1/𝑝
󸀠

𝐿2(0,𝑇;𝐻𝛼)

≤ 𝐶‖𝑢‖
1/𝑝

𝐿∞(0,𝑇;𝐿2)
⋅ ‖𝑢‖
1−(1/𝑝)

𝐿2(0,𝑇;𝐻𝛼)
.

(26)

Then

|𝐹 (𝑢, V, 𝑤)| ≤ 𝐶‖𝑢‖
1/𝑝

𝐿∞(0,𝑇;𝐿2)
‖𝑢‖
1−(1/𝑝)

𝐿2(0,𝑇;𝐻𝛼)
‖𝑤‖
1/𝑝

𝐿∞(0,𝑇;𝐿2)

×‖𝑤‖
1−(1/𝑝)

𝐿2(0,𝑇;𝐻𝛼)
‖∇V‖𝐿𝑝(0,𝑇;𝐵0

𝑞,∞
).

(27)
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Especially if 𝑢 = 𝑤, by using the interpolation inequality,
we get

|𝐹 (𝑢, V, 𝑤)| ≤ 𝐶∫
𝑇

0

‖𝑤‖
2

𝐻𝛼/𝑝
󸀠 ‖∇V‖𝐵0

𝑞,∞

𝑑𝑡

≤ 𝐶∫

𝑇

0

‖𝑤‖
2(1−(1/𝑝

󸀠
))

𝐿2
󵄩
󵄩
󵄩
󵄩
Λ
𝛼
𝑤
󵄩
󵄩
󵄩
󵄩

2/𝑝
󸀠

𝐿2
‖∇V‖𝐵0

𝑞,∞

𝑑𝑡

≤

1

2

∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
Λ
𝛼
𝑤
󵄩
󵄩
󵄩
󵄩

2

𝐿2
𝑑𝑡 + 𝐶∫

𝑇

0

‖𝑤‖
2

𝐿2‖
∇V‖
𝑝

𝐵0
𝑞,∞

𝑑𝑡.

(28)

Hence, the proof of the lemma is complete.

Let 𝑤(𝑥, 𝑡) = V(𝑥, 𝑡) − 𝑢(𝑥, 𝑡) denote the difference of
V(𝑥, 𝑡) and 𝑢(𝑥, 𝑡), where 𝑢(𝑥, 𝑡) is a weak solution of (1) and
V(𝑥, 𝑡) is a weak solution of the perturbed problem (2). Thus
𝑤(𝑥, 𝑡) satisfies the following equations:

𝑤𝑡 + (−Δ)
𝛼
𝑤 + (V ⋅ ∇) 𝑤 + (𝑤 ⋅ ∇) 𝑢 + ∇𝜋 = 0,

(𝑥, 𝑡) ∈ R
3
× (0,∞) ,

∇ ⋅ 𝑤 = 0,

𝑤 (𝑥, 0) = 𝑤0.

(29)

Lemma 4. Let 𝑤(𝑥, 𝑡) be the solution of the above problem.
Then

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝑒
−|𝜉|
2𝛼
𝑡 󵄨
󵄨
󵄨
󵄨
𝑤0 (𝜉)

󵄨
󵄨
󵄨
󵄨
+ 𝐶

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
𝑡. (30)

Proof of Lemma 4. Taking the Fourier transformation of the
first equation of (38), we get

𝑤𝑡 +
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2𝛼
𝑤 = 𝐹 [− (V ⋅ ∇) 𝑤 − (𝑤 ⋅ ∇) 𝑢 − ∇𝜋] =: 𝐺 (𝜉, 𝑡) .

(31)

We can easily obtain

|𝐹 [− (V ⋅ ∇) 𝑤]| ≤ ∑
𝑖,𝑗

∫

R3

󵄨
󵄨
󵄨
󵄨
󵄨
V𝑖𝑤𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝜉𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑥 ≤

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
‖V‖𝐿2‖𝑤‖𝐿2 ,

|𝐹 [− (𝑤 ⋅ ∇) 𝑢]| ≤ ∑

𝑖,𝑗

∫

R3

󵄨
󵄨
󵄨
󵄨
󵄨
𝑤𝑖𝑢𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝜉𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑥 ≤

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
‖𝑤‖𝐿2‖𝑢‖𝐿2 .

(32)

Applying the operator ∇ div to the first equation of (38), we
have

Δ𝜋 = ∑

𝑖,𝑗

𝜕
2

𝜕𝑥𝑖𝜕𝑥𝑗

(−V𝑖𝑤𝑗 − 𝑤𝑖𝑢𝑗) , (33)

and taking the Fourier transformation, we get

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
𝐹 [𝜋] = ∑

𝑖,𝑗

𝜉𝑖𝜉𝑗𝐹 [−V𝑖𝑤𝑗 − 𝑤𝑖𝑢𝑗] ; (34)

thus

|𝐹 [∇𝜋]| ≤
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
|𝐹 [𝜋]| ≤

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
‖𝑤‖𝐿2 (‖𝑢‖𝐿2 + ‖V‖𝐿2) . (35)

Then we have
󵄨
󵄨
󵄨
󵄨
𝐺 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
‖𝑤‖𝐿2 (‖𝑢‖𝐿2 + ‖V‖𝐿2) . (36)

Thus solving the ordinary differential equation (31) and using
(36) gives

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑤0 (𝜉) 𝑒
−|𝜉|
2𝛼
𝑡
+ ∫

𝑡

0

𝑒
−|𝜉|
2𝛼
(𝑡−𝑠)

𝐺 (𝜉, 𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑤0 (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−|𝜉|
2𝛼
𝑡
+ 𝐶

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
∫

𝑡

0

‖𝑤‖𝐿2 (‖𝑢‖𝐿2 + ‖V‖𝐿2) 𝑑𝑠

≤ 𝑒
−|𝜉|
2𝛼
𝑡 󵄨
󵄨
󵄨
󵄨
𝑤0 (𝜉)

󵄨
󵄨
󵄨
󵄨
+ 𝐶

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
𝑡,

(37)

which is the desired assertion of Lemma 4.

3. Proof of Theorem 1

The following argument is follows the classic Fourier splitting
methods which is first used by Schonbek [21] (see also [22]).

Taking the inner product of the first equation in (38) with
𝑤 together with the divergence-free condition of V, 𝑤we have

1

2

𝑑

𝑑𝑡

‖𝑤‖
2

𝐿2
+ ∫

R3

󵄨
󵄨
󵄨
󵄨
Λ
𝛼
𝑤
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 = −∫

R3
(𝑤 ⋅ ∇) 𝑢 ⋅ 𝑤 𝑑𝑥. (38)

Applying Plancherel’s theorem to (38) yields

1

2

𝑑

𝑑𝑡

∫

R3

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 + ∫

R3

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2𝛼󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉

= −∫

R3
(𝑤 ⋅ ∇) 𝑢 ⋅ 𝑤 𝑑𝑥.

(39)

Let 𝑓(𝑡) be a continuous function of 𝑡 with 𝑓(0) = 1,
𝑓(𝑡) > 0 and 𝑓󸀠(𝑡) > 0, we can derive the following:

𝑑

𝑑𝑡

(𝑓 (𝑡) ∫

R3

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉)

+ 2𝑓 (𝑡) ∫

R3

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2𝛼󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉

= −2𝑓 (𝑡) ∫

R3
(𝑤 ⋅ ∇) 𝑢 ⋅ 𝑤 𝑑𝑥

+ 𝑓
󸀠
(𝑡) ∫

R3

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉.

(40)

By integrating in time from 0 to 𝑡 for (40), we have

𝑓 (𝑡) ∫

R3

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉

+ 2∫

𝑡

0

𝑓 (𝑠) ∫

R3

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2𝛼󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑠)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 𝑑𝑠

= ∫

R3

󵄨
󵄨
󵄨
󵄨
𝑤0

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 − 2∫

𝑡

0

𝑓 (𝑠) ∫

R3
(𝑤 ⋅ ∇) 𝑢 ⋅ 𝑤 𝑑𝑥 𝑑𝑠

+ ∫

𝑡

0

𝑓
󸀠
(𝑠) ∫

R3

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑠)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 𝑑𝑠.

(41)
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Noting that 𝑓(𝑡) is a scalar function and applying
Lemma 3, we get
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

𝑓 (𝑠) ∫

R3
(𝑤 ⋅ ∇) 𝑢 ⋅ 𝑤 𝑑𝑥 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

2

∫

𝑡

0

𝑓 (𝑠)
󵄩
󵄩
󵄩
󵄩
Λ
𝛼
𝑤
󵄩
󵄩
󵄩
󵄩

2

𝐿2
𝑑𝑠 + 𝐶∫

𝑡

0

𝑓 (𝑠) ‖𝑤‖
2

𝐿2‖
∇𝑢‖
𝑝

𝐵0
𝑞,∞

𝑑𝑠

≤

1

2

∫

𝑡

0

𝑓 (𝑠) ∫

R3

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2𝛼󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑠)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 𝑑𝑡

+ 𝐶∫

𝑡

0

𝑓 (𝑠) ‖𝑤‖
2

𝐿2‖
∇𝑢‖
𝑝

𝐵0
𝑞,∞

𝑑𝑠.

(42)

Then,

𝑓 (𝑡) ∫

R3

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉

+ ∫

𝑡

0

𝑓 (𝑠) ∫

R3

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2𝛼󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑠)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 𝑑𝑠

≤ ∫

R3

󵄨
󵄨
󵄨
󵄨
𝑤0

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 + ∫

𝑡

0

𝑓
󸀠
(𝑠) ∫

R3

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑠)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 𝑑𝑠

+ 𝐶∫

𝑡

0

𝑓 (𝑠) ‖𝑤‖
2

𝐿2‖
∇𝑢‖
𝑝

𝐵0
𝑞,∞

𝑑𝑠.

(43)

Let 𝐵(𝑡) = {𝜉 ∈ R3 : 𝑓(𝑡)|𝜉|2𝛼 < 𝑓󸀠(𝑡)}, we have

𝑓 (𝑠) ∫

R3

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2𝛼󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑠)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 ≥ 𝑓

󸀠
(𝑠) ∫

R3

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑠)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉

− 𝑓
󸀠
(𝑠) ∫

𝐵(𝑠)

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑠)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉.

(44)

Then,

𝑓 (𝑡) ∫

R3

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉

≤ ∫

R3

󵄨
󵄨
󵄨
󵄨
𝑤0 (𝜉)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 + 𝐶∫

𝑡

0

𝑓 (𝑠) ‖𝑤‖
2

𝐿2
‖∇𝑢‖
𝑝

𝐵0
𝑞,∞

𝑑𝑠

+ ∫

𝑡

0

𝑓
󸀠
(𝑠) ∫

𝐵(𝑠)

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑠)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 𝑑𝑠.

(45)

In addition,

∫

𝑡

0

𝑓
󸀠
(𝑠) ∫

𝐵(𝑠)

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑠)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 𝑑𝑠

≤ 𝐶∫

𝑡

0

𝑓
󸀠
(𝑠) ∫

𝐵(𝑠)

(𝑒
−2|𝜉|
2𝛼
𝑠󵄨
󵄨
󵄨
󵄨
𝑤0 (𝜉)

󵄨
󵄨
󵄨
󵄨

2
+
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
𝑠
2
) 𝑑𝜉 𝑑𝑠

≤ 𝐶∫

𝑡

0

𝑓
󸀠
(𝑠) (∫

R3
𝑒
−2|𝜉|
2𝛼
𝑠󵄨
󵄨
󵄨
󵄨
𝑤0 (𝜉)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉) 𝑑𝑠

+ 𝐶∫

𝑡

0

𝑓
󸀠
(𝑠) 𝑠
2
(

𝑓
󸀠
(𝑠)

𝑓(𝑠)

)

5/2𝛼

𝑑𝑠.

(46)

Choose 𝑓(𝑡) = (1 + 𝑡)2, then

(1 + 𝑡)
2
∫

R3

󵄨
󵄨
󵄨
󵄨
𝑤 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉

≤ 𝐶 + 𝐶∫

𝑡

0

(1 + 𝑠)
2
‖𝑤‖
2

𝐿2‖
∇𝑢‖
𝑝

𝐵0
𝑞,∞

𝑑𝑠

+ 𝐶∫

𝑡

0

(1 + 𝑠) ∫

R3
𝑒
−2|𝜉|
2𝛼
𝑠󵄨
󵄨
󵄨
󵄨
𝑤0 (𝜉, 𝑠)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 𝑑𝑠

+ 𝐶(1 + 𝑡)
4−(5/2𝛼)

,

(1 + 𝑡)
2
‖𝑤‖
2

𝐿2

≤ 𝐶∫

𝑡

0

(1 + 𝑠) ∫

R3
𝑒
−2|𝜉|
2𝛼
𝑠󵄨
󵄨
󵄨
󵄨
𝑤0 (𝜉)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 𝑑𝑠

+ 𝐶∫

𝑡

0

(1 + 𝑠)
2
‖𝑤‖
2

𝐿2‖
∇𝑢‖
𝑝

𝐵0
𝑞,∞

𝑑𝑠

+ 𝐶(1 + 𝑡)
4−(5/2𝛼)

.

(47)

By using the Gronwall inequality, it follows that

(1 + 𝑡)
2
‖𝑤‖
2

𝐿2

≤ {𝐶∫

𝑡

0

(1 + 𝑠) ∫

R3
𝑒
−2|𝜉|
2𝛼
𝑠󵄨
󵄨
󵄨
󵄨
𝑤0 (𝜉)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 𝑑𝑠 + 𝐶(1 + 𝑡)

4−(5/2𝛼)
}

× exp(∫
𝑡

0

‖∇𝑢‖
𝑝

𝐵0
𝑞,∞

𝑑𝑠) .

(48)

Since

∫

R3
𝑒
−2|𝜉|
2𝛼
𝑡󵄨
󵄨
󵄨
󵄨
𝑤0 (𝜉)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 ≤ 𝐶(1 + 𝑡)

−3/2𝛼
󳨀→ 0, 𝑡 󳨀→ ∞,

(49)

we derive

‖𝑤‖𝐿2 ≤ 𝐶(1 + 𝑡)
−2
∫

𝑡

0

(1 + 𝑠) ∫

R3
𝑒
−2|𝜉|
2𝛼
𝑠󵄨
󵄨
󵄨
󵄨
𝑤0 (𝜉)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜉 𝑑𝑠

+𝐶(1 + 𝑡)
2−(5/2𝛼)

󳨀→ 0, 𝑡 󳨀→ ∞,

(50)

which completes the proof of Theorem 1.
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